Abstract

A variety of applications have arisen where it is worthwhile to apply code optimizations directly to the machine code (or assembly code) produced by a compiler. These include link-time whole-program analysis and optimization, code compression, binary-to-binary translation, and bit-transition reduction (for power). Many, if not most, optimizations assume the presence of a control-flow graph (CFG). Compiled, scheduled code has properties that can make CFG construction more complex than it is inside a typical compiler. In this paper, we examine the problems of scheduled code on architectures that have multiple delay slots. In particular, if branch delay slots contain other branches, the classic algorithms for building a CFG produce incorrect results.

We explain the problem using two simple examples. We then present an algorithm for building correct CFGs from scheduled assembly code that includes branches in branch-delay slots. The algorithm works by building an approximate CFG and then refining it to reflect the actions of delayed branches. If all branches have explicit targets, the complexity of the refining step is linear with respect to the number of branches in the code.

Analysis of the kind presented in this paper is a necessary first step for any system that analyzes or translates compiled, assembly-level code.

We have implemented this algorithm in our power-consumption experiments based on the TMS320C6200 architecture from Texas Instruments. The development of our algorithm was motivated by the output of TI’s compiler.

1 Introduction

Increasingly, systems are applying compiler technology to previously compiled code. The Dynamo system interprets statically-compiled, executable code to improve performance by using dynamic information to improve scheduling and cache management [3]. Link-time systems perform whole-program analysis and optimization; they start from the compiled code for each procedure or module [13]. Just-in-time compilers for Java take compiled bytecodes as input and rapidly produce machine code for performance-critical regions [24]. Binary translation systems read in executable code and rewrite it for another instruction set [9]. In the past, such systems have been used for emulation; in the future, they will be used to perform load-time tailoring in Grid environments [11, 4]. Each of these systems reads and manipulates previously compiled code.

The control-flow graph (CFG) is a fundamental data structure needed by almost all compiler techniques used to find optimization opportunities or to prove the safety of optimizations. Such analysis includes global data-flow analysis [18, 17], the construction of an SSA-graph [8], and data-dependence analysis [16, 12]. Other techniques use the CFG to guide a more local analysis and replacement phase [25, 6, 20]. These techniques all assume the existence of a CFG. If the input to the transformation is compiled, scheduled code, then the CFG construction must handle the additional complexity that can arise in such code.

Compiled code differs from the intermediate forms used inside most compilers. Two particular features can complicate CFG construction. Branches that target an address held in a register (as opposed to an explicit or immediate constant) introduce a level of uncertainty that can add spurious edges to the CFG. The compiler can avoid such branches in its intermediate representations; they are more likely to appear in compiled, scheduled, assembly code. Branch de-
lay slots exacerbate the problem of finding the first and last operation in each block. If branches can occupy the delay slot of another branch, the problem becomes much more complex.

Branch-to-register operations complicate CFG construction because the compiler may be unable to determine the branch targets. When this happens, the compiler must add an edge from the block containing the branch to every block that it might reach. Naively, this set contains every block. The compiler can narrow the set by finding all of the labels that the program loads into registers. (This is safe unless the program performs arithmetic on a label value and branches to the result.) It can perform more precise analysis, similar to that required in call-graph construction with function-valued parameters [7]. However, it first needs an approximate CFG that overestimates the set of potential paths before it can perform the analysis.

Branch delay slots complicate the task of finding the first and last operation in each block. If the delay slots contain ordinary operations (no control-flow into or out of the delay slots), then this just requires an additional counter to track where in the instruction stream the branch takes effect. Several existing systems handle this problem [15, 22]. If the delay slots contain branch operations, then the compiler must maintain counters for all pending branches. When multiple branches target the same label (i.e., the block has multiple predecessors in the CFG), the compiler must handle the effects of multiple sets of pending branches. Each of these pending branches can terminate a block and add one or more edges to the CFG. These effects cause the classic algorithms for CFG construction [1, 17, 18] to fail—building a CFG that does not correctly reflect the potential flow of control in the code.¹ Sorting out all of these effects adds significant complication to the CFG constructor.

