Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fuel optimal Mars transfer trajectories

    Thumbnail
    Name:
    1425804.PDF
    Size:
    15.46Mb
    Format:
    PDF
    View/Open
    Author
    Benzin, Kathryn C.
    Date
    2005
    Advisor
    Miele, Angelo
    Degree
    Master of Science
    Abstract
    This thesis research examines the fuel optimal trajectories for a spacecraft going to Mars and returning to Earth. Challenges encountered include the defining of equations of motion and optimality conditions, formulation of constraints, and overcoming difficulties deriving from large distances and times involved and the accuracy required. In addition to calculating an optimal trajectory, two different arrival orbits at Mars are compared: a clockwise and counterclockwise Martian orbit. The optimal trajectories are computed using a mathematical optimization algorithm SNOPT, developed at Stanford University and UC San Diego. A solution method is recommended where an initial guess is generated analytically via a patched conic approach. The problem is solved in two steps: first with relaxed constraints, then using that result to find the optimal solution. This approach is proven by separately solving two different trajectories: an Earth to Mars trajectory and a Mars to Earth trajectory. The results demonstrate that the two arrival conditions are very similar in most aspects, including planetary phase angles and total trajectory time. The trajectory using the counterclockwise Mars orbit has a slight advantage in propellant usage (DeltaV), but the difference is less than 1%. These transfers also have symmetries between the outbound and return portions of the trajectories. Both trajectories should be available for consideration for a mission to Mars depending on other mission requirements.
    Keyword
    Aerospace engineering; Mechanical engineering
    Citation
    Benzin, Kathryn C.. "Fuel optimal Mars transfer trajectories." (2005) Master’s Thesis, Rice University. http://hdl.handle.net/1911/17756.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [12052]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892