A Growing Portion of China’s “Oil Products” Demand Growth Does Not Actually Come From Crude Oil

Gabriel Collins, J.D., Baker Botts Fellow in Energy & Environmental Regulatory Affairs, Center for Energy Studies

China’s oil products demand growth over the past several years has been dominated by the light end of the barrel. In 2015, gasoline and natural gas liquids (NGLs) together accounted for 53% of net incremental oil products demand growth in China (Figure 1). By 2016, light ends accounted for such a significant proportion of this demand that without gasoline and NGL demand growth, oil product consumption in China would have actually declined, as consumption of diesel fuel and residual fuel oil fell year-on-year.

As China’s demand for light oil products continues to drive incremental consumption growth, an interesting theme is becoming apparent: commodities that are framed as “oil products” are increasingly not actually made from crude oil. The methanol and derivatives being blended into the Chinese gasoline supply generally come from coal, while a meaningful portion of NGLs entering China are produced in US shale plays and never see the inside of a refinery distillation tower. This could pose an emerging demand-side risk for crude oil prices, since molecules of methanol and its derivatives—along with shale-sourced NGLs—are effectively displacing compounds formerly created by refining crude oil.

METHANOL BLENDING AND DERIVATIVES INJECTING COAL INTO CHINA’S GASOLINE POOL

While the lion’s share of China gasoline supply comes from refining crude oil, an increasing proportion effectively comes from China’s coalfields in the forms of methanol and chemicals produced using methanol as a feedstock. Indeed, data from Argus Media suggest that more than 400,000 barrels per day (bpd) of China’s gasoline pool—which

FIGURE 1 — CHINA OIL PRODUCTS DEMAND GROWTH BY CATEGORY (2004–2017)

The light end of the barrel has dominated China’s oil-demand growth since 2015.

SOURCES International Energy Agency, author’s own analysis
The rise in methanol blending appears primarily driven by (1) increasing octane ratings and decreasing gasoline sulfur content to meet new national quality standards in a cost-effective manner, (2) reducing oil import needs, and (3) providing an additional domestic industrial value-added activity by sustaining coal demand, as apparent consumption declines at the national level.

Regulatory changes are also facilitating increased use of methanol in gasoline across China. Sixteen Chinese provinces have issued local standards on methanol-blended fuel since 2004, the bulk of which focus on lower concentration blends such as M10 and M15 (i.e., 10% and 15% methanol by volume, respectively). The provinces with local methanol rules now include Fujian, Jiangsu, Liaoning, Shandong, Shanghai, and Zhejiang. These provinces contain roughly 30% of China’s entire private car fleet and are located on the coast, where they can potentially access price-advantaged methanol imports made from low-cost U.S. natural gas. Inland, together with those in Sichuan, drivers in the “coal patch” of Shanxi, Shaanxi, Ningxia, Gansu, and Qinghai own roughly 16 million private passenger cars. In all of these provinces, either methanol–gasoline blends are already for sale, or policymakers are seriously considering incorporating methanol into the local gasoline pool.

Data from Argus Media suggest that in 2016, roughly 200,000 bpd of methanol were blended into the Chinese gasoline stream, with another 200,000 bpd of methanol derivatives such as MTBE also being incorporated. As such, if we assume a baseline Chinese gasoline demand of approximately 3 million bpd, actual methanol accounts for 6–7% of the gasoline pool, with methanol derivatives contributing another 7% to total pool volume. As such, on a national level, the M15 era is already essentially here in the Chinese gasoline market, albeit in a derivative sense.

Moving forward, it is unclear whether the percentage of MTBE in Chinese gasoline will remain at current levels, if more of the Chinese population begins to have the same...
environmental and health concerns about MTBE that led to it being banned from the US market in 2006. If MTBE was to fall out of favor and be substituted with methanol—thus keeping the proportion of methanol and its derivatives in the gasoline pool closer to the current level—the crude oil demand displacement effect would likely be relatively muted. If, on the other hand, MTBE remains heavily used and blenders inject a large volume of neat methanol into the Chinese gasoline system, much more crude oil use could be displaced—especially if gasoline demand growth slows or stalls.

Two key factors will greatly influence the ultimate answer to these questions: First, how much more methanol can the Chinese car fleet accommodate without inducing maintenance problems that could prompt a driver backlash against higher-concentration gasoline–methanol fuel formulas? And second, can the areas in China with low-cost coal feedstocks—which are also often afflicted by water shortages—muster sufficient water supplies to accommodate additional methanol production? From a raw materials perspective, China’s coal reserves are more than capable of supporting a significant increase in methanol production, but water intensity poses tougher challenges. Researchers in China estimate that producing one tonne of methanol from coal requires 8.3 tonnes of water. In other words, it takes about 6.6 barrels of water to produce one barrel of methanol from coal.