In a more traditional setting, the compiler writer can avoid these problems. Careful design of the intermediate code can let the compiler avoid using the branch to register construct internally, for most source language constructs. When such a construct must be used, the compiler can annotate the operation with labels that correspond to the source-code statements that might be targets of the branch. Similarly, since most uses of a CFG occur before scheduling, the compiler can avoid dealing with delay slots completely in the CFG construction. (If the compiler

perform allocation after scheduling, it may can preserve the scheduler’s CFG for later use in the allocator.) In a system that handles scheduled code, however, the compiler cannot avoid these problems.²

We first encountered this problem while building an assembly-to-assembly translator for Texas Instruments’ TMS320C6000, a high-performance DSP chip. As with other DSP architectures, the C6000 allows branches to issue in the delay slots of other branches. Since the branch latency on the C6000 is five cycles, the compiler has many delay slots to fill. The compiler uses this feature to generate efficient, albeit cryptic, code [26]. When the body of a loop is shorter than the branch latency, the compiler can pre-schedule multiple loop-ending branches to create an efficient loop. The resulting loop begins with several consecutive branches. The branches are followed by the instruction or instructions in the loop body, and another loop-ending branch. At run-time, every loop-ending branch, after the first, will execute

1These authors assume that the CFG is built from a well-behaved intermediate representation that does not include branches in delay slots. Other authors simply assume that CFG construction is well understood and omit the algorithm entirely [10, 14, 2].

2Some systems, such as om and alto, convert scheduled code back to a higher-level representation that does not contain delay slots [23, 19]. With arbitrary control flow resulting from multiple branches in delay slots, this may prove to be impractical.
in the delay slot of another branch. Figure 1 shows a
dot product operation that has been optimized in this
manner. The example is taken from Seshan’s 1998 pa-
paper [22]. This leads to code that executes efficiently,
but is difficult to analyze.

As branch delays become longer, we expect that
more architectures will experiment with this feature.
Some commodity architectures, such as the Sparc V.9, already include it [28].

Many systems analyze or modify compiled code.
Examples include performance analyzers, debuggers,
and link-time optimizers. These systems must work
correctly on any code that they encounter. If the exe-
cutable has branches that execute in the delay slots of
other branches, then an algorithm that correctly con-
structs and connects basic blocks, like the algorithm
that we present in this paper, is required. This work
is a necessary precursor to building tools that pro-
cess compiled code for machines that allow branches
within delay slots. Without an accurate set of basic
blocks, even local algorithms for analyzing or rewrit-
ing the code can fail.

The main result in this paper is a worklist algo-

rithm that constructs a correct CFG for code that
contains branches in the delay slots of other branches.
When applied to code that does not have this feature
it has the same complexity as the classic CFG con-
struction algorithms. This algorithm creates an op-
portunity to analyze and improve compiled code for
architectures with long branch latencies and branches
that execute in delay slots—features that appear in
DSP architectures today.

2 A Simple Example

To illustrate the complexity that arises when
branches issue in branch delay slots, consider the fol-
lowing code fragment:

```
if x
    then inst 1
else inst 2
    inst 3
```

A naive scheduling of this code for a single delay
slot architecture produces the following CFG:

```
if x goto A
    nop
C: jump B
    inst 1
    A: jump B
    nop
B: inst 3
```

A `nop` is inserted after each branch instruction in
the code fragment to fill the delay slots. When the
compiler tries to fill the delay slots, it can eliminate
the delays in blocks A and C:

```
if x goto A
    nop
C: jump B
    inst 1
A: jump B
    inst 2
B: inst 3
```

Unfortunately, the `nop` in the start block remains,
since there are no other instructions in the block that
can be moved into the delay slot.

If branches can be placed inside of delay slots,
an aggressive compiler can trim the schedule even
further. The jump instructions at the beginning of
blocks A and C (above) can be promoted to the start
block and combined since they have the same target.
This results in the following CFG and assembly code:

```
if x goto A
    jump B
C: inst 1
A: inst 2
    inst 2
B: inst 3
```

The assembly code shows that the existence of branches
within delay slots can quickly become confusing. It is not locally evident from examining blocks
A and C why control flow proceeds to block B. The
common assumption that the instruction that causes
the termination of a basic block is located within the
same basic block is no longer valid.

