RICE UNIVERSITY

Efficient Computation of Chromatic and Flow Polynomials

by

Boris Brimkov

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Arts

APPROVED, THESIS COMMITTEE:

Illya V. Hicks, Chair
Professor of Computational and Applied Mathematics

Paul E. Hand
Assistant Professor of Computational and Applied Mathematics

Yin Zhang
Professor of Computational and Applied Mathematics

Houston, Texas
May, 2015
This thesis surveys chromatic and flow polynomials, and presents new efficient methods to compute these polynomials on specific families of graphs. The chromatic and flow polynomials of a graph count the number of ways to color and assign flow to the graph; they also contain other important information such as the graph's chromatic number, Hamiltonicity, and number of acyclic orientations. Unfortunately, these graph polynomials are generally difficult to compute; thus, research in this area often focuses on exploiting the structure of specific families of graphs in order to characterize their chromatic and flow polynomials. In this thesis, I present closed formulas and polynomial-time algorithms for computing the chromatic polynomials of novel generalizations of trees, cliques, and cycles; I also use graph duality to compute the flow polynomials of outerplanar graphs and generalized wheel graphs. The proposed methods are validated by computational results.
Acknowledgments

I would like to thank my parents for their love and encouragement; my advisor Dr. Illya Hicks for his wisdom, leadership, and enthusiasm which has inspired me to fulfill my research goals; the members of my committee Dr. Paul Hand and Dr. Yin Zhang for their helpful remarks and for enhancing my background in computational and applied mathematics. I am grateful to all my colleagues in the CAAM Department for supporting me throughout the course of my graduate career and providing an enriching work environment. I would also like to thank Dr. John Ringland and Dr. Jae-Hun Jung for mentoring me as an undergraduate and helping me develop a strong mathematical background.

Financial support for this research was provided by the National Science Foundation under Grant No. 1450681.
Contents

Abstract ii
List of Illustrations vi

1 Introduction 1
 1.1 Historical background ... 1
 1.2 Importance and applications 3
 1.3 Goals ... 6

2 Preliminaries 8
 2.1 Types of graphs .. 8
 2.2 Planar graphs ... 9
 2.3 Graph operations .. 10
 2.4 Generalized vertex join .. 11

3 Overview of chromatic and flow polynomials 13
 3.1 The chromatic polynomial .. 13
 3.1.1 Motivation ... 13
 3.1.2 Definition ... 14
 3.1.3 Properties ... 17
 3.1.4 Computation ... 20
 3.1.5 Special cases .. 23
 3.2 The flow polynomial .. 25
 3.2.1 Motivation ... 25
 3.2.2 Definition ... 26
3.2.3 Properties .. 33
3.2.4 Computation .. 36
3.3 Connections between chromatic and flow polynomials 37

4 New results on chromatic polynomials 40
 4.1 Generalized vertex join trees 40
 4.2 Generalized vertex join cycles 48
 4.3 Generalized vertex join cliques 51

5 New results on flow polynomials 53
 5.1 Outerplanar graphs ... 53
 5.2 Generalized wheel graphs 56

6 Computational results 58
 6.1 Generalized vertex join trees 58
 6.2 Generalized vertex join cycles 60
 6.3 Generalized vertex join cliques 62
 6.4 Discussion .. 63

7 Conclusion 65

Bibliography 67
Illustrations

1.1 A four-colored map .. 2

2.1 Graph and its dual .. 10
2.2 Vertex join of a graph ... 12
2.3 Generalized vertex join of a graph 12

3.1 3-colorings of a graph ... 15
3.2 Chromatic polynomial of house graph 16
3.3 Appearance of chromatic polynomial 17
3.4 Nowhere-zero Z_3- and Z_4-flows of a graph 29
3.5 Flow polynomial of house graph ... 31

4.1 Forming a generalized vertex join tree 41
4.2 Removing bridges of a generalized vertex join tree 42
4.3 Forming levels in a generalized vertex join tree 43
4.4 Special subgraphs of a generalized vertex join tree 44
4.5 Generalized vertex join cycle C_S 49
4.6 C_{S^r}, the underlying graph of C_S 49
4.7 Decomposing a generalized vertex join cycle 50

5.1 The dual of a generalized vertex join cycle 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Computing $P(T_S)$ with Algorithm 1 and Mathematica</td>
<td>59</td>
</tr>
<tr>
<td>6.2</td>
<td>Computing $P(T_S)$ with Algorithm 1 for larger graphs</td>
<td>60</td>
</tr>
<tr>
<td>6.3</td>
<td>Computing $P(C_S)$ with Algorithm 3</td>
<td>61</td>
</tr>
<tr>
<td>6.4</td>
<td>Computing $P(C_S)$ with Mathematica</td>
<td>61</td>
</tr>
<tr>
<td>6.5</td>
<td>Computing $P(K_S)$ with Algorithm 4</td>
<td>62</td>
</tr>
<tr>
<td>6.6</td>
<td>Computing $P(K_S)$ with Mathematica</td>
<td>63</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

This thesis surveys chromatic and flow polynomials, and presents new efficient methods to compute these polynomials on specific families of graphs. In this chapter, the historical development of graph polynomials is discussed, with an emphasis on chromatic and flow polynomials; several interesting applications of these polynomials are provided. The chapter closes with a motivation for my goals in this thesis and a review of related research.

1.1 Historical background

Algebraic graph theory studies properties of graphs by algebraic means. This approach often leads to elegant proofs and at times reveals deep and unexpected connections between graph theory and algebra. In the last few decades, algebraic graph theory has developed very rapidly, generating a substantial body of literature; the monographs of Biggs [1] and Godsil and Royle [2] are standard sources on the subject.

A central branch of algebraic graph theory is the study of polynomials associated with graphs. These polynomials contain important information about the structure and properties of graphs, and enable its extraction by algebraic methods. In particular, the values of graph polynomials at specific points, as well as their coefficients, roots, and derivatives, often have meaningful interpretations.
The study of graph polynomials was motivated by the Four Color Conjecture, which states that any map can be “face-colored” using four colors so that neighboring regions do not share the same color; see Figure 1.1 (adapted from [3]) for an example.

