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We calculate the equation of state after inflation and provide an upper bound on the duration before
radiation domination by taking the nonlinear dynamics of the fragmented inflaton field into account. A
broad class of single-field inflationary models with observationally consistent flattening of the potential at a
scale M away from the origin, VðϕÞ ∝ jϕj2n near the origin, and where the couplings to other fields are
ignored, is included in our analysis. We find that the equation of state parameter w → 0 for n ¼ 1 and
w → 1=3 (after sufficient time) for n≳ 1. We calculate how the number of e-folds to radiation domination
depends on both n and M when M ∼mPl, whereas when M ≪ mPl, we find that the duration to radiation
domination is negligible. Our results are explained in terms of a linear instability analysis in an expanding
universe and scaling arguments, and are supported by 3þ 1-dimensional lattice simulations. We show that
our upper bound on the postinflationary duration before radiation domination reduces the uncertainty in
inflationary observables even when couplings to additional light fields are included (at least under the
assumption of perturbative decay).
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Introduction.—Inflationary cosmology provides a frame-
work for calculating the initial conditions responsible for
the observed temperature fluctuations in the cosmic micro-
wave background [1]. However, there is a gap in our
understanding of how inflation ends and ultimately leads to
a radiation-dominated, thermal universe before the produc-
tion of light elements. The poorly constrained postinfla-
tionary equation of state of the Universe and the duration
before radiation domination influence the interpretation
of inflationary observables and the reheating temperature
[2–11]; they affect predictions for baryogenesis and pri-
mordial relics [12–14].
In this Letter we calculate the equation of state

parameter w soon after the end of inflation by accounting
for the full nonlinear dynamics of the inflaton field using
3þ 1-dimensional lattice simulations. Using our results,
we can calculate an upper bound on the duration to
radiation domination. Under the assumption of pertur-
bative decay to other massless fields, this upper bound
reduces the uncertainty in the interpretation and calcu-
lation of inflationary and postinflationary observables.
Nonperturbative decay to light daughter fields is
unlikely to change our results, though we cannot show
this exhaustively.
The equation of state for oscillating homogeneous con-

densates in an expanding universe has been well understood
since the 1980s [15]; however, general results for the cases
where the scalar field undergoes significant fragmentation
are not easily found in the literature. Detailed earlier works
on the equation of state including nonlinear dynamics
certainly exist, e.g., [16], but are usually limited to quadratic
and quartic inflaton potentials coupled to light fields. We
allow for general shapes of the inflaton potential and ignore

couplings to other light fields in our simulations, but include
them in the bounds on the duration to radiation domination.
Inflaton potential.—We study the postinflationary expan-

sion history in minimally coupled, single-field models of
inflation with potentials of the form VðϕÞ ∝ jϕj2n near the
origin and appropriately flattened away from it (to be
consistent with observations [1]), cf. Fig. 1. For our
purposes, only two features of the potential are relevant:
the scale M where the potential starts flattening and the
power n of the potential near the minimum. For concrete-
ness, we parametrize the inflationary potentials as
VðϕÞ ¼ Λ4 tanh2n ðjϕj=MÞ, where M ¼ ffiffiffiffiffiffi

6α
p

mPl based on
the α-attractor models of inflation [17–19]. We expect our
results to be independent of the details of this parametriza-
tion and equally applicable to Monodromy-type models
[20,21]. We also do not expect qualitative changes when we
make the potential asymmetric (we have also checked this
numerically for some fiducial cases). Typical models have
M ∼mPl; however, we also allow for M ≪ mPl. To avoid
numerical trouble from discontinuous higher derivatives of
the potential, we assume n ≥ 1 (not necessarily an integer).
Linear instability analysis.—At the end of inflation, the

homogeneous inflaton condensate ϕ̄ starts oscillating around
the minimum of its potential. In the presence of any

