Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    •   Rice Scholarship Home
    • Rice University Graduate Electronic Theses and Dissertations
    • Rice University Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Methods for Deep Reinforcement Learning: Algorithms and Applications

    Thumbnail
    Name:
    ZHA-DOCUMENT-2023.pdf
    Size:
    6.151Mb
    Format:
    PDF
    View/Open
    Thumbnail
    Name:
    CertificateOfCompletion.pdf
    Size:
    117.4Kb
    Format:
    PDF
    View/Open
    Author
    Zha, Daochen
    Date
    2023-03-14
    Advisor
    Hu, Xia
    Degree
    Doctor of Philosophy
    Abstract
    Deep reinforcement learning (deep RL) has recently achieved remarkable success in various domains, from simulated games to real-world applications. However, deep RL agents are notoriously sample-inefficient; they often need to collect a large number of samples from the environment to achieve a reasonable performance. This sample efficiency issue becomes more pronounced in sparse reward environments, where the rewards are zeros in most of the states so that the deep RL agents can barely learn. Unfortunately, collecting samples can be extremely expensive in many real-world applications; we may only be able to collect a very limited number of samples for training. The sample efficiency issue significantly hinders the applications of deep RL in the real world. To bridge this gap, this thesis makes several contributions to efficient deep RL. First, we propose a learning-based experience replay algorithm to improve the sample efficiency with better sample reuse. Second, we present an episode-level exploration strategy for efficient exploration in spare environments. Third, we investigate a real-world application of embedding table sharding and design an efficient training algorithm based on an estimated environment. Finally, we devise a more general framework by leveraging pre-trained models to improve efficiency and apply it to embedding table sharding. Putting all these together, our research could help build more efficient deep RL systems and facilitate their real-world deployment.
    Keyword
    Reinforcement Learning; Machine Learning; Recommender Systems; Machine Learning Systems
    Citation
    Zha, Daochen. "Efficient Methods for Deep Reinforcement Learning: Algorithms and Applications." (2023) Diss., Rice University. https://hdl.handle.net/1911/115077.
    Metadata
    Show full item record
    Collections
    • Rice University Electronic Theses and Dissertations [14030]

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us | Privacy Notice | Accessibility Statement
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
    Site Map