In 1912, Birkhoff [4] introduced a polynomial which counts the ways to face-color a planar graph and attempted to prove the Four Color Conjecture by analyzing the roots of this polynomial*. For planar graphs, the concept of face-coloring is equivalent to “vertex-coloring”, and in 1932, Whitney [6] generalized Birkhoff’s polynomial to count vertex-colorings of general graphs; this polynomial is known today as the chromatic polynomial. In 1954, Tutte [7] extended the idea of face-coloring to non-planar graphs by introducing group-valued flows and the associated flow polynomial. The chromatic

*The Four Color Conjecture was proved true in 1976 by Appel and Haken [5] with the help of a computer; though their proof is largely accepted, an analytic proof in the vein of Birkhoff’s attempt is still being sought.
and flow polynomials are closely related, and are essentially equivalent in planar graphs by graph duality; see Section 3.3 for more details.

Tutte and Whitney further generalized the chromatic and flow polynomials into the two-variable Tutte polynomial [8], which includes as special cases several other graph polynomials such as the reliability and Jones polynomials. Since then, graph polynomials which are not direct specializations of the Tutte polynomial have also been introduced; for instance, Hoede and Li [9] introduced the clique and independence polynomials and McClosky, Simms, and Hicks [10] generalized the independence polynomial into the co-k-plex polynomial. Studying these polynomials has been an active area of research: Chia’s bibliography published in 1997 [11] counts 472 titles on chromatic polynomials alone.

1.2 Importance and applications

The interest in graph polynomials is in the information they contain about the properties of graphs and networks, which can be easily obtained by algebraic techniques but is much harder to access through purely graph theoretic approaches. Graph polynomials also have connections to sciences such as statistical physics, knot theory, and theoretical computer science. The chromatic and flow polynomials remain two of the most well-studied single-variable graph polynomials, and are the focus of this thesis; several important results about them are discussed in this section and in Chapter 3.

Naturally, the chromatic polynomial is often used in graph coloring problems, which are widely applicable in scheduling, resource allocation, and pattern matching. Read [12] gives two specific applications of the chromatic polynomial to the construction of timetables and the allocation of channels to television stations; see Kubale’s monograph [13] for more graph coloring problems.
The chromatic polynomial is also used in statistical physics to model the behavior of ferromagnets and crystals; in particular, it is the zero-temperature limit of the anti-ferromagnetic Potts model. The limit points of the roots of chromatic polynomials indicate where physical phase transitions may occur [14]. Sokal [15] surveys the applications of the multivariate Tutte polynomial — and its single-variable specializations like the chromatic and flow polynomials — to statistical mechanics, solid-state physics, and electrical circuit theory. In addition, his survey brings out many connections and relations between graph polynomials, matroids, and practical models.

Thomassen [16] showed that there exists a universal constant \(h \approx 1.29 \) such that no Hamiltonian graph has a root of its chromatic polynomial smaller than \(h \). Hamilton paths are essential to the Traveling Salesman Problem (TSP) which is very common in practice but difficult to solve. Thus, if the chromatic polynomial of a graph can be found efficiently, its roots can be approximated to an appropriate precision to determine whether any of them are smaller than the constant \(h \) and possibly conclude that the TSP has no solution on this graph.

Finally, the chromatic polynomial is related to the Stirling numbers [17, 18], the Beraha numbers [19], and the golden ratio [20], and thus finds applications in a variety of analytic and combinatorics problems.

There are important theoretical results and questions surrounding the flow polynomial as well, such as the 6-flow theorem and the 5-flow conjecture. In addition, the flow polynomial can be used to determine whether a graph has certain edge-connectivity; this feature of the flow polynomial is discussed in more detail in Chapter 3, along with other flow existence theorems and conjectures.

The flow polynomial also has an application in crystallography and statistical
mechanics as it is related to models of ice and crystal lattices (see [21]). In ice, each oxygen atom is connected by hydrogen bonds to four other oxygen atoms; each hydrogen bond contains a hydrogen atom which is closer to one of the two oxygen atoms it connects [22]. This structure can be represented by a directed graph, where the oxygen atoms are the vertices and the hydrogen bonds are directed edges pointing to the closer oxygen atom. The flow polynomial of such a graph can be used to count the number of permissible atomic configurations which conform to physical restrictions. In turn, this can be used to model the physical properties of ice and several other crystals, including potassium dihydrogen phosphate [23].

Results about the flow polynomial can also be used in estimating the error rate of a computer program. The different decision paths taken by the program over all possible executions can be represented by a control flow graph (cf. [24]); the degree of the flow polynomial of such a graph is a measure of the corresponding program’s complexity [25].

The chromatic and flow polynomials are also useful in computing or estimating certain graph invariants, such as the chromatic, flow, independence, and clique numbers (indeed the chromatic and flow numbers of a graph with \(n \) vertices can be found by evaluating the chromatic and flow polynomials at \(\log n \) and 5 points, respectively). These invariants are of great interest in extremal graph theory and are also important characteristics of large networks [26, 27, 28]. For more applications of chromatic and flow polynomials, see the comprehensive survey of Ellis-Monaghan and Merino [29] and the bibliography therein. Further details on these two polynomials (some of which more technical) are provided in Chapter 3.
1.3 Goals

Unfortunately, computing the chromatic and flow polynomials of a graph are very challenging tasks. These problems are \#P-hard for general graphs, and even for bipartite planar graphs as shown in [30], and sparse graphs with $|E| = O(|V|)$. In fact, most of the coefficients of the chromatic and flow polynomials of general graphs cannot even be approximated (see [31, 30]).

Thus, a large volume of work in this area is focused on exploiting the structure of specific types of graphs in order to derive closed formulas, algorithms, or heuristics for computing their chromatic and flow polynomials. In particular, classes of graphs which are generalizations of trees, cliques, and cycles are frequently investigated.

For example, Wakelin and Woodall [32] consider a class of graphs called polygon trees and find their chromatic polynomials; they also characterize the chromatic polynomials of biconnected outerplanar graphs. Wakelin and Woodall also show that a result from graph colorability is connected to graph reconstructibility, and it may be worth exploring further connections between these two fields in future work. Furthermore, Whitehead [33, 34] characterizes the chromatic polynomials of a class of clique-like graphs called q-trees, Lazuka [35] obtains explicit formulas for the chromatic polynomials of cactus graphs, Gordon [36] studies Tutte polynomials of rooted trees, and Mphako-Banda [37, 38] derives formulas for the chromatic, flow, and Tutte polynomials of flower graphs.

