Show simple item record

dc.contributor.authorTanner, Mark R.
Huq, Redwan
Sikkema, William K.A.
Nilewski, Lizanne G.
Yosef, Nejla
Schmitt, Cody
Flores-Suarez, Carlos P.
Raugh, Arielle
Laragione, Teresina
Gulko, Pércio S.
Tour, James M.
Beeton, Christine
dc.date.accessioned 2020-11-06T02:02:48Z
dc.date.available 2020-11-06T02:02:48Z
dc.date.issued 2020
dc.identifier.citation Tanner, Mark R., Huq, Redwan, Sikkema, William K.A., et al.. "Antioxidant Carbon Nanoparticles Inhibit Fibroblast-Like Synoviocyte Invasiveness and Reduce Disease Severity in a Rat Model of Rheumatoid Arthritis." Antioxidants, 9, no. 10 (2020) MDPI: https://doi.org/10.3390/antiox9101005.
dc.identifier.urihttps://hdl.handle.net/1911/109516
dc.description.abstract Reactive oxygen species have been involved in the pathogenesis of rheumatoid arthritis (RA). Our goal was to determine the effects of selectively scavenging superoxide (O2•−) and hydroxyl radicals with antioxidant nanoparticles, called poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), on the pathogenic functions of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and on the progression of an animal model of RA. We used human FLS from patients with RA to determine PEG-HCC internalization and effects on FLS cytotoxicity, invasiveness, proliferation, and production of proteases. We used the pristane-induced arthritis (PIA) rat model of RA to assess the benefits of PEG-HCCs on reducing disease severity. PEG-HCCs were internalized by RA-FLS, reduced their intracellular O2•−, and reduced multiple measures of their pathogenicity in vitro, including proliferation and invasion. In PIA, PEG-HCCs caused a 65% reduction in disease severity, as measured by a standardized scoring system of paw inflammation and caused a significant reduction in bone and tissue damage, and circulating rheumatoid factor. PEG-HCCs did not induce lymphopenia during PIA. Our study demonstrated a role for O2•− and hydroxyl radicals in the pathogenesis of a rat model of RA and showed efficacy of PEG-HCCs in treating a rat model of RA.
dc.language.iso eng
dc.publisher MDPI
dc.rights This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.title Antioxidant Carbon Nanoparticles Inhibit Fibroblast-Like Synoviocyte Invasiveness and Reduce Disease Severity in a Rat Model of Rheumatoid Arthritis
dc.type Journal article
dc.citation.journalTitle Antioxidants
dc.contributor.org The NanoCarbon Center
dc.subject.keywordsynovial fibroblast
oxidative stress
nanomaterials
dc.citation.volumeNumber 9
dc.citation.issueNumber 10
dc.type.dcmi Text
dc.identifier.doihttps://doi.org/10.3390/antiox9101005
dc.type.publication publisher version
dc.citation.articleNumber 1005


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record