Show simple item record

dc.contributor.authorYe, Y.
Tapia, R.A.
Zhang, Y.
dc.date.accessioned 2018-06-18T17:30:46Z
dc.date.available 2018-06-18T17:30:46Z
dc.date.issued 1991-07
dc.identifier.citation Ye, Y., Tapia, R.A. and Zhang, Y.. "A Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear Programming." (1991) https://hdl.handle.net/1911/101723.
dc.identifier.urihttps://hdl.handle.net/1911/101723
dc.description.abstract In this note we consider a large step modification of the Mizuno-Todd-Ye O (sqrt{n}L) predictor-corrector interior-point algorithm for linear programming. We demonstrate that the modified algorithm maintains its O (sqrt{n}L)-iteration complexity, while exhibiting superlinear convergence for general problems and quadratic convergence for nondegenerate problems. To our knowledge, this is the first construction of a superlinearly convergent algorithm with O (sqrt{n}L)-iteration complexity.
dc.format.extent 12 pp
dc.title A Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear Programming
dc.type Technical report
dc.date.note July 1991
dc.identifier.digital TR91-22
dc.type.dcmi Text


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record