In this thesis, I consider yet another generalization of trees, cliques, and cycles. I define a generalized vertex join of a graph G to be the graph obtained by joining an arbitrary multiset of the vertices of G to a new vertex. I compute the chromatic polynomials of generalized vertex joins of trees, cliques, and cycles, and use the duality of chromatic and flow polynomials to compute the flow polynomials of outerplanar
graphs and generalized wheel graphs. My results complement and expand the work of Wakelin et al. [32] on chromatic polynomials of outerplanar graphs by characterizing the flow polynomials of outerplanar graphs and the chromatic polynomials of their duals, as well as finding the chromatic and flow polynomials of several other families of graphs. Outerplanar graphs are a well-known and frequently used family of graphs, and having access to their chromatic and flow polynomials is helpful for quickly extracting certain information about them. In addition, my results can also be applied to the Traveling Salesman Problem and to the anti-ferromagnetic Potts model in the capacity of the applications mentioned earlier — either directly on the graphs I consider, or on larger graphs which contain them as subgraphs.
Chapter 2

Preliminaries

This chapter recalls select graph theoretic notions and operations; some additional definitions will be included in later chapters when needed. The background material presented here is meant to be a quick reference rather than a self-contained foundation; the reader is referred to [39] for a detailed introduction to graph theory. At the end of this chapter, I introduce a new graph operation called a generalized vertex join which will be used to characterize the families of graphs studied in the following chapters.

2.1 Types of graphs

Different contexts call for different types of graphs. In the study of graph polynomials, it is often useful to consider graphs with loops and multiple edges, and — when studying flow — graphs with directed edges.

Definition 2.1 A simple undirected graph $G = (V, E)$ consists of a vertex set V and an edge set E of distinct two-element subsets of V.

Definition 2.2 An undirected multigraph $G = (V, E)$ consists of a vertex set V and an edge multiset E of not necessarily distinct one- or two-element subsets of V. A loop in a multigraph is an edge which is a one-element subset of V and a multiple edge is an edge which appears more than once in E.
Definition 2.3 A directed multigraph $G = (V, E)$ consists of a vertex set V and an edge multiset E of not necessarily distinct ordered pairs of elements of V. Given a directed edge $e = (u, v)$, u is the tail of e — denoted $t(e)$ — and v is the head of e — denoted $h(e)$.

An implicit requirement in the preceding definitions is that $V \cap E = \emptyset$; in other words, an object cannot be both a vertex and an edge. Unless otherwise stated, the second of the three definitions will be intended in the sequel by the term ‘graph’. In addition, for notational simplicity, $e = uv$ will stand for an undirected edge $e = \{u, v\}$ or a directed edge $e = (u, v)$ when there is no scope for confusion.

The number of times an edge e appears in E is the multiplicity of e. The underlying set of E is the set E' which contains the (unique) elements of E. For example, if $E = \{e_1, e_1, e_2, e_3, e_3, e_3\}$, then $E' = \{e_1, e_2, e_3\}$. The underlying simple graph of $G = (V, E)$ is the graph $(V, E' - \{e : e \text{ is a loop}\})$.

2.2 Planar graphs

Many of the graphs considered in the following chapters are planar graphs, which means they can be drawn in the plane so that none of their edges cross. A graph drawn in such a way is called a plane graph.

If G is a plane graph, its dual G^* is a graph that has a vertex corresponding to each face of G, and an edge joining the vertices corresponding to faces of G which share an edge. Note that if G is connected, $G = (G^*)^*$. The weak dual of G is the subgraph of G^* whose vertices correspond to the bounded faces of G. See Figure 2.1 for an illustration of this concept using the house graph H.

An outerplanar graph has a planar embedding where all of its vertices lie on the
outer face; a graph drawn in such a way is called an outerplane graph. Trees, cactus graphs, and minimal polygon triangulations are examples of outerplanar graphs. In Chapter 5, I characterize the duals of outerplanar graphs and present an efficient algorithm to compute the flow polynomials of outerplanar graphs.

2.3 Graph operations

Let $G = (V, E)$ be a graph. Given $u, v \in V$, the contraction G/uv is obtained by deleting edge uv if it exists, and identifying u and v into a single vertex. Note that the edge uv does not have to be in E for G/uv to be defined, and G/uv results in the same graph regardless of whether or not uv is in E. The subdivision of edge $e = uv$ is obtained by adding a new vertex w and replacing uv with edges uw and wv; a subdivision of G is a graph obtained by subdividing some of the edges of G.

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are homeomorphic if there exist subdivisions of G_1 and G_2 which are isomorphic; it is shown in Chapter 3 that flow polynomials are invariant under homeomorphism. Likewise, G_1 and G_2 are amallamorphic if (V_1, E_1') is isomorphic to (V_2, E_2'), where E_1' and E_2' are the underlying sets of E_1 and E_2; it is shown in Chapter 3 that chromatic polynomials are invariant under amallamorphism.
Given $S \subset V$, the *induced subgraph* $G[S]$ is the subgraph of G whose vertex set is S and whose edge set consists of all edges of G which have both ends in S. $S \subset V$ is an *independent set* if $G[S]$ has no edges. Given $S \subset E$, the *spanning subgraph* $G : S$ is the subgraph of G whose vertex set is V and whose edge set is S.

An *articulation point* (also called a *cut vertex*) is a vertex which, when removed, increases the number of connected components in G. Similarly, a *bridge* (also called a *cut edge*) is an edge which, when removed, increases the number of connected components in G. G is *biconnected* if it has no articulation points, and a *biconnected component* of G is a maximal subgraph of G which has no articulation points. The graphs H and H^* shown in Figure 2.1 are biconnected graphs.

An *orientation* of G is an assignment of directions to the edges of G; more precisely, for each edge $e = uv \in E$, one of u and v is assigned to be $h(e)$ and the other is assigned to be $t(e)$. An orientation of G is *acyclic* if it creates no directed cycles and it is *totally cyclic* if it makes every edge belong to a directed cycle. We will see in Chapter 3 that chromatic and flow polynomials can be used to count the number of acyclic and totally cyclic orientations of a graph.

2.4 Generalized vertex join

We afford special attention to the vertex join operation. A *vertex join* of $G = (V, E)$ is the graph

$$G_V = (V \cup \{v^*\}, E \cup \{vv^* : v \in V\})$$

where $v^* \notin V$. \hfill (2.1)

In other words, it is the graph obtained by joining a new vertex to each of the existing vertices of G. See Figure 2.2 for an illustration of a vertex join.

I now propose a generalization of this concept which will be used to characterize the families of graphs studied in Chapters 4 and 5. Given a graph $G = (V, E)$, a
multiset S over V is a collection of vertices of V, each of which may appear more than once in S.

Definition 2.4 Let $G = (V, E)$ be a graph, S be a multiset over V, and $v^* \notin V$. The *generalized vertex join of G using S* is the graph $G_S = (V \cup \{v^*\}, E \cup \{vv^* : v \in S\})$.

