Rice Univesrity Logo
    • FAQ
    • Deposit your work
    • Login
    View Item 
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    •   Rice Scholarship Home
    • Faculty & Staff Research
    • Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mott localization in a pure stripe antiferromagnet ${\mathrm{Rb}}_{1\ensuremath{-}\ensuremath{\delta}}{\mathrm{Fe}}_{1.5\ensuremath{-}\ensuremath{\sigma}}{\mathrm{S}}_{2}$

    Thumbnail
    Name:
    PhysRevB.92.121101.pdf
    Size:
    497.1Kb
    Format:
    PDF
    View/Open
    Author
    Wang, Meng
    Yi, Ming
    Cao, Huibo
    de la Cruz, C.
    Mo, S.K.
    Huang, Q.Z.
    Bourret-Courchesne, E.
    Dai, Pengcheng
    Lee, D.H.
    Shen, Z.X.
    Birgeneau, R.J.
    Date
    2015
    Citation
    Wang, Meng, Yi, Ming, Cao, Huibo, et al.. "Mott localization in a pure stripe antiferromagnet ${\mathrm{Rb}}_{1\ensuremath{-}\ensuremath{\delta}}{\mathrm{Fe}}_{1.5\ensuremath{-}\ensuremath{\sigma}}{\mathrm{S}}_{2}$." Physical Review B, 92, no. 12 (2015) https://doi.org/10.1103/PhysRevB.92.121101.
    Published Version
    https://doi.org/10.1103/PhysRevB.92.121101
    Abstract
    A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe Rb1−δFe1.5−σS2 is reported. A neutron diffraction experiment on a powder sample shows that a 98% volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of Rb0.66Fe1.36S2, and that only 2% of the sample is in the block antiferromagnetic phase with √5×√5 iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with the refined composition of Rb0.78Fe1.35S2, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrate that the extra 10% iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.
    Type
    Journal article
    Citable link to this page
    http://hdl.handle.net/1911/103840
    Metadata
    Show full item record
    Collections
    • Faculty Publications [3507]
    • Physics and Astronomy Publications [1325]

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892
     

     

    Searching scope

    Browse

    Entire ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsType

    My Account

    Login

    Statistics

    View Usage Statistics

    Home | FAQ | Contact Us
    Managed by the Digital Scholarship Services at Fondren Library, Rice University
    Physical Address: 6100 Main Street, Houston, Texas 77005
    Mailing Address: MS-44, P.O.BOX 1892, Houston, Texas 77251-1892