• FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A moisture transport and precipitation parameterization for energy balance climate models

    Thumbnail
    Name:
    1349021.PDF
    Size:
    2.552Mb
    Format:
    PDF
    View/Open
    Author
    Chu, Shaoping
    Date
    1992
    Advisor
    Ledley, Tamara Shapiro
    Degree
    Master of Science
    Abstract
    The spatial distribution of water in all its three phases is an important factor in determining the climate. The interactions among temperature, water vapor, infrared emission and solar radiation form a series of feedback mechanisms, which play a very important role in the climate system. In order to trace moisture flow through the climate system and examine its impact on climate, a parameterization for the computation of moisture transport and precipitation is developed, one that will eventually be incorporated into a coupled energy balance climate-thermodynamic sea ice model (the CCSI model). This parameterization is tested by comparing computed energy transports and precipitation rates with available observations and by evaluating its sensitivity to variations in the values of specified parameters. The results of these studies indicate that the moisture parameterization is somewhat sensitive to variations in wind speed, surface air temperature and moisture flux, while it is relatively insensitive to changes in relative humidity. In general this parameterization does a good job in simulating the seasonal cycle and latitudinal distribution of the wind speed, moisture transport and precipitation when compared to the observed data and general circulation model (GCM) results.
    Keyword
    Atmospheric sciences
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [10740]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892