In other words, G_S is the graph obtained by joining a new vertex to some (or all) of the existing vertices of G, possibly more than once. Note that if the multiplicity of v in S is p, there are p parallel edges between v and v^* in G_S. See Figure 2.3 for an illustration of a generalized vertex join.

Figure 2.3 : Left: A graph H. Right: H_S, the generalized vertex join of H using $S = \{v_1, v_1, v_3, v_4, v_4, v_4\}$.
Chapter 3

Overview of chromatic and flow polynomials

This chapter surveys chromatic and flow polynomials and reveals their algebraic and combinatorial properties. Dong [40] and Zhang [41] are standard resources on chromatic and flow polynomials respectively, while Tutte [42] relates the two polynomials in a broader framework. These monographs provide a number of technical tools for the computation of chromatic and flow polynomials, some of which are included in this chapter. I apply these tools in the next two chapters to compute the chromatic polynomials of generalized vertex joins of trees, cycles, and cliques, and the flow polynomials of outerplanar graphs and “generalized wheel” graphs.

3.1 The chromatic polynomial

This section defines the chromatic polynomial and lists some of its algebraic and combinatorial properties — in particular, information contained by its coefficients, roots, derivatives, and evaluations at specific points. In addition, closed formulas are given for the chromatic polynomials of some simple families of graphs, which will be used in the following chapters.

3.1.1 Motivation

A vertex coloring of G is an assignment of colors to the vertices of G so that no edge is incident to vertices of the same color. Many problems which involve vertex coloring
(which shall be referred to simply as coloring) are concerned with the following two questions:

Q1. Can G be colored with t colors?

Q2. In how many ways can G be colored with t colors?

Clearly, the answer to Q2 contains the answer to Q1 and therefore Q2 is more general and typically more difficult to answer. In a sense, Q1 is equivalent to asking “What is the least number of colors needed to color G?” because if G can be colored with t colors, it can be colored with $t + 1$ colors as well. Thus, if t^* is the least number of colors needed to color G, then Q1 can be answered in the affirmative for all $t \geq t^*$ and in the negative for all $t < t^*$. The parameter t^* (usually written $\chi(G)$) which answers Q1 is called the chromatic number of G. The rest of this section will analyze the chromatic polynomial of G, which counts the number of ways to color G with t colors and answers Q2.

3.1.2 Definition

Let $G = (V, E)$ be a graph with n vertices. Formally, a t-coloring of G is a function $f : V \rightarrow \{1, \ldots, t\}$ such that $f(u) \neq f(v)$ for any $e = uv \in E$. Let $p(G; t)$ denote the number of t-colorings of G for each nonnegative integer t. Figure 3.1 shows all 18 ways to color the house graph H using 3 colors; thus $p(H; 3) = 18$.

There are several equivalent definitions of the chromatic polynomial. Definition 3.1 gives immediate intuition into the nature and purpose of the chromatic polynomial; see equation 3.18 for an alternate definition.

Definition 3.1 The chromatic polynomial $P(G; t)$ is the unique interpolating polynomial in \mathbb{P}_n of the integer points $(t, p(G; t))$, $0 \leq t \leq n$, where $n = |V|$.
Let us examine this definition closely. First, we can rightly claim that $P(G; t)$ is the unique interpolating polynomial of these $n + 1$ points due to the following well-known theorem (see [43] for a proof).

Theorem 3.1 (Unisolvence Theorem)

Let $(x_0, y_0), \ldots, (x_n, y_n)$ be points in \mathbb{R}^2 such that $x_0 < \ldots < x_n$. There exists a unique polynomial $P \in \mathbb{P}_n$ such that $P(x_i) = y_i$, $0 \leq i \leq n$. □

By definition, the chromatic polynomial counts the number of ways to color G with n or fewer colors. Figure 3.2 shows a graphical representation of the chromatic polynomial of the house graph H and the points it interpolates. Since H has 5 vertices, by definition $P(H; t)$ is guaranteed to interpolate $p(H; t)$ for $t = \{0, 1, 2, 3, 4, 5\}$; however, notice that $P(H; 6) = p(H; 6)$. This is not a coincidence — in fact, at each nonnegative integer t, $P(H; t) = p(H; t)$, and this is true for the chromatic polynomial of any graph. This fact is stated in the following theorem, followed by a proof adapted from [44].

Theorem 3.2

At each nonnegative integer t, $P(H; t) = p(H; t)$.
Figure 3.2 : The chromatic polynomial of the House Graph H and the points it interpolates evaluated for $0 \leq t \leq 3$ (left) and $0 \leq t \leq 6$ (right). Note that $P(H; 3) = 18$ as found in Figure 3.1.

Proof 3.1 If G has a loop $e = uu$, there can be no proper coloring of G with any number of colors since e will always be incident to vertices of the same color. Thus if G has a loop, $p(G; t) = 0$ for all integers $t \geq 0$, so $P(G; t) = 0$ and the claim is true.

Next, assume G is loopless. Each coloring of G defines a partition of V into disjoint non-empty independent sets; we will call such a partition a *color-partition*. Let $C = V_1, \ldots, V_p$ be an arbitrary color-partition and $N(C)$ be the number of different colorings that define C. Given t available colors, there are t ways to choose the color of V_1, $t - 1$ ways to choose the color of V_2, etc., so there are $t(t-1) \ldots (t-(p-1))$ colorings which define the color-partition C. Thus, $N(C)$ is a polynomial of t. Furthermore, since C cannot partition V into more than n parts, the degree of $N(C)$ is at most n.

Now, let \mathcal{C} be the set of all color-partitions of V; then $p(G; t) = \sum_{C \in \mathcal{C}} N(C)$. Since $p(G; t)$ is the sum of polynomials of t, $p(G; t)$ is a polynomial of t. The degree of $p(G; t)$ is n because there is exactly one color-partition which partitions V into n parts. Since $p(G; t)$ passes through the points $(t, p(G; t))$, $0 \leq t \leq n$, it must be equal
to $P(G; t)$.

The dependence of the chromatic polynomial on t is often implied in the context; if there is no scope for confusion, $P(G; t)$ can be abbreviated to $P(G)$. By convention, the graph with no vertices has chromatic polynomial equal to 1; this graph will be excluded from further considerations.

3.1.3 Properties

Trivially, G can be colored by assigning a different color to each vertex; thus, $\chi(G) \leq n$. Unless $t = \chi(G)$, it is possible to have unused colors in a t-coloring; if $t > n$, this becomes necessary. If $t_2 > t_1 \geq \chi(G)$, any t_2-coloring is also a t_1-coloring and $p(G; t_2) > p(G; t_1)$. Thus, the sequence $\{p(G; t)\}_{t=0}^{\infty}$ starts with $\chi(G)$ zeroes and then strictly increases. The behavior of the chromatic polynomial of a general graph is pictured in Figure 3.3.

