Show simple item record

dc.contributor.authorWang, Fengpeng
Damanik, David
dc.date.accessioned 2019-08-21T19:16:16Z
dc.date.available 2019-08-21T19:16:16Z
dc.date.issued 2019
dc.identifier.citation Wang, Fengpeng and Damanik, David. "Anderson localization for quasi-periodic CMV matrices and quantum walks." Journal of Functional Analysis, 276, no. 6 (2019) Elsevier: 1978-2006. https://doi.org/10.1016/j.jfa.2018.10.016.
dc.identifier.urihttp://hdl.handle.net/1911/106273
dc.description.abstract We consider CMV matrices, both standard and extended, with analytic quasi-periodic Verblunsky coefficients and prove Anderson localization in the regime of positive Lyapunov exponents. This establishes the CMV analog of a result Bourgain and Goldstein proved for discrete one-dimensional Schrödinger operators. We also prove a similar result for quantum walks on the integer lattice with suitable analytic quasi-periodic coins.
dc.language.iso eng
dc.publisher Elsevier
dc.rights This is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier.
dc.title Anderson localization for quasi-periodic CMV matrices and quantum walks
dc.type Journal article
dc.citation.journalTitle Journal of Functional Analysis
dc.subject.keywordCMV matrices
Quasi-periodic coefficients
Anderson localization
Quantum walks
dc.citation.volumeNumber 276
dc.citation.issueNumber 6
dc.type.dcmi Text
dc.identifier.doihttps://doi.org/10.1016/j.jfa.2018.10.016
dc.type.publication pre-print
dc.citation.firstpage 1978
dc.citation.lastpage 2006


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record