In contrast, data from Valero—the largest independent U.S. refiner and operator of one of the world’s most complex set of refining assets—show that processing a barrel of crude oil requires 0.4 to 1.2 barrels of water, depending on refinery complexity and on-site hydrogen production activity. Sinopac, which has the largest and arguably most sophisticated refinery footprint in China, refined 236 million tonnes of crude oil (approximately 4.72 million bpd) and produced 56.36 million tonnes of gasoline (approximately 1.30 million bpd) in 2016. As such, it can reasonably be assumed that China’s large refineries process 4 barrels of crude oil for every barrel of finished gasoline produced. Using the Valero data, this suggests each barrel of gasoline in China likely requires in the neighborhood of 5 barrels of water to produce. This is approximately 25% less water per unit of fuel than the amounts coal–based methanol plants will typically use.

China’s largest refineries tend to be located in water–abundant coastal areas, whereas the central Chinese coal patch (a likely location for methanol producers seeking proximity to coal feedstock) is generally much drier. If the Chinese leadership seeks to promote the use of methanol but reduce competition for scarce inland water resources, one possible solution would entail building coal–to–methanol plants in wetter coastal areas and transporting the coal to those plants, since water is the greater limiting factor. To boot, with the exception of Sichuan, China’s largest gasoline markets are located in the populous, wealthier coastal zones such as Guangdong, Jiangsu, Shandong, and Zhejiang.

As China’s demand for light oil products continues to drive incremental consumption growth, an interesting theme is becoming apparent: commodities that are framed as “oil products” are increasingly not actually made from crude oil.

CHINA’S PETROCHEMICAL MAKERS TAP U.S. SHALE BOOM

In a twist that vividly illustrates how the US shale boom has reshaped global NGL and gas procurement strategies, the United States now accounts for a significant portion of China’s liquefied petroleum gas (LPG) imports, sometimes exceeding 40% of the country’s total imports in a given month (Figure 3). Much of the country’s LPG supply used to come from domestic refinery operations and was derived from crude oil. LPG supplies from the US, however, come directly or indirectly from shale plays and thus bypass the refinery. Large-scale exports of LPG from the US only became possible with the advent of shale gas production. This means US NGL producers across plays such as the Marcellus, Utica, and Permian now effectively underwrite a significant portion of China’s imported petrochemical feedstock, as well as some degree of gasoline–blending components. And the entire process happens with the exported hydrocarbons bypassing the distillation towers of a traditional oil refinery.
Much of China’s LPG imports from the US come under term deals, such as the one Sinopec signed with Phillips 66 in early 2014. Chinese petrochemical plants’ willingness to bind themselves to multiyear contracts with parties from the US is notable because it is occurring despite rising geopolitical tensions between Beijing and Washington, D.C. To illustrate a potential contrast, consider the recent upswing in purchases of US crude oil made by PetroChina and Sinopec, which are being conducted primarily through spot market deals and generally appears to be an opportunistic move to capitalize on ample global supplies.

Most likely, the disparity between China’s crude and LPG sourcing approaches reflects two fundamental factors: (1) the US market is structurally long on LPG while the country remains a large net crude oil importer, making long-term supply agreements more feasible; and (2) even if LPG supplies were to be disrupted by political events, the resulting problems would tend to be issues of private economic losses rather than threats to core national security, since plastic production for consumer goods is generally a much less strategic activity than the production of liquid fuels.

Endnotes

1. NGLs are important feedstocks for China’s burgeoning petrochemical industry, as they are used to make ethylene and propylene—the building blocks of polyethylene and polypropylene, the world’s two most widely consumed plastics. China’s demand for propane has been especially robust, with the activation of multiple propane dehydrogenation plants that produce propylene for use as a petrochemical and polymer feedstock. Butane, another NGL, is also increasingly in demand as a gasoline-blending component, as China implements its National Phase 5 gasoline quality standard. See, for instance, “Chinese propane imports to rise in Q4 on startup of two PDH plants,” S&P Global Platts, September 21, 2016, https://www.platts.com/latest-news/oil/
A GROWING PORTION OF CHINA’S “OIL PRODUCTS” DEMAND GROWTH DOES NOT ACTUALLY COME FROM CRUDE OIL

9. Calculated as follows: (333 gallons of methanol per tonne) / (42 gallons per barrel) = 7.93 barrels of methanol per tonne. 8.3 tonnes of water to produce 1 tonne of coal-derived methanol = 1.05 tonnes of water per barrel of methanol. Water mass = (8.3 pounds per gallon) * (42 gallons per barrel) = (348.6 pounds per barrel) / (2204 pounds per tonne) = 0.16 tonnes per barrel of water, or 6.32 barrels of water per tonne. Finally, (6.32 barrels of water per tonne) * (1.05 tonnes) = 6.62 barrels of water. See “Methanol FAQs,” Southern Chemical Corporation, http://www.southernchemical.com/wp/safety-environment/frequently-asked-questions; see also Han Hao, Zongwei Liu, Fuquan Zhao, Jiuyu Du, and Yisong Chen, “Coal-derived Alternative Fuels For Vehicle Use In China: A Review,” Journal of Cleaner Production 141 (2017): 774-90, https://doi.org/10.1016/j.jclepro.2016.09.137.

16. Ibid.