![Figure 3.3: General appearance of the chromatic polynomial in the first quadrant](image)

The coefficients, derivatives, roots, and evaluations of the chromatic polynomial at certain points contain various information about the graph and are widely studied. Below are several characteristics of the chromatic polynomial evaluated at specific
points.

- $P(G; t)$ is the number of t-colorings of G for any nonnegative integer t.

- The chromatic number of G is the smallest positive integer t for which $P(G; t) > 0$. It can be determined from the chromatic polynomial by evaluating it at $t = 0, \ldots, n$ (or faster, by a form of binary search).

- For any integers $t_2 > t_1 \geq \chi(G)$, $P(G; t_2) > P(G; t_1)$.

- Stanley [45] gives a combinatorial interpretation of the chromatic polynomial evaluated at negative integers in terms of orientations of G. In particular, $|P(G; -1)|$ is the number of acyclic orientations of G.

Let $P(G; t) = c_n t^n + c_{n-1} t^{n-1} + \ldots + c_1 t + c_0$. The coefficients of the chromatic polynomial have the following properties:

- c_0, \ldots, c_n are integers.

- $c_n = 1$.

- $c_{n-1} = -m$ where m is the number of edges of G.

- If $m \neq 0$, $\sum_{i=1}^{n} c_i = 0$; if $m = 0$, $P(G; t) = t^n$ and $\sum_{i=1}^{n} c_i = 1$.

- $c_0, \ldots, c_{k-1} = 0$ and $c_k, \ldots, c_n \neq 0$ where k is the number of components of G.

- $c_i \geq 0$ if $i = n \mod 2$, $c_i \leq 0$ if $i \neq n \mod 2$, i.e., the coefficients alternate signs.

- c_1, \ldots, c_{n-1} are #P-hard to compute, even for bipartite and planar graphs [30].

- Unimodal conjecture [12]: the sequence $\{|c_i|\}_{i=1}^{n}$ is unimodal, i.e., for some c_i, $|c_1| \leq \ldots \leq |c_i| \geq \ldots \geq |c_n|$. This conjecture has been proven true for outerplanar graphs [46] and some other families of graphs.
The derivative of the chromatic polynomial has interesting properties as well, in particular when evaluated at 1. The quantity $\theta(G) = (-1)^n \frac{d}{dt} P(G; t) \big|_{t=1}$ is called the chromatic invariant of G and has been widely studied. Below are two results due to Crapo [47] and Brylawski [48], respectively; in addition, see [49, 50] for combinatorial interpretations of $\theta(G)$.

- $\theta(G) \neq 0$ if and only if G is biconnected.

- $\theta(G) = 1$ if and only if G is series-parallel. Series-parallel (SP) graphs are used to model electrical circuits. It is useful to know that a graph is SP because many NP-hard problems can be solved in linear time over SP graphs (cf. [51]).

Finally, the roots of $P(G; t)$ — called the chromatic roots of G — contain significant information about the structure of G. The set of chromatic roots of all graphs (or of special families of graphs) is interesting in its own right; recall that Birkhoff’s motivation for introducing the chromatic polynomial was to investigate gaps in the set of chromatic roots of planar graphs in order to prove the Four Color Theorem.

- The number of biconnected components of G is the multiplicity of the root ‘1’ of $P(G; t)$ [52].

- If $P(G; t)$ has a noninteger root less than or equal to $h \approx 1.29559$, then G has no Hamiltonian path [16].

- Let R be the set of all chromatic roots (of all graphs). R is dense in $[32/27, \infty)$ [53] and dense in \mathbb{C} [54]. Moreover, $R \cap (-\infty, 32/27) = \{0, 1\}$, i.e., there are no real chromatic roots less than $32/27$ other than 0 and 1 [55].

- Not every complex number and real number in $[32/27, \infty)$ is a chromatic root; for example, $\phi + 1 = \frac{\sqrt{5} + 3}{2}$ is not a root of any chromatic polynomial [56].
• 5-Color Theorem [57]: Planar graphs have no real chromatic roots in \([5, \infty)\).

• 4-Color Theorem [5]: 4 is not a chromatic root of planar graphs. Appel and Haken proved this by eliminating a long list of minimum counterexamples using a computer; it is still an open problem to prove the 4-Color Theorem by analyzing chromatic roots.

○ Birkhoff-Lewis Conjecture [58]: Planar graphs have no real roots in \([4, \infty)\).

3.1.4 Computation

Computing the chromatic polynomial of a graph from its definition is highly impractical. Fortunately, there are several well-known formulas which aid in this computation by reducing the chromatic polynomial of a graph into that of smaller graphs. The most notable of these is the deletion-contraction formula, which is discussed next.

Let \(G = (V, E)\) be a graph and \(u\) and \(v\) be two vertices of \(G\). The \(t\)-colorings of \(G\) can be split up into those in which \(u\) and \(v\) have different colors and those in which they have the same color. Adding the edge \(uv\) to \(G\) assures that \(u\) and \(v\) have different colors, and identifying \(u\) and \(v\) into a single vertex assures that they have the same color. Thus, for every coloring of \(G\) in which \(u\) and \(v\) have different colors, there is exactly one coloring of \(G + uv\) and for every coloring of \(G\) in which \(u\) and \(v\) have the same color, there is exactly one coloring of \(G/uv\). This observation yields the addition-contraction formula:

\[
P(G) = P(G + e) + P(G/e) \text{ for any } e = uv, \text{ where } u, v \in V.
\] (3.1)

Alternately, we can set \(H = G - e\) for some edge \(e\) of \(G\); then, \(P(G - e) = P(H) = P(H + e) + P(H/e) = P(G) + P((G - e)/e)\), but \((G - e)/e = G/e\), so \(P(G) = \)
\[P(G - e) - P(G/e) \]. This yields the *deletion-contraction* formula:

\[P(G) = P(G - e) - P(G/e) \text{ for any } e = uv, \text{ where } u, v \in V. \quad (3.2) \]

Equations 3.1 and 3.2 can be used to recursively compute the chromatic polynomial of any graph \(G \). In particular, each application of 3.2 reduces \(G \) into two graphs each with one fewer edge and, after enough iterations, into graphs with no edges; thus, \(P(G) \) can be expressed as a linear combination of the chromatic polynomials of empty graphs. Similarly, 3.1 can be used to express \(P(G) \) as a linear combination of the chromatic polynomials of complete graphs. The chromatic polynomials of empty graphs and complete graphs can be computed directly using combinatorial arguments as shown in Examples 3.1 and 3.2 in the next section.

