Show simple item record

dc.contributor.advisor Oldow, John S.
dc.creatorHandschy, James William
dc.date.accessioned 2009-06-04T00:29:21Z
dc.date.available 2009-06-04T00:29:21Z
dc.date.issued 1989
dc.identifier.urihttps://hdl.handle.net/1911/16238
dc.description.abstract The Endicott Mountains allochthon is an east-west striking stack of north-northwest vergent thrust sheets which were emplaced during late Mesozoic and Cenozoic (Brookian) orogenesis. Thrust sheets in the allochthon are composed of clastic and carbonate rocks which track the progressive evolution of a Late Devonian and Early Carboniferous continental margin. Sedimentary facies in lower Upper Devonian rocks of the Beaucoup Formation delimit a volcanically active depositional basin. Volcaniclastic sediments within the Beaucoup were apparently derived from the south; whereas siliciclastic sediments were derived from the north. By the late Late Devonian, the Beaucoup depositional basin had developed into a south-facing continental margin. Southwestward progradation of the Kanayut-Hunt Fork delta system deposited thick conglomerates, sandstones, and shales on the margin and created a lithofacies pattern in which the Kanayut Conglomerate is thicker in the north and the Hunt Fork Shale is thicker in the south. Transgression of the Lower Mississippian Kayak Shale over the Kanayut Conglomerate occurred as sea level rose during the Early Mississippian. Subsequent transgressive-regressive cycles in carbonates of the Lisburne Group indicate that the margin had evolved into a stable passive margin by the middle Mississippian. The style of Brookian structures in the Endicott Mountains allochthon changes from imbricate thrust sheets and large single-phase folds in the north to a thick, variably strained thrust nappe in the south. Strain variation in the southern nappe is evidenced by a progressive change from single-phase folds at the top of the nappe to polyphase folds at the bottom. First phase fold axes change from strike-parallel at the top of the nappe to dip-parallel at the bottom, and the angle between first phase axial planes and the basal thrust decreases with depth. The change from thrust imbrication in the north to heterogeneous intranappe strain in the south apparently was controlled by the distribution of sedimentary facies and the extent of tectonic burial. The greater thickness of Kanayut Conglomerate and lack of a superjacent thrust sheet favored thrust imbrication in the north; whereas the greater proportion of shale and tectonic burial beneath the Skajit allochthon favored heterogeneous intranappe deformation in the south. Changes in fold orientation, the number of superposed fold phases, and measured strain in the southern nappe indicate that deformation was facilitated by a combination of layer parallel shortening and simple shear in a collapsing shear zone.
dc.format.extent 214 p.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.subjectGeology
dc.title Sedimentology and structural geology of the Endicott Mountains allochthon, central Brooks Range, Alaska
dc.type.genre Thesis
dc.type.material Text
thesis.degree.department Earth Science
thesis.degree.discipline Natural Sciences
thesis.degree.grantor Rice University
thesis.degree.level Doctoral
thesis.degree.name Doctor of Philosophy
dc.identifier.citation Handschy, James William. "Sedimentology and structural geology of the Endicott Mountains allochthon, central Brooks Range, Alaska." (1989) Diss., Rice University. https://hdl.handle.net/1911/16238.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record