Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrated light-sheet illumination using metallic slit microlenses

    Thumbnail
    Name:
    oe-26-21-27326.pdf
    Size:
    4.095Mb
    Format:
    PDF
    View/Open
    Author
    Ye, Fan
    Avants, Benjamin W.
    Veeraraghavan, Ashok
    Robinson, Jacob T.
    Date
    2018
    Citation
    Ye, Fan, Avants, Benjamin W., Veeraraghavan, Ashok, et al.. "Integrated light-sheet illumination using metallic slit microlenses." Optics Express, 26, no. 21 (2018) 27326-27338. https://doi.org/10.1364/OE.26.027326.
    Published Version
    https://doi.org/10.1364/OE.26.027326
    Abstract
    Light sheet microscopy (LSM) - also known as selective plane illumination microscopy (SPIM) - enables high-speed, volumetric imaging by illuminating a two-dimensional cross-section of a specimen. Typically, this light sheet is created by table-top optics, which limits the ability to miniaturize the overall SPIM system. Replacing this table-top illumination system with miniature, integrated devices would reduce the cost and footprint of SPIM systems. One important element for a miniature SPIM system is a flat, easily manufactured lens that can form a light sheet. Here we investigate planar metallic lenses as the beam shaping element of an integrated SPIM illuminator. Based on finite difference time domain (FDTD) simulations, we find that diffraction from a single slit can create planar illumination with a higher light throughput than zone plate or plasmonic lenses. Metallic slit microlenses also show broadband operation across the entire visible range and are nearly polarization insensitive. Furthermore, compared to meta-lenses based on sub-wavelength-scale diffractive elements, metallic slit lenses have micron-scale features compatible with low-cost photolithographic manufacturing. These features allow us to create inexpensive integrated devices that generate light-sheet illumination comparable to tabletop microscopy systems. Further miniaturization of this type of integrated SPIM illuminators will open new avenues for flat, implantable photonic devices for in vivo biological imaging.
    Type
    Journal article
    Citable link to this page
    http://hdl.handle.net/1911/104982
    Metadata
    Show full item record
    Collections
    • ECE Publications [1278]
    • Faculty Publications [3507]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892