FIG. 1. The shape of the inflaton potential studied in this work.
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perturbations, such homogeneous oscillations are unstable:
they lead to a rapid growth in field perturbations, δϕðt; xÞ, or
equivalently, to nonadiabatic particle production [22–25].
A useful way of characterizing the efficiency of particle

production is as follows. First, let us ignore expansion.
Floquet theory [26,27] tells us that the general solution for
the field perturbations in Fourier space is of the form
δϕk ∝ expð�μktÞ, where μk is the Floquet exponent. If
ℜðμkÞ ≠ 0, then there is an “unstable” solution growing
exponentially with time. In general, any nonlinearity in VðϕÞ
leads to resonant particle production. The real part of the
Floquet exponent is shown in Fig. 2 as a function of the
amplitude of the oscillating condenstate and the physical
wave number κ ≡ k=am (with a ¼ 1). Note that we have
expressed k and μk in units of a field or time dependent
effective mass scale, m2 ≡ 2nΛ2ðΛ=MÞ2ðϕ̄=MÞ2ðn−1Þ. This
effective mass scale m2 ≈ ∂ϕ̄V=ϕ̄ when ϕ̄ ≪ M and is what
sets the period of ϕ̄.
The expansion of the Universe can now be incorporated

qualitatively. The amplitude of the inflaton field oscillating in
V ∝ jϕj2n decays as ϕ̄ ∝ a−3=ðnþ1Þ, and the dimensionless
wave number scales as κ ∝ a−2ð2−nÞ=ð1þnÞ. Hence a given
Fourier mode flows through a number of Floquet bands as
shown in Fig. 2. Heuristically, the mode grows if the
expansion rateH is much less than jℜðμkÞj. Strong resonance
occurs for jℜðμkÞj=H ≳Oð10Þ. For the lowest k-band (k=am
near 0),

½jℜðμkÞj=H�0max ¼ fðnÞðmPl=MÞ; ð1Þ
where fðnÞ≲Oð1Þ with a very weak dependence on n for
moderate values of n. It isM=mPl that controls whether there
is efficient self-resonance at lowwave numbers. In particular,
for M ≲ 2.5 × 10−2mPl, the fluctuations grow rapidly and
become energetically comparable to the homogeneous con-
densate. They backreact on the condensate, leading to its
complete fragmentation.
When the initial fragmentation is inefficient (M ≳

2.5 × 10−2mPl), the higher order instability bands can
play an important role. Compared to the band near
k ¼ 0, the bands at higher k are narrower, and ℜðμkÞ is
typically smaller. However, these narrow bands can lead to
fragmentation of the condensate at late times for two
reasons. First, in these bands

½ℜðμkÞ=H�1 ∝ mPl=jϕ̄j jϕ̄j ≪ M: ð2Þ
Furthermore, the modes tend to spend a lot of time in these
narrow bands. This effect can be understood by considering
the white flow lines in Fig. 2. The flow lines cross the first
narrow band from right to left (n < 2), left to right (n > 2),
or never leave it (n ¼ 2). The narrow resonance clearly
persists until nonlinear effects become important in the
n ¼ 2 case. Upon closer inspection, the same holds for the
n < 2 and n > 2 cases as well. For these two cases,
j_κj ∼Hκ. Since H is decreasing, at some point a given
k-mode will spend sufficient time within the narrow band
for fluctuations to grow substantially. This eventually leads
to backreaction on the condensate and complete fragmen-
tation. The above statements are quite general; however,
n ¼ 1 is special. In this case, the higher order bands
become too narrow to allow for significant particle pro-
duction at late times, thus arresting further fragmentation.
In summary, for generic potentials that flatten away from

the minimum, the k ≈ 0 band exists and leads to significant
particle production for M ≪ mPl. More importantly, we
have shown that for all inflaton potentials steeper than
quadratic near the minimum, the first narrow instability
band also leads to significant particle production. The first
narrow band plays a central role in the fragmentation of the
condensate at late times, and is insensitive to M and the
flattening of the potential beyondM. While the importance
of this first narrow band has been appreciated for λϕ4

potentials [28], our analysis shows that its importance
extends to general nonquadratic, power-law minima. As we
see below, this band can be crucial in calculating the
duration to radiation domination after inflation.
Lattice simulations.—The presence of linear instabilities

eventually leads to significant nonlinear dynamics of the
fields. To study these nonlinear dynamics we solve the
equations of motion □ϕþ ∂ϕV ¼ 0 and the Friedmann
equation numerically using a parallelized version of
LATTICEEASY [29]. We initialize the simulations around
the end of inflation with a homogeneous condensateþ
vacuum fluctuations and evolve them for a few–10 e-folds
of expansion after this instant. We ran different simulations
(depending on parameters) withN ¼ 1283, 2563, 5123, and/
or 10243 lattices, with the initial size of the simulation

