Supporting information

A high-performance hybrid bismuth/carbon nanotube-based contrast agent for X-ray CT imaging

Mayra Hernández-Rivera, Ish Kumar, Stephen Y. Cho, Benjamin Y. Cheong, Merlyn X. Pulikkathara, Sakineh E. Moghaddam, Kenton H. Whitmire, and Lon J. Wilson

aDepartment of Chemistry MS-60, Rice University, P.O. Box 1892, Houston, TX, 77005
bCHI St. Luke’s Health - Baylor St. Luke’s Medical Center, 6720 Bertner Ave., MC 2-270 Houston, TX 77030
cBaylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030

Corresponding Author

* Lon J. Wilson. Email: durango@rice.edu; Tel: (713) 348-3476; Chemistry Department, Rice University, Houston, TX, USA
Figure S1: (A) Crystal structure of $[\text{Bi}_4(\mu_3-O)_{2}(\text{HO-2-C}_6\text{H}_4\text{CO}_2)_8] \cdot 2\text{MeCN}$ (MW: 2046.91) and (B) the structure of the Bi$_4$ core. Reproduced from Ref 1 with permission from The Royal Society of Chemistry.

Cutting of the SWCNTs (> 1 µm, Carbon Solutions, Inc.) was performed as described elsewhere.2 The resulted ultra-short carbon nanotubes (20-80 nm long; US-tubes) were characterized using atomic force microscopy (AFM) to confirm the size of the US-tubes. AFM samples were prepared by suspending a small amount of US-tubes in EtOH followed by bath sonication for 10 min. Several drops were then placed on a mica sheet while spinning at high speed. Figure S2 shows the AFM image of the US-tubes and the analysis performed.
Figure S2: AMF image of the US-tubes (left) and image of the height-mode (right) with section analysis (three sections; white, red and green).

US-tubes, as well as the full-length SWCNT material, were analyzed by Raman spectroscopy. In Figure S3, (*) is attributed to the vibrational modes associate with the ν(-C-H) (sp3 hybridization, which are present for the US-tubes but not in the full-length SWCNTs. The D4 small shoulder has been previously attributed to sp2-sp3 bonds.3,4

Figure S3: Raman spectra of the full-length SWCNTs and US-tubes.
To determine the quantity of Bi$^{3+}$ present in the Bi$_4$C@US-tube samples, inductively coupled plasma-optical emission spectroscopy (ICP-OES) was used. For this technique, the material has to be first digested with a strong acid and an aqueous solution prepared. As a validation step, the recovery of Bi$^{3+}$ was first obtained by placing 100 µL of a 1000 ppm Bi$^{3+}$ plasma standard solution (Specpure®) in cantillations vials, followed by the addition of 1mL of either 70% HNO$_3$, 26% HClO$_3$, or a combination of both acids. As shown in Figure S4, the best recovery % was obtained when using HClO$_3$ alone or when HNO$_3$ and HClO$_3$ were used in combination. Since better reproducibility was obtained when the combination of HNO$_3$ and HClO$_3$ was used, such acidic condition was used for all experiments described here.

![Figure S4](image)

Figure S4: Percent of recovery for the digestion of a Bi$^{3+}$-ion standard solution (1000 ppm, Specpure®) with different acids. Analysis performed using ICP-OES. Values reported as mean ± SEM.

NMR spectra of the Bi$_4$C cluster were obtained (400 MHz, d6-DMSO) after (1) dissolving the cluster in THF and (2) sonicating the cluster in THF for 1 h. The spectrum after sonication in THF was unchanged with the same observed signals and relative intensities as before sonication, with the exception of the loss of the methyl signal attribute to acetonitrile.

Table S1: 1H NMR data for the Bi(III) oxo-salicylate cluster (Bi$_4$C) before and after sonication in THF.

<table>
<thead>
<tr>
<th>Bi$_4$C dissolve in THF δ (ppm)</th>
<th>Bi$_4$C sonicated in THF δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.9 (s, 1H, PhOH), 7.67 (s, 1H, o-H), 7.31 (s, 1H, p-H), 6.80 (s, 2H, m-H), 2.07 (s, 1H, CH$_3$), 2.45 (s, 1H, DMSO) 1.74 (m, 2H, THF)</td>
<td>11.9 (s, 1H, PhOH), 7.67 (s, 1H, o-H), 7.31 (s, 1H, p-H), 6.80 (s, 2H, m-H), 2.45 (s, 1H, DMSO) 1.74 (m, 2H, THF)</td>
</tr>
</tbody>
</table>

Figure S5: The concentration of Bi$^{3+}$ in the Bi$_4$C@US-tubes as obtained by (A) ICP-OES, and (B) XPS.

References

