Show simple item record

dc.contributor.authorYap, Te Faye
Liu, Zhen
Shveda, Rachel A.
Preston, Daniel J.
dc.date.accessioned 2020-10-09T14:32:06Z
dc.date.available 2020-10-09T14:32:06Z
dc.date.issued 2020
dc.identifier.citation Yap, Te Faye, Liu, Zhen, Shveda, Rachel A., et al.. "A predictive model of the temperature-dependent inactivation of coronaviruses." Applied Physics Letters, 117, no. 6 (2020) AIP: https://doi.org/10.1063/5.0020782.
dc.identifier.urihttps://hdl.handle.net/1911/109402
dc.description.abstract The COVID-19 pandemic has stressed healthcare systems and supply lines, forcing medical doctors to risk infection by decontaminating and reusing single-use personal protective equipment. The uncertain future of the pandemic is compounded by limited data on the ability of the responsible virus, SARS-CoV-2, to survive across various climates, preventing epidemiologists from accurately modeling its spread. However, a detailed thermodynamic analysis of experimental data on the inactivation of SARS-CoV-2 and related coronaviruses can enable a fundamental understanding of their thermal degradation that will help model the COVID-19 pandemic and mitigate future outbreaks. This work introduces a thermodynamic model that synthesizes existing data into an analytical framework built on first principles, including the rate law for a first-order reaction and the Arrhenius equation, to accurately predict the temperature-dependent inactivation of coronaviruses. The model provides much-needed thermal decontamination guidelines for personal protective equipment, including masks. For example, at 70 °C, a 3-log (99.9%) reduction in virus concentration can be achieved, on average, in 3 min (under the same conditions, a more conservative decontamination time of 39 min represents the upper limit of a 95% interval) and can be performed in most home ovens without reducing the efficacy of typical N95 masks as shown in recent experimental reports. This model will also allow for epidemiologists to incorporate the lifetime of SARS-CoV-2 as a continuous function of environmental temperature into models forecasting the spread of the pandemic across different climates and seasons.
dc.language.iso eng
dc.publisher AIP
dc.rights Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.title A predictive model of the temperature-dependent inactivation of coronaviruses
dc.type Journal article
dc.citation.journalTitle Applied Physics Letters
dc.citation.volumeNumber 117
dc.citation.issueNumber 6
dc.type.dcmi Text
dc.identifier.doihttps://doi.org/10.1063/5.0020782
dc.type.publication publisher version
dc.citation.articleNumber 060601


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record