The computer algebra system Mathematica has a built-in `ChromaticPolynomial` function which uses the addition-contraction formula to compute the chromatic polynomials of dense graphs, and the deletion-contraction formula for sparse graphs [59]. Version 10 of Mathematica has a more efficient implementation of the deletion-contraction algorithm as the `ChromaticPolynomial` function from the Combinatorica package is built into the Wolfram System. However, this implementation no longer uses the addition-contraction formula which causes it to perform poorly on dense graphs, as revealed by the computational results included in Chapter 6.

It can be shown (cf. [60]) that an algorithm based on the recurrences (3.1) and (3.2) has a worst-case run time of \(\mathcal{O}(\phi^{n+m}) \), where \(\phi = \frac{1 + \sqrt{5}}{2} \) is the golden ratio and \(m \) is the number of edges of \(G \). Some improvements on this algorithm have been made by Bjorklund [61]. With *a priori* information about the structure of the graph, the run time of this algorithm can be improved significantly; in particular, the order of the edges being contracted and deleted can be chosen strategically to obtain large
subgraphs (such as cliques) whose chromatic polynomials are known. Moreover, there are polynomial time algorithms for computing the chromatic polynomials of graphs with bounded clique-width and tree-width. In particular, Makowsky et al. [62] show that \(P(G) \) can be computed in \(\mathcal{O}(n^{f(w)}) \) time, where \(w \) is the clique-width of \(G \) and \(f(w) \leq 3 \cdot 2^{w+2} \). However, even for \(w = 2 \), this yields a worst-case run time of \(\mathcal{O}(n^{48}) \). Similarly, Andrzejak’s algorithm [63] for computing the Tutte polynomials of graphs of tree-width \(w \) has a worse-case run time of \(\mathcal{O}(n^{109.6}) \) when \(w = 2 \). Thus, these algorithms are principally of theoretical value.

There are several other reduction formulas for chromatic polynomials which are outlined next; see Tutte [42] for detailed proofs. If \(G \) has two subgraphs whose intersection is a clique, then the chromatic polynomials of those subgraphs can be combined to compute the chromatic polynomial of \(G \) in the following way:

\[
\text{If } G = G_1 \cup G_2 \text{ and } G_1 \cap G_2 = K_r, \text{ then } P(G) = \frac{P(G_1)P(G_2)}{P(K_r)}. \quad (3.3)
\]

Note that articulation points are cliques of size 1, so this formula can be used to separate a graph into biconnected components to find its chromatic polynomial. Furthermore, disjoint components of a graph can be colored independently; thus, to compute the chromatic polynomial of a disconnected graph, it suffices to compute the chromatic polynomials of each component separately:

\[
\text{If } G = G_1 \cup G_2 \text{ and } G_1 \cap G_2 = \emptyset, \text{ then } P(G) = P(G_1)P(G_2). \quad (3.4)
\]

If \(G \) has a vertex \(v \) which is connected to every other vertex in \(G \), then

\[
P(G; t) = tP(G - v; t - 1). \quad (3.5)
\]
Equivalently, this formula can be used to compute the chromatic polynomial of a
vertex join G_V of G as shown below:

$$ P(G_V; t) = tP(G; t - 1). \quad (3.6) $$

However, (3.6) is not applicable to a generalized vertex join since it requires every
vertex in G to be connected to the added vertex v^*. Finally, multiple edges between
vertices u and v have no more effect on the coloring of G than a single edge between
u and v; thus,

If $e \in E$ is a multiple edge, then $P(G) = P(G - e). \quad (3.7)$

This implies that the chromatic polynomial of a multigraph is equal to the chro-
matic polynomial of its underlying simple graph and that the chromatic polynomial
is invariant under amalgamorphism. However, it is still sometimes useful to consider
the chromatic polynomials of graphs with multiple edges (such as graphs obtained
through a generalized vertex join) because the duals of these graphs form a more
general family. This matter will be discussed in Section 3.3.

3.1.5 Special cases

Using the decomposition techniques outlined thus far along with simple combinatorial
arguments, closed formulas for the chromatic polynomials of some specific graphs can
be derived. Some of these closed formulas will be used in Chapter 4 to compute the
chromatic polynomials of more complex graphs. For more detailed proofs and other
examples, see [40].

Example 3.1 Let G be the empty graph on n vertices. Given t available colors, each
vertex in G can be colored independently in t ways. Thus,

$$P(G; t) = t^n. \quad (3.8)$$

Example 3.2 Let K_n be the complete graph on n vertices. Since all vertices in K_n are mutually adjacent, after fixing the color of one arbitrary vertex, each successive vertex can be colored in one fewer ways. With t available colors, the first vertex can be colored in t ways, the second in $t - 1$ ways, etc., so

$$P(K_n; t) = t(t-1) \cdots (t-(n-1)) = \prod_{i=0}^{n-1} (t-i). \quad (3.9)$$

Example 3.3 Let G be an arbitrary tree on n vertices. A tree on one vertex can be colored in t ways, and adding a leaf vertex to a tree increases the number of colorings by a factor of $t - 1$, since the added vertex cannot have the same color as its neighbor. Thus,

$$P(G; t) = t(t-1)^{n-1}. \quad (3.10)$$

Example 3.4 Let C_n be the cycle on n vertices. Applying the deletion-contraction formula to an arbitrary edge yields a tree and a cycle on $n - 1$ vertices; using this formula recursively yields

$$P(C_n; t) = (t-1)^n + (-1)^n(t-1). \quad (3.11)$$

Example 3.5 Let W_n be the wheel with n spokes. A wheel is a vertex join of a cycle on n vertices; applying equation 3.6 to equation 3.11 yields

$$P(W_n; t) = t((t-2)^{n-1} + (-1)^{n-1}(t-2)). \quad (3.12)$$
3.2 The flow polynomial

This section introduces integer-valued and group-valued flows and defines the flow polynomial. Several algebraic and combinatorial properties of the flow polynomial are discussed, along with theorems and conjectures about the existence of flows in certain conditions.

