Show simple item record

dc.contributor.authorDamanik, David
Fillman, Jake
Gorodetski, Anton
dc.date.accessioned 2019-08-21T19:16:16Z
dc.date.available 2019-08-21T19:16:16Z
dc.date.issued 2019
dc.identifier.citation Damanik, David, Fillman, Jake and Gorodetski, Anton. "Multidimensional Almost-Periodic Schrödinger Operators with Cantor Spectrum." Annales Henri Poincaré, 20, no. 4 (2019) Springer: 1393-1402. https://doi.org/10.1007/s00023-019-00768-5.
dc.identifier.urihttps://hdl.handle.net/1911/106274
dc.description.abstract We construct multidimensional almost-periodic Schrödinger operators whose spectrum has zero lower box-counting dimension. In particular, the spectrum in these cases is a generalized Cantor set of zero Lebesgue measure.
dc.language.iso eng
dc.publisher Springer
dc.rights This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Springer.
dc.title Multidimensional Almost-Periodic Schrödinger Operators with Cantor Spectrum
dc.type Journal article
dc.citation.journalTitle Annales Henri Poincaré
dc.citation.volumeNumber 20
dc.citation.issueNumber 4
dc.type.dcmi Text
dc.identifier.doihttps://doi.org/10.1007/s00023-019-00768-5
dc.type.publication pre-print
dc.citation.firstpage 1393
dc.citation.lastpage 1402


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record