Mathematics Faculty Publications
Recent Submissions

Level structures on Abelian varieties, Kodaira dimensions, and Lang's conjecture
(2018)Assuming Lang's conjecture, we prove that for a prime p, number field K, and positive integer g, there is an integer r such that no principally polarized abelian variety A/K has full levelpr structure. To this end, we use ... 
Open Problems and Conjectures Related to the Theory of Mathematical Quasicrystals
(2016)This list of problems arose as a collaborative effort among the participants of the Arbeitsgemeinschaft on Mathematical Quasicrystals, which was held at the Mathematisches Forschungsinstitut Oberwolfach in October 2015. ... 
Wignervon Neumann type perturbations of periodic Schrödinger operators
(2015)Schrödinger operators on the half line. More precisely, the perturbations we consider satisfy a generalized bounded variation condition at infinity and an LP decay condition. We show that the absolutely continuous spectrum ... 
Homology cobordism and Seifert fibered 3manifolds
(2014)It is known that every closed oriented 3manifold is homology cobordant to a hyperbolic 3manifold. By contrast we show that many homology cobordism classes contain no Seifert fibered 3manifold. This is accomplished by ... 
Dichotomy for arithmetic progressions in subsets of reals
(2016)Let H stand for the set of homeomorphisms φ:[0, 1] → [0, 1]. We prove the following dichotomy for Borel subsets A ⊂ [0, 1]: • either there exists a homeomorphism φ ∈ Hsuch that the image φ(A) contains no 3term arithmetic ... 
Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t=−1
(2015)We prove that the hyperelliptic Torelli group is generated by Dehn twists about separating curves that are preserved by the hyperelliptic involution. This verifies a conjecture of Hain. The hyperelliptic Torelli group can ... 
Generating the Johnson filtration
(2015)For k≥1, let J1g(k) be the k th term in the Johnson filtration of the mapping class group of a genus g surface with one boundary component. We prove that for all k≥1, there exists some Gk≥0 such that J1g(k) is generated ... 
Fundamental domains and generators for lattice Veech groups
(2017)The moduli space QMg of nonzero genus g quadratic differentials has a natural action of G=GL+2(R) / ⟨±(1001) ⟩. The Veech group PSL(X,q) is the stabilizer of (X,q)∈QMg in G. We describe a new algorithm for finding elements ... 
Higherdimensional analogs of Chatelet surfaces
(2012)We discuss the geometry and arithmetic of higherdimensional analogs of Chatelet surfaces; namely, we describe the structure of their Brauer and Picard groups and show that they can violate the Hasse principle. In addition, ... 
On the unirationality of del Pezzo surfaces of degree two
(2014)Among geometrically rational surfaces, del Pezzo surfaces of degree 2 over a field k containing at least one point are arguably the simplest that are not known to be unirational over k. Looking for krational curves on ... 
Cubic fourfolds containing a plane and a quantic del Pezzo surface
(2014)We isolate a class of smooth rational cubic fourfolds X containing a plane whose associated quadric surface bundle does not have a rational section. This is equivalent to the nontriviality of the Brauer class β of the even ... 
New Anomalous LiebRobinson Bounds in Quasiperiodic XY Chains
(2014)We announce and sketch the rigorous proof of a new kind of anomalous (or subballistic) LiebRobinson (LR) bound for an isotropic XY chain in a quasiperiodic transversal magnetic field. Instead of the usual effective light ... 
On the existence and uniqueness of global solutions for the KdV equation with quasiperiodic initial data
(2015)We consider the KdV equation ∂tu+∂3xu+u∂xu=0 with quasiperiodic initial data whose Fourier coefficients decay exponentially and prove existence and uniqueness, in the class of functions which have an expansion with ... 
Failure of the Hasse Principle on General K3 Surfaces
(2013)We show that transcendental elements of the Brauer group of an algebraic surface can obstruct the Hasse principle. We construct a general K3 surface X of degree 2 over Q, together with a twotorsion Brauer class that is ... 
Log minimal model program for the moduli space of stable curves: the first flip
(2013)We give a geometric invariant theory (GIT) construction of the log canonical model M¯g(α) of the pairs (M¯g,αδ) for α∈(7/10–ϵ,7/10] for small ϵ∈Q+. We show that M¯g(7/10) is isomorphic to the GIT quotient of the Chow variety ... 
Effective Computation of Picard Groups and BrauerManin Obstructions of Degree Two K3 Surfaces Over Number Fields
(2013)Using the KugaSatake correspondence we provide an effective algorithm for the computation of the Picard and Brauer groups of K3 surfaces of degree 2 over number fields. 
Ergodic properties of compositions of interval exchange maps and rotations
(2012)We study the ergodic properties of compositions of interval exchange transformations (IETs) and rotations. We show that for any IET T, there is a full measure set of α ∈ [0, 1) so that T Rα is uniquely ergodic, where Rα is ...