FIG. 2. The instability bands and the magnitude of the Floquet exponent [in units of the field dependent effective mass mðϕ̄Þ] are
shown as functions of the oscillating condensate amplitude and the dimensionless physical wave number κ ¼ k=am. The white lines
indicate how a given comoving wave number passes through the instability bands as the Universe expands.
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volumes L ∼ ðfew − 0.1ÞH−1
inf . We always terminated the

simulations before resolution effects became important.
Conservatively, the lattice simulation results should be trusted
for the number of e-folds shown in Fig. 3. We also verified
that our results are independent of the initial power spectra of
field fluctuations on scales that are not resonantly excited
during the linear stage. The details of the numerical checks
and the evolution of the power spectra will be presented
elsewhere (Note that local gravitational effects are not
included in our simulations.).
The equation of state.—We now turn our attention to the

equation of state parameter defined as

w≡ hpis
hρis

¼ h _ϕ2=2 − ð∇ϕÞ2=6a2 − Vis
h _ϕ2=2þ ð∇ϕÞ2=2a2 þ Vis

: ð3Þ

Here, ρ and p are the energy density and pressure of the
inflaton field, respectively. The symbol h� � �is stands for the
spatial average that is carried out over the simulations
volume. This scale of averaging is significantly larger than
the scale of inhomogeneities in the box. The equation of
state is often rapidly oscillating compared to the expansion
time scales; a time average over many oscillations
should be assumed when we refer to w unless otherwise
stated. Note that if the spatially and temporally averaged
gradient and kinetic energy densities are equal to each other
and dominate over the potential energy density, we get
w ¼ 1=3.
We find the following results for the equation of state at

sufficiently late times,

w →

�
0 if n ¼ 1;

1=3 if n > 1;
ð4Þ

independent of M ≲mPl. We explain the independence
from M, the special nature of n ¼ 1, and the generic
behavior for n > 1 below.
For efficient initial resonance (M ≲ 2.5 × 10−2mPl) the

linear fluctuations grow rapidly and backreact on the
condensate. For n ¼ 1, metastable pseudosolitons (oscil-
lons; see, e.g., [30,31]) are copiously produced within one
e-fold of expansion. They behave as pressureless dust,

w ¼ 0, and can lead to a long period of matter dominated
expansion. See the leftmost panel in Fig. 3. For the n > 1
case, we still form highly overdense field configurations that
dominate the energy density, but they are transients, lasting
for about an e-fold of expansion. Shortly after the transients
decay, the inflaton is completely fragmented with almost no
energy remaining in the homogeneous condensate. The field
configuration now evolves freely in a turbulent manner (as
discussed for n ¼ 2 in [32]). Numerically, we find that the
kinetic and gradient energies are approximately equal to
each other and much greater than the potential energy,
implyingw → 1=3 (cf., Fig. 3), and that the field is virialized
in the sense that h _ϕ2=2is;t ¼ hð∇ϕÞ2=2a2is;t þ nhVis;t
holds. We can then get an estimate of the deviation of w
from 1=3: w − 1=3 → ð2=3Þðn − 2Þ× the fraction of energy
density in the potential energy.
For inefficient initial resonance M ≳ 2.5 × 10−2mPl and

