Show simple item record

dc.contributor.authorSorensen, Danny C.
dc.date.accessioned 2018-06-18T17:30:10Z
dc.date.available 2018-06-18T17:30:10Z
dc.date.issued 1990-10
dc.identifier.citation Sorensen, Danny C.. "Implicit Application of Polynomial Filters in a k-Step Arnoldi Method." (1990) https://hdl.handle.net/1911/101691.
dc.identifier.urihttps://hdl.handle.net/1911/101691
dc.description.abstract The Arnoldi process is a well known technique for approximating a few eigenvalues and corresponding eigenvectors of a general square matrix. Numerical difficulties such as loss of orthogonality and assessment of the numerical quality of the approximations as well as a potential for unbounded growth in storage have limited the applicability of the method. These issues are addressed by fixing the number of steps in the Arnoldi process at a prescribed value k and then treating the residual vector as a function of the initial Arnoldi vector. This starting vector is then updated through an iterative scheme that is designed to force convergence of the residual to zero. The iterative scheme is shown to be a truncation of the standard implicitly shifted QR-iteration for dense problems and it avoids the need to explicitly restart the Arnoldi sequence. The main emphasis of this paper is on the derivation and analysis of this scheme. However, there are obvious ways to exploit parallelism through the matrix-vector operations that comprise the majority of the work in the algorithm. Preliminary computational results are given for a few problems on some parallel and vector computers.
dc.format.extent 26 pp
dc.title Implicit Application of Polynomial Filters in a k-Step Arnoldi Method
dc.type Technical report
dc.date.note October 1990 (Revised October 1991)
dc.identifier.digital TR90-27
dc.type.dcmi Text


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record