• FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smoothing vs. buffering for end-to-end QoS: Fundamental issues and comparison

    Thumbnail
    Name:
    1399316.PDF
    Size:
    1.139Mb
    Format:
    PDF
    View/Open
    Author
    Wu, Tao
    Date
    2000
    Advisor
    Knightly, Edward W.
    Degree
    Master of Science
    Abstract
    Smoothing traffic flows at the network edge to reduce their burstiness has been shown to have significant benefits for video-on-demand systems and deterministic services. In this thesis, we investigate the relative abilities of smoothing and buffering to improve a network's admissible region for end-to-end delay-bounded statistical services. In single multiplexer systems, we show that buffering outperforms smoothing for any end-to-end delay bound and loss probability. We find that this behavior is due not only to statistical buffer sharing, but also to heterogeneity of the traffic flows' time scales. In multi-node scenarios, key issues for buffering and smoothing are user QoS requirements, traffic characteristics, and route length. For example, we find that as the number of hops traversed increases, the advantages of buffering diminish due to node-to-node buffer partitioning; and while smoothing is asymptotically superior, we find that in practice, the "critical route length" required to realize a smoothing gain is so large that buffering results in larger admissible regions, even in many multi-node scenarios.
    Keyword
    Electronics; Electrical engineering; Computer science
    Metadata
    Show full item record
    Collections
    • ECE Theses and Dissertations [597]
    • Rice University Electronic Theses and Dissertations [10740]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892