n ¼ 1, we observe initially some small excitations of the
modes near k ¼ 0 due to the broad band that is eventually
shut off by expansion. The condensate energy is redshifted
as a−3, slower than the gradient energy (a−4). Hence, the
fluctuations become ever smaller, and the oscillating con-
densate determines the equation of state, yieldingw ¼ 0. For
n > 1, after initial particle production is shut off the
condensate energy decays as a−6n=ðnþ1Þ, whereas the gra-
dient energy stored in field fluctuations decays as a−4 (i.e.,
like radiation) until the first narrow resonance band becomes
important and particles are again produced. This second
phase of particle production in a narrow k band is expected
from our Floquet analysis and confirmed by our lattice
simulations. Subsequent evolution includes a shifting of this
peak towards higher (n < 2) or lower (n > 2) comoving
momenta as expected from the flow lines in the Floquet
analysis. After backreaction and smearing of peaks, we find
that the kinetic and gradient energies are approximately
equal and much greater than the potential energy with the
field again virialized. This yields w ≈ 1=3. Note that the
n ¼ 2 case would yield w ¼ 1=3 for the homogeneous and
inhomogeneous field. A summary of the asymptotic equa-
tion of state is shown in Fig. 4.We run> five simulations for
each data point (apart from the n ¼ 1 case), and take an

FIG. 3. The equation of state parameter obtained from the numerical simulations is shown for different values of n andM. The orange
curve and green curves correspond to initially efficient (M ≈ 7.75 × 10−3mPl) and inefficient resonance (M ≈ 2.45mPl), with
M ∼ 2.5 × 10−2mPl separating the two regimes. The horizontal axes show the number of e-folds after the end of inflation for efficient
(orange, bottom axis) and inefficient (green, top axis) resonance. The dashed line is drawn at w ¼ 1=3 and the dotted line denotes the
homogeneous equation of state.
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average. The spread in the asymptotic equation of state
parameter is smaller than the plotted point size.
e-folds to radiation domination.—Our linear analysis of

the instabilities allows us to estimate the number of e-folds
after inflation required to reach radiation domination,
ΔNrad ≡ R

arad
aend

d ln a, by calculating the time of backreaction
of the fluctuations. By radiation domination we mean the
moment when the equation of state approaches,
wrad ¼ 1=3� 0.03. The �10% width makes the effects
in inflationary observables (calculated below) due to
numerical uncertainties <1%. Note that we do not assume
anything about thermalization, since the radiation domi-
nation can be independent of thermalization.
First, note that for n ¼ 2, ΔNrad ≪ 1 since in this case

w → 1=3 with and without fragmentation. For all other
n≳ 1, the Universe becomes radiation dominated within

ΔNrad ∼

(
1 M ≲ 10−2mPl;
nþ1
3
ln ð κ

Δκ
10M
mPl

Þ M ≳ 10−2mPl:
ð5Þ

Here, Δκ=κ ∼ 10−2 is the fractional width of the first k ≠ 0
narrow resonance band (cf., Fig. 2). Note that Δκ=κ
becomes vanishingly small as n → 1 (and n ≫ 2), leading
to ΔNrad ≫ 1. These estimates are confirmed by our lattice
simulations (see Fig. 3).
We emphasize that w → 1=3 can be achieved without

coupling to other fields for all n≳ 1. When perturbative
decay to other massless fields is included, ΔNrad is reduced
further. In this sense, the above-calculated ΔNrad should be
taken as an upper bound onΔNrad. Evenwith nonperturbative
decay to massless fields (say with biquadratic interactions),
our statement about theupper bound is not expected to change
[33]. However, care is needed in interpreting our claim.
The decay to sufficiently massive fields or nonperturbative
dynamics ofmassless fields coupled to our inflatonwhen (for
example) defects form can change this conclusion.
Within these assumptions, the upper bound onΔNrad can

reduce the uncertainty in the predictions for the spectral
index, ns, and tensor-to-scalar ratio, r, of the primordial
fluctuations from inflation. The predictions for the spectral

index and the tensor-to-scalar ratio at a given comoving
scale, k⋆, depend on the number of e-folds, N⋆, before the
end of inflation (ä ≈ 0) when this scale exited the horizon.
Using [1], N⋆ can be written as