3.2.1 Motivation

A plane graph G has a well-defined dual whose vertices correspond to faces of G, so in plane graphs, the concept of face-coloring is essentially equivalent to vertex-coloring. However, face-coloring cannot be defined on general graphs in the same sense as on planar graphs, since non-planar graphs do not have well-defined faces (in a planar embedding). To this end, Tutte introduced the theory of group- and integer-valued flows as a way to extend face-coloring from planar graphs to general graphs. A group-valued (respectively, integer-valued) flow on an orientation of G is an assignment of values to the edges of G from an Abelian group (respectively, from a set of integers) so that flow is conserved at each vertex of G.

The theory of group- and integer-valued flows is connected to some of the deepest and most challenging notions in graph theory such as the cycle-double cover conjecture [64] and the Four Color Theorem. Many problems which involve flows are concerned with whether a graph admits a certain flow, and if so — in how many different ways. Just as the chromatic polynomial counts the number of graph colorings, there is a flow polynomial which counts the number of group-valued flows on a given graph. Defining and studying this polynomial will be the subject of the remainder of this section.
3.2.2 Definition

To define group-valued flows, recall first the definition of an Abelian algebraic group.

Definition 3.2 An Abelian group \((A, +)\) is an ordered pair consisting of a set \(A\) and a binary operation ‘+’ which together satisfy the following conditions:

- **Closure**: \(a, b \in A \implies a + b \in A\)
- **Associativity**: \(a, b, c \in A \implies a + (b + c) = (a + b) + c\)
- **Identity element**: \(\exists 0 \in A\) such that \(0 + a = a + 0 = a\) \(\forall a \in A\)
- **Inverse elements**: \(\forall a \in A \exists (-a) \in A\) such that \(a + (-a) = (-a) + a = 0\)
- **Commutativity**: \(a, b \in A \implies a + b = b + a\).

When there is no scope for confusion, the group \((A, +)\) is abbreviated as \(A\); the **cardinality** of group \((A, +)\) is equal to \(|A|\), the number of elements in \(A\). A **finite Abelian group** is an Abelian group of finite cardinality. A simple example of a finite Abelian group is the cyclic group \((\mathbb{Z}_t, +)\) where \(\mathbb{Z}_t = \{0, 1, \ldots, t - 1\}\) and ‘+’ is addition modulo \(t\). In fact, \(\mathbb{Z}_t\) is essentially the only finite Abelian group that will be required in the context of this chapter. With this in mind, a group-valued flow can be defined as follows.

Definition 3.3 Let \(A\) be a finite Abelian group and \(G = (V, E)\) be a graph with a fixed orientation. An \(A\)-flow on this orientation of \(G\) is a function \(\phi : E \to A\) such that for each \(v \in V\), \(\sum_{h(e)=v} \phi(e) = \sum_{t(e)=v} \phi(e)\). An \(A\)-flow \(\phi\) is **nowhere-zero** if \(\phi(e) \neq 0\) for all \(e \in E\).

The condition \(\sum_{h(e)=v} \phi(e) = \sum_{t(e)=v} \phi(e)\) in Definition 3.3 is sometimes called **Kirchhoff’s Law** (commonly applied as the principle of conservation of energy in
electrical circuits) and means that the total flow entering each vertex is equal to
the total flow leaving each vertex. Nowhere-zero A-flows are also called group-valued
flows and modular flows. Taking $A = \mathbb{Z}$ and $|\phi(e)| < t$ for each $e \in E$ in the definition
above yields another type of flow called a nowhere-zero t-flow. This is stated more
formally as follows.

Definition 3.4 Let $G = (V, E)$ be a graph with a fixed orientation. A nowhere-zero
t-flow on this orientation of G is a function $\phi : E \to \{- (t - 1), \ldots, (t - 1)\} - \{0\}$
such that for each $v \in V$, \[
\sum_{h(e)=v} \phi(e) = \sum_{t(e)=v} \phi(e).
\]

Nowhere-zero A-flows and nowhere-zero t-flows (also called integer-valued flows)
are closely related but not identical; the likeness in meaning and nomenclature of these
two concepts warrants caution. The similarities and differences between group-valued
and integer-valued flows are now discussed.

First, it is easy to see that the orientation of G in the definitions above is irrelevant.
If ϕ is a nowhere-zero A-flow on a certain orientation of G and a new orientation of
G is obtained by reversing the direction of some edge e_0, then

$$
\tilde{\phi}(e) = \begin{cases}
\phi(e) & \text{if } e \neq e_0 \\
-\phi(e) & \text{if } e = e_0
\end{cases}
$$

(3.13)
is a nowhere-zero A-flow on the new orientation of G (where $-\phi(e)$ is the inverse
element of $\phi(e)$). Thus, if some orientation of G has a nowhere-zero A-flow, every
orientation of G has a nowhere-zero A-flow; moreover, the number of nowhere-zero A-
flows is the same in all orientations of G. An analogous result holds for nowhere-zero
t-flows.

In addition, Tutte [7] surprisingly showed that when A is finite, the existence
and number of nowhere-zero A-flows does not depend on the algebraic structure of
A but only on its cardinality. Thus, without loss of generality, the group A in a nowhere-zero A-flow with $|A| = t$ can be taken to be \mathbb{Z}_t. Tutte also showed that G has a nowhere-zero t-flow if and only if it has a nowhere-zero \mathbb{Z}_t-flow. However, the number of nowhere-zero t-flows on G is not necessarily the same as the number of nowhere-zero \mathbb{Z}_t-flows. Finally, a graph with a bridge b does not admit a nowhere-zero t-flow or a nowhere-zero \mathbb{Z}_t-flow, since a non-zero flow on b would create a non-zero total outflow from some component of $G - b$ (see Lemma 3.1 for more details). These results are summarized in the following theorem.

Theorem 3.3 (Tutte [7, 42])

Let G be a bridgeless graph with a fixed orientation and A be an Abelian group with $|A| = t$. Then, the following statements are equivalent:

1. G has a nowhere-zero t-flow
2. G has a nowhere-zero \mathbb{Z}_t-flow
3. G has a nowhere zero A-flow
4. Every orientation of G has a nowhere-zero t-flow
5. Every orientation of G has a nowhere-zero \mathbb{Z}_t-flow
6. Every orientation of G has a nowhere-zero A-flow. \square

Let $G = (V, E)$ be a graph with n vertices, m edges, and k components and let $f(G; t)$ denote the number of nowhere-zero \mathbb{Z}_t-flows on G for each positive integer t. Figure 3.4 shows the two nowhere-zero \mathbb{Z}_3-flows and the six nowhere-zero \mathbb{Z}_4-flows on an orientation of the house graph H; thus $f(H; 3) = 2$ and $f(H; 4) = 6$.

