Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Models of electrical activity, calcium concentration, and synaptic plasticity in Aplysia neurons

    Thumbnail
    Name:
    9136005.PDF
    Size:
    4.342Mb
    Format:
    PDF
    View/Open
    Author
    Canavier, Carmen Castro
    Date
    1991
    Advisor
    Clark, John W., Jr.
    Degree
    Doctor of Philosophy
    Abstract
    Mathematical models of two Aplysia neurons simulate salient features of the electrical and chemical activity of these neurons. First, the endogenous burster R15 was modeled as a Hodgkin-Huxley (HH) type membrane equivalent circuit coupled to a fluid compartment model. The model simulates available data on potential and bulk $Ca\sp{2+}$ concentration waveforms, as well as transitions between bursting, beating, and silent modes and the effects of certain modulatory agents. A reduced two-variable nullcline analysis provided valuable insights into the activity of the full model. Second, a HH type model of a sensory neuron was coupled with a concentric shell model of radial variation in $Ca\sp{2+}$ concentration to simulate basal data on action potential shape and excitability. The effect of serotonin (5HT) on these variables was also simulated. Finally, the coupling between the sensory neuron and a follower motor neuron was modeled, including mobilization and release of transmitter, and the response of the postsynaptic membrane. The model simulated the postsynaptic excitatory potential (EPSP) waveforms and maximum amplitudes under normal, depressed, and facilitated conditions.
    Keyword
    Electronics; Electrical engineering; Biomedical engineering; Neurosciences; Biology; More... Engineering Less...
    Citation
    Canavier, Carmen Castro. "Models of electrical activity, calcium concentration, and synaptic plasticity in Aplysia neurons." (1991) Diss., Rice University. https://hdl.handle.net/1911/16425.
    Metadata
    Show full item record
    Collections
    • ECE Theses and Dissertations [597]
    • Rice University Electronic Theses and Dissertations [13409]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map