Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural determinants of functional behavior in distal pocket mutants of myoglobin

    Thumbnail
    Name:
    9610695.PDF
    Size:
    12.32Mb
    Format:
    PDF
    View/Open
    Author
    Quillin, Michael L.
    Date
    1995
    Advisor
    Phillips, George N., Jr.
    Degree
    Doctor of Philosophy
    Abstract
    The physiological role of myoglobin depends on the modulation of heme activity by the protein. The hypothesis that functional properties are governed by conserved residues in the distal pocket has been tested by site-directed mutagenesis of three residues: Leu$\sp{29}$, His$\sp{64}$, and Val$\sp{68}$. To facilitate interpretation of functional data, structures of several mutant myoglobins have been determined by X-ray crystallography. Leu$\sp{29}$ controls the volume of the distal pocket. Since Val$\sp{29}$ does not contact bound ligands, this substitution does not affect ligand affinities significantly. It does permit solvent approach to the heme, thereby increasing the rate of autooxidation. Although the Phe$\sp{29}$ mutant was constructed to reduce the volume of the binding site, dipole-multipole interactions stabilize bound oxygen and reduce the rate of autooxidation substantially. His$\sp{64}$ inhibits oxygen dissociation and autooxidation by hydrogen bonding to the ligand. In conjunction with a distal water molecule, it sterically hinders carbon monoxide association. Mutation of this residue eliminates hydrogen-bonding interactions in all cases except Gln$\sp{64}$, producing low oxygen affinities and high rates of autooxidation. In the Gly$\sp{64}$ mutant, the solvent-filled distal cavity partially restores binding site polarity. In contrast, the distal pockets of Val$\sp{64}$, Thr$\sp{64}$, and Leu$\sp{64}$ are completely apolar, leading to marked increases in rates of ligand binding. Val$\sp{68}$ governs the ligand accessibility of the iron. In the Ala$\sp{68}$ mutant, only slight rate enhancements occur because the distal water molecule is retained in the deoxygenated protein. The larger side chains of Ile$\sp{68}$ and Leu$\sp{68}$ displace this water molecule and occlude the binding site in unliganded structures. The lower affinities observed in Ile$\sp{68}$ compared to Leu$\sp{68}$ are due to the decreased ability of this residue to accommodate the bound ligand. In contrast, the Phe$\sp{68}$ side chain is directed away from the iron atom and does not inhibit binding directly. Nevertheless, the reduced volume in this mutant is filled with a water molecule, retarding ligand association. In all mutants, structural perturbations are limited to the site of the substitution and the flexible corner regions of myoglobin. Furthermore, the stereochemistry of the heme-ligand complex is little influenced by changes in the distal pocket.
    Keyword
    Biochemistry
    Citation
    Quillin, Michael L.. "Structural determinants of functional behavior in distal pocket mutants of myoglobin." (1995) Diss., Rice University. https://hdl.handle.net/1911/16871.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [13409]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map