The following lemma of Tutte [42] allows nowhere-zero \mathbb{Z}_t-flows to be counted recursively; it will be useful in defining and computing the flow polynomial.
Figure 3.4: Left: All nowhere-zero \(\mathbb{Z}_3 \)-flows on an orientation of the house graph \(H \); \(f(H; 3) = 2 \). Right: All nowhere-zero \(\mathbb{Z}_4 \)-flows on \(H \); \(f(H; 4) = 6 \).

Lemma 3.1

Let \(G \) be a graph and \(e \) be an edge of \(G \). Then, for each positive integer \(t \),

\[
f(G; t) = \begin{cases}
 f(G/e; t) - f(G - e; t) & \text{if } e \text{ is not a loop} \\
 (t - 1)f(G - e; t) & \text{if } e \text{ is a loop} \\
 (t - 1) & \text{if } G = C_1 \\
 0 & \text{if } G \text{ has a bridge}
\end{cases}
\]

(3.14)

Proof 3.2 If \(e \) is a loop, then \(f(G; t) = (t - 1)f(G - e; t) \), since there are \(f(G - e; t) \) nowhere-zero \(\mathbb{Z}_t \)-flows on \(G - e \), and any of the \(t - 1 \) nonzero members of \(\mathbb{Z}_t \) can be assigned to \(e \) to produce a nowhere-zero flow on \(G \).

Next, suppose \(e \) is not a loop. Let \(f_1 \) be the set of \(\mathbb{Z}_t \)-flows which are nowhere-zero on \(G - e \) and in which \(e \) may have 0 flow. For every \(\mathbb{Z}_t \)-flow in \(f_1 \), there is exactly one nowhere-zero \(\mathbb{Z}_t \)-flow on \(G/e \). Let \(f_2 \) be the set of \(\mathbb{Z}_t \)-flows which are nowhere-zero on \(G - e \) and in which \(e \) does have 0 flow. For every \(\mathbb{Z}_t \)-flow in \(f_2 \), there is exactly one nowhere-zero \(\mathbb{Z}_t \)-flow on \(G - e \). The nowhere-zero \(\mathbb{Z}_t \)-flows on \(G \) can be obtained by subtracting \(f_2 \) from \(f_1 \). Thus, \(f(G, t) = f(G/e, t) - f(G - e, t) \) for any non-loop
Now consider the graph C_1 consisting of one loop; $f(C_1; t) = t - 1$ since each of the $t - 1$ nonzero members of \mathbb{Z}_t can be assigned to the loop to produce a non-zero flow.

Finally, suppose G has a bridge b, let B be the component of G containing b, and let B_1 and B_2 be the two disconnected subgraphs of B obtained by deleting b. Without loss of generality, suppose b is directed from B_1 to B_2 in some orientation of G. Next, let ϕ be a nowhere-zero \mathbb{Z}_t-flow and for any $v \in V$ and $S \subset V$, define:

$$
\phi^+(v) = \sum_{e : t(e)=v,h(e)\neq v} \phi(e) \quad \text{(total flow into v)}
$$

$$
\phi^-(v) = \sum_{e : h(e)=v,t(e)\neq v} \phi(e) \quad \text{(total flow out of v)}
$$

$$
\phi^+(S) = \sum_{e : t(e)\in S,h(e)\notin S} \phi(e) \quad \text{(total flow into S)}
$$

$$
\phi^-(S) = \sum_{e : h(e)\in S,t(e)\notin S} \phi(e) \quad \text{(total flow out of S)}.
$$

Since ϕ must obey conservation of flow, $\phi^+(v) - \phi^-(v) = 0$ for all $v \in B_1$. Also, $\phi^+(B_1) \neq 0$ since b is the only edge satisfying $\{e : t(e) \in B_1, h(e) \notin B_1\}$, and $\phi^-(B_1) = 0$ since there are no edges satisfying $\{e : h(e) \in B_1, t(e) \notin B_1\}$. Then, $0 = \sum_{v \in B_1} (\phi^+(v) - \phi^-(v)) = \phi^+(B_1) - \phi^-(B_1) \neq 0$, which is a contradiction. Thus, if G has a bridge, it cannot admit a nowhere-zero \mathbb{Z}_t-flow, so $f(G; t) = 0$ for all positive integers t. □

With this in mind, the flow polynomial can be defined as the polynomial that counts nowhere-zero \mathbb{Z}_t-flows on G. There are several equivalent definitions of the flow polynomial; the one given below mirrors the definition of the chromatic polynomial and gives intuition into the nature and purpose of the flow polynomial. See equation
3.19 for an alternate definition.

Definition 3.5 The flow polynomial $F(G; t)$ is the unique interpolating polynomial in \mathbb{P}_{m-n+k} of the integer points $(t, f(G; t))$, $1 \leq t \leq m - n + k + 1$, where m, n, and k are the number of edges, vertices, and components in G, respectively.

Figure 3.5 shows a graphical representation of the flow polynomial of the house graph H and the points it interpolates. Since H has 6 edges, 5 vertices, and 1 connected component, by definition $F(H; t)$ is guaranteed to interpolate $f(H; t)$ for $t = \{1, 2, 3\}$; however, notice that $F(H; 4) = p(H; 4)$. This is not a coincidence — in fact, at each positive integer t, $F(H; t) = f(H; t)$, and this is true for the flow polynomial of any graph. This fact is stated in the following theorem.

![Figure 3.5: The flow polynomial of the House Graph H and the points it interpolates evaluated for 1 through 5. Note that $P(H; 3) = 2$ and $P(H; 4) = 6$ as found in Figure 3.4.](image)

Theorem 3.4

At each positive integer t, $F(H; t) = f(H; t)$.

Proof 3.3 By Lemma 3.1, if G has a bridge, $f(G; t) = 0$ for all integers $t > 0$, so $F(G; t) = 0$ and the claim is true. We will now show by induction on the number of
edges that for any bridgeless graph G, there exists a degree $m - n + k$ polynomial $F(G; t)$ such that $F(G; t) = f(G; t)$ at each positive integer t. This polynomial must be the flow polynomial, since two polynomials of degree $m - n + k$ which agree at $m - n + k + 1$ points must be identical by Theorem 3.1.

If G is a bridgeless graph with one edge, that edge must be a loop, so $f(G; t) = t - 1$ by Lemma 3.1. Moreover, $m - n + k = 1$ since $n = k$ and $m = 1$, so the degree 1 polynomial $F(G; t) = t - 1$ satisfies the conditions of the theorem.

Now, suppose G is a bridgeless graph with $m > 1$ edges, n vertices, and k components, and let