• FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multibody mechanics and the residual flexibility method

    Thumbnail
    Name:
    9631141.PDF
    Size:
    5.141Mb
    Format:
    PDF
    View/Open
    Author
    Miller, Scott Michael
    Date
    1996
    Advisor
    Spanos, Pol D.
    Degree
    Doctor of Philosophy
    Abstract
    This thesis provides first an introduction to an area of continuum mechanics the author terms multibody mechanics. Therein, a continuum is separated into a finite number of bodies. By merging ideas from classical and multibody dynamics with contemporary rational mechanics, approximate methods such as the finite element method and substructuring techniques are presented as natural approximation schemes of the differential equations generated. When such approximations are done for each body, which are in turn connected to form a system, differential-algebraic equations with index three result. The difficulty in solving index three differential-algebraic equations is demonstrated with a simple example and alternative strategies are discussed. In most situations, the alternatives either destroy the natural sparse structure of the matrices or employ artificial techniques to control constraint drift. For flexible bodies, the benefits of using the residual flexibility method are demonstrated. The method naturally retains the sparse (mostly diagonal) matrix structures while also resulting in differential-algebraic equations with index one. As is well-known, the numerical solution of index one equations is more easily accomplished than that of equations with a higher index. Therefore, the residual flexibility method represents a remarkable approach for not only modeling the flexibility but also reducing the index of the governing differential-algebraic equations.
    Keyword
    Mechanical engineering; Applied mechanics; Aerospace engineering
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [10740]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892