N⋆ ¼ 66.89 −
1

12
lnðgthÞ þ

1

4
ln

�
V2⋆

m4
Plρend

�

− ln

�
k⋆

a0H0

�
þ n − 2

2ðnþ 1ÞΔNrad; ð6Þ

where V⋆ was the potential when the pivot scale
(k⋆ ≡ 0.002 Mpc−1) left the horizon. We assume the
effective relativistic degrees of freedom in the Universe
at the moment when it reached thermal equilibrium
gth ≈ 103; however, changing gth within reasonable bounds
does not introduce significant uncertainties.
For any chosen value of n and M in our model, we can

use the above expressions along with the constraint on the
amplitude of the scalar power spectrum [1] at the pivot scale
to obtain ns and r. In Fig. 5, we show the expected r and ns
for different values of M and n, including the perturbative
decay to massless (sufficiently light) fields. The solid black
lines use ΔNrad calculated above in Eq. (5), whereas the
width of the filled bands allows for a faster approach to
radiation domination due to decays to other light fields.
Note that the n ¼ 1 case is special and is not shown in

the r − ns plot. In this case, when coupling to other
massless fields is included, the dynamics can be quite
complex, especially for M ≪ mPl due to the existence of
oscillons [31,34,35]. For general n, the inclusion of addi-
tional decay channels to massive fields and nonminimal
couplings [36–38], gravitational effects [39,40], as well as
certain quantum aspects [41] not captured by our classical

FIG. 4. A summary for the asymptotic equation of state without
coupling to additional fields. The numerical results from lattice
simulations are shown as green circles for M ≈ 2.45mPl, and
orange squares for M ≈ 7.75 × 10−3mPl. The dotted blue line is
the expectation from a homogeneous, oscillating condensate.

FIG. 5. Based on our results, the bounds on ΔNrad are translated
to predictions for r and ns (filled in colored bands; the black edge is
for the upper bound). The narrow width of the filled-in bands
corresponds to a change in ΔNrad from coupling to other light
fields. For comparison, the range of N⋆ ¼ 50–60 commonly used
to account for reheating related uncertainties is also shown (thin
colored lines, and the “dumbbells”); the reduction in uncertainty
due to our results is significant. Note thatM ≳mPl for most of the
above plot. ForM≪mPl we haveΔNrad ≲ 1, and r≪10−3 (hence,
these are difficult to see in the above observational constraints [1]).
For the above plot we have focused on the α-attractor models
[17–19], but it can be easily generalized to other models.
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simulations can influence predictions from this epoch.
Finally, note that for n > 1, our results hold even if the
inflaton has an additional small mass as long as this mass is
much smaller than the effective mass due to the curvature of
the potential during the approach to radiation domination.
In summary, for the class of observationally consistent

models considered in this Letter, we have determined the
postinflationary equation of state of the Universe by taking
the fragmentation of the inflaton field into account. We
found that for potentials with nonquadratic minima, the
equation of state parameter reaches 1=3 even without
couplings to other massless fields. For quadratic minima,
the equation of state is 0 with or without fragmentation.
Under the stated assumptions, we provided an upper bound
on the duration to radiation domination as a function of
general features of the potential using a linear stability
analysis, and verified this time scale using numerical
simulations. Finally, we showed that such bounds can
reduce the uncertainty in inflationary observables.

The simulations were performed on the COSMOS Shared
Memory system at DAMTP, operated by the University of
Cambridge on behalf of the STFC DiRAC HPC Facility. We
thank D. Sijacki for her generosity regarding the use of her
computational resources under the Cambridge COSMOS
Consortium. We acknowledge and thank A. Linde for a
detailed and helpful correspondence regarding the models
and their implications, R. Easther for suggesting we include
additional information regarding the reduction in theoretical
uncertainties, S. Carleston for a careful proof-reading, and
M. Garcia for a discussion regarding the number of reheating
e-folds, all of which contributed towards an improved
manuscript. We also acknowledge useful discussions with
D. Kaiser and M. Drewes regarding nonminimal couplings
and perturbative decays, respectively. We thank the anony-
mous referees for their comments, which helped in improv-
ing the manuscript.
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