The situation quickly becomes more complicated
than this simple example. Given an architecture with
a large number of delay slots and a program with any number of branch instructions scheduled into the delay slots of other branches, the resulting CFG can become littered with many small basic blocks that do not have a clear or obvious path leading to them. In addition, cycles of branches can be created where the branches are in each others’ delay slots. As a result, the CFG construction algorithm cannot complete in a single pass. This necessitates a more complex approach.

It may appear that this problem can be solved with replication. This notion is misleading for several reasons. First, such replication can cause significant code growth. Second, replication can easily invalidate the results of register allocation and scheduling. Finally, to understand what to duplicate and where to put it, either the compiler needs the CFG built by our algorithm, or it is forced to duplicate the kind of simulation that the worklist step performs.

Our new algorithm for CFG construction has three distinct steps: detecting and marking labels, adding standard control flow, and adding control flow that originates in delay slots. The algorithm takes time that grows linearly with the program’s length. If there are no branches in delay slots, they construct a valid CFG. When branches occur in delay slots, the third step is needed to model the program’s behavior and construct the corresponding control flow.

3 The Base Algorithm

Without branches in delay slots, CFG construction takes two steps. The first step partitions the code into a set of basic blocks (maximal length sequences of straight-line code). These become the nodes in the CFG. The second step looks at the branches in the code and fills in the CFG’s edges to represent the flow of control. These steps correspond to the two situations that can terminate a basic block—either a label or a branch. If the code has branches in the delay slots of other branches, the CFG construction begins with these same two steps.

\[\text{block}_\text{list} = \text{initial list of blocks}\]

for each block \(b\) in \(\text{block}_\text{list}\)
 remove \(b\) from \(\text{block}_\text{list}\)
 \(\text{branch}_\text{found} = \text{false}\)
 for each instruction \(i\) in \(b\)
 if \(i\) is a branch
 let \(\text{branch}_\text{found} = \text{true}\)
 let \(\text{countdown} = \text{branch-latency}\)
 break
 if \(\text{branch}_\text{found}\)
 for each instruction \(p\) in \(b\) after \(i\)
 decrement \(\text{countdown}\)
 if \(\text{countdown} = 0\) break
 if \(\text{countdown} = 0\)
 split \(b\) at \(p\)
 let \(b'\) = remainder of \(b\)
 add \(b'\) to \(\text{block}_\text{list}\)
 add edges from \(b\) to targets of \(i\)
 if \(i\) is conditional add edge to \(b'\)
 if not \(\text{branch}_\text{found}\) or \(\text{countdown} > 0\)
 add edge from \(b\) to fallthrough of \(b\)

We will use the code fragment on the left side of Figure 2 as a continuing example to illustrate each step of the algorithm. It assumes an architecture with two delay slots on each branch.

The first step detects labels using a single linear pass that splits each label off to form the beginning of a new basic block and a table is created with the location of each label. The right side of Figure 2 shows how the original code is broken up into basic blocks by the presence of labels. For simplicity, we assume that branches can only target labels and not arbitrary PC addresses. (See the earlier discussion.)

Given the initial set of basic blocks, the algorithm can add normal control flow. It does this in a second linear pass which is detailed in Figure 3. Each branch that is not in a delay slot triggers the creation of a counter with a value equal to the number of delay slots supported by the architecture. The counter is decremented for each additional instruc-
A: if x goto B
 inst 1
 inst 2

B: if y goto A
 inst 5
 jump C

C: inst 6
 inst 7
 inst 8

D: jump C
 inst 3
 inst 4

Figure 4: After adding normal control flow

The algorithm proceeds in a symbolic walk over the CFG. As control passes from one block to another, the algorithm passes to the target blocks a list of pending control-flow instructions with a countdown timer for each that shows when it will activate. We call these data structures branch counters; each instance is a pair containing the pending branch and a numerical counter that represents the number of cycles remaining before the branch activates. At each block, the algorithm walks through the instructions in the block, in order, counting down each of the branch counters until one reaches zero. When a counter reaches zero, it breaks the block at that point, adds an edge from the shortened block to the remainder of the block, and adds an edge from the shortened block to each of the targets of the activated branch. Any remaining branch counters in the list are replicated and passed to each of the new target blocks.

The algorithm continues in this way, processing blocks until no block has a new branch counter. To make this efficient, we implement the algorithm with a worklist, adding a block to the worklist each time it gets a new branch counter. A block and its associated branch counters represent a specific control-flow path that reached the block. Hence, a block can be on the worklist more than once at a single point in time with each different set of branch counters denoting a different path to the block. It is critical that the algo-

4 The Iterative Algorithm

At the completion of the algorithm’s second step, the approximate CFG consists of blocks that either end with a branching instruction and up to \(k \) instructions in delay slots, or end with no branch. The delay-slot instructions may be ordinary operations, NOPs, or (as yet) unconsidered control-flow instructions. On a given architecture, control-flow instructions take \(k \) cycles to activate — that is, \(k \) cycles after a control-flow instruction issues, control shifts accordingly. If a control-flow instruction, \(BR_1 \), executes in, for example, the second delay slot of a control-flow instruction, \(BR_0 \), control will shift to one of \(BR_1 \)’s targets two instructions into the block targeted by \(BR_0 \). Thus, any block reached through \(BR_0 \) will end on its second instruction when \(BR_1 \) activates. To model this in the CFG, the CFG-builder must break the targeted block after two instructions and add edges that lead to the block (or blocks) targeted by \(BR_1 \).

We assume that there is no unreachable code in the scheduled, compiled code that the algorithm takes as its input. If this assumption is not justified, then the branch from the shortened block to the block created to hold its remainder may be spurious. A simple postpass on the final CFG can detect this situation and remove the dead branch and block.
\begin{verbatim}
1 worklist = {start-block:Ø}
2 while (worklist)
3 remove element e from worklist
4 process-block(e.block, e.list)

5 process-block(block, counter_list)
6 if block has been seen with counter_list before
7 break
8 for each instruction i in block
9 decrement counters in counter_list
10 if i is a branch
11 counter_list = counter_list + {i : branch-latency}
12 if any counter in counter_list = 0
13 break for
14 if i is not at end of block
15 create new block with remaining instructions in block
16 add edge from block to new block
17 if no counter in counter_list = 0
18 let f = block’s fall through block
19 worklist = worklist + { f : counter_list }
20 else
21 let j = branch instruction in counter_list with (counter = 0)
22 for each target block t of instruction j
23 add edge from block to target t
24 worklist = worklist + { t : counter_list - {j : 0} }

Figure 5: Pseudo-code for the worklist algorithm
\end{verbatim}

The worklist algorithm continually calls \texttt{process-block} on the first element in the worklist until the worklist is empty. \texttt{Process-block} accepts a basic block to examine and a list of branch-counters. The list of counters represents those branches that were still pending when control flow passed to the current block along some path. \texttt{Process-block} examines each instruction, adding new branches to the list of counters, and decrementing the counters that already exist. When some counter reaches zero before the block ends, it creates a new block with the remaining instructions, and adds each target of the branch whose counter reached zero to the worklist with the remaining counters. If no counter reaches zero before the end of the block, the block’s fall-through block is added to the worklist with the current list of counters. A block’s fall-through is the one immediately following the block in the input stream.

Returning to our continuing example, block A, the start block, begins on the worklist. Processing the start block does not change the CFG, because there is no extraordinary control flow; only one branch is encountered and its counter reaches zero when the block ends. Upon completion, block A’s successors, blocks B and D, are added to the worklist.

Processing block D causes no changes. Only block B contains a branch within a delay slot. When \texttt{process-block} reaches the end of block B, the branch counter associated with the jump instruction will not have completed. Therefore, the possible successors of the terminating branch, A and C, are placed on the worklist with the outstanding branch counter.

When block A is reexamined, the inherited counter will complete two instructions into the block. This forces the algorithm to split the block after the second instruction and add a new edge from the shortened block A to block C, as shown in Figure 6. In addition, since the branch counter associated with the branch at the beginning of block A has not completed, it is propagated to the newly created block E and to block C.

Block E does not change when it is processed again, but block C is split after the first instruction, and
an edge is added back to block B due to the branch from block A. Block B does not need to be placed on the worklist again, since it has already been visited and there are no new block counters passed in. The newly created block F is processed, but, because processing the block does not deal with any branch counters, it remains unchanged.

Next, block C must be processed again with the branch counter inherited from block B. Since block C has been reduced to a single instruction, the counter is decremented and passed on to block F, which is added to the worklist. Block B is not added to the worklist, because no counter reaches zero when the block completes, so only the fall-through successor is added to the worklist. This correctly conveys the fact that there is no possible control flow path from block B into block C that branches back to block B.

Finally, block F is processed with the branch counter and is split with a branch back to block C. Block G is also added to the worklist and processed, but it has no effect on the CFG.

Figure 6: The final CFG

Note that the order of blocks chosen from the worklist is irrelevant. Although the cuts in our example would have happened differently if we had removed the blocks in a different order, the final CFG will be the same in all cases.

5 Termination and Correctness

The worklist step terminates because it cannot consider a given \((\text{block}, \text{counter list})\) pair more than once. The code explicitly checks for this case in lines 7 and 8. The counter list consists of up to \(k\) branch counters, where \(k\) is the number of delay slots that follow a branch. Each branch counter is a branch operation and a number \(c\) in the range \(0 \leq c \leq k\). The number of branch counters is finite, \(O(k \cdot b)\), where \(b\) is the number of branches. (Of course, \(b \leq i\), where \(i\) is the number of instructions.) Thus, the number of counter lists is finite. Since the number of blocks is also finite, the set of \((\text{block}, \text{counter list})\) pairs is finite and the algorithm terminates.

The number of possible \((\text{block}, \text{counter list})\) pairs looks large. The algorithm considers all paths of length \(k\) that start from a branch operation. This allows it to construct the correct and precise CFG.

We can speed up the algorithm by having it consider individual branch counters, rather than counter lists. However, that algorithm can add spurious edges to the final CFG—edges that cannot arise in any execution.

Correctness can be proven through contradiction. Assume that there is a reachable branch statement whose associated edge is not in the final CFG. Line 24 of the algorithm shows that any branch that is added to the counter list has the appropriate edge created; hence, the branch without an edge must not have been added to a counter list. Lines 9 and 11 further show that if a block is encountered by \text{process-block} all counters within the block must be added to a counter list. Therefore, the block which contains the branch statement must not have been processed. However, since all blocks placed on the worklist are processed by line 4, and all targets of a branch are added to the worklist by line 25, the block must not be reachable from the start block. This contradicts the original assumption that the branch statement is reachable. Therefore, every reachable branch statement must have an associated edge in the final CFG, and construction of the CFG is correct.

Note that this discussion addresses only correctness, not precision. The question of precision is, in general, undecidable; however, our algorithm adds an edge only when some execution path calls for it. Unreachable code can be an exception to this rule: when the bottom half of a split block is unreachable, the edge between the two halves will not be taken.

6 Complexity

The complexity of each pass can be considered separately. The first step examines each instruction once and performs \(O(1)\) work at each instruction. Thus, it takes \(O(i)\) time, for \(i\) instructions.

The second step also examines each instruction
once. On most operations, it takes $O(1)$ time. For a branch, however, it must add j edges, where j is the number of potential branch targets—the branching factor. Thus, the time for the second step is $O(i + j \cdot b)$, where b is the number of branches. If all of the branches of the program have explicit targets, then j is two, and the second step requires $O(i)$ time. However, branches with ambiguous targets, such as a branch-to-register, produce a higher value of j. For such branches, j is the number of values that the register might have. In the worst case, j is $O(i)$, and the cost of the second step is $O(i^2)$. Taken over the entire second step, however, the work will be proportional to the number of edges in the CFG, given by $j \cdot b$.

The third step invokes process-block on every $\langle \text{block}, \text{counter list} \rangle$ pair that appears on the worklist. Thus, an upper bound on its cost is the number of these pairs. We can view the counter list as a list of k elements, where an element is either a branch counter or a token indicating a counter with no branch. (This corresponds to a delay slot that is filled with a non-branching operation.) The number of such counters appears to be $O(b^k)$.

Fortunately, the structure of the code restricts the set of valid branch counters. Assume that the list is kept in increasing order. If the first slot is occupied by some branch B, the second slot must be occupied by the null token or by a branch that is reachable in one cycle from B. The number of such branches is j, the branching factor used above. The third slot must contain either the null token, or a branch reachable from the second branch, and so on out to the k^{th} position. The number of counter lists that can result from a specific branch B is limited to $O(j^k)$. Thus, the number of distinct items that can appear on the worklist is $O(j^k \cdot b)$.

Thus, the complexity of the third pass dominates the overall complexity. The overall complexity of the algorithm derives from this bound. The algorithm calls process-block at most $O(j^k \cdot b)$ times. Process-block examines each operation, taking at most $O(j)$ time per operation. Blocks that process-block examines twice can be no longer than k instructions, since the first trip through process-block will split the block within k instructions of the entry. Thus, the worst case complexity of the third step is $O(j^k \cdot b \cdot k)$, or $O(j^{k+1} \cdot b \cdot k)$.

In practice, the worst case complexity depends heavily on the branching factor and the number of delay slots. With branches that have explicit targets, j is usually two. The number of delay slots is typically small. For example, $k = 1$ on the Sparc and $k = 5$ on the C6000. With $j = 2$ and $k = 1$, j^k is a small constant and the algorithm runs in $O(2^2 \cdot i \cdot 1) = O(i)$ time. Adding a small number of delay slots without adding ambiguous branches raises the constant, but not the asymptotic limit. Adding ambiguous branches with a single delay slot ($j = i$ and $k = 1$) produces a worst case complexity of $O(i^2)$. The combination of ambiguous branches and multiple delay slots causes the complexity to explode. However, the increased complexity reflects the number of potential paths that the algorithm must consider. Each of these paths requires a constant amount of work. The increase in complexity in the algorithm, therefore, is solely a function of the increase in the number of these paths.

7 Comparison with other work

It is natural to ask not only how quickly the algorithm runs, but how often situations which require this algorithm occur. We believe, however, that the correct question is not how often, but, rather, if the situation occurs. Literature in this area shows not only that this situation occurs, but, until now, the solutions were not general.

For example, Larus and Schnarr examine the problem of annulled branches with a single delay slot [15]. Their algorithm transforms the code to eliminate delay slots in this case, but does not handle the general case. Ramsey and Cifuentes approach the problem from a different perspective, adding looping code to mimic the behavior of delay slots when translating binary code from a machine with delay slots to a machine without delay slots[21]. Their compiler gives up in the presence of too many branches in delay slots.

In contrast, our algorithm handles any number of delay slots and was implemented for the TMS320C6200, which has five delay slots. Seshan documents the existence and utility of aggressively pipelined loops, like the one shown in Figure 1, for the C6200 [22]. We used the output of the C6200 compiler in our experiments in power-consumption reduction[27], and step three of the algorithm presented in this paper was triggered on multiple occasions.

8 Conclusion

Recent years have seen a number of systems that consume as input compiled code that has already been optimized, scheduled, and allocated. These systems
perform optimizations that require data-flow analysis computed over the CFG. However, the presence of branches in branch delay-slots complicates the construction of a CFG from compiled code and causes the classic algorithms for building a CFG to produce incorrect results.

This paper presents a method to correctly build the CFG for scheduled code in the presence of branches within delay slots. A three-pass algorithm is used to construct the CFG: the first two passes build the “normal” CFG, and the third pass uses a worklist algorithm to propagate branch information from block to block to construct the control flow associated with branches in delay slots. Decomposing the algorithm into separate steps simplifies its explanation and allows the algorithm to bypass the final step if the code does not include branches in branch delay slots. The running time of the algorithm is dependent on the complexity of the CFG itself – if all branches have explicit targets, the worklist portion of the algorithm is linear. We have implemented this algorithm in an assembly-to-assembly translator for the TMS320C6000.

Acknowledgements

This work has benefited from the support, suggestions, and encouragement of the entire Scalar Compiler Group at Rice University. Reid Tatge of Texas Instruments has patiently answered our many questions about both the TMS320C62xx and the code produced by TI’s compiler. This work has been supported by DARPA through USAFRL contract F30602-97-2-298, by a grant from the Texas Advanced Technology Project, and by the Los Alamos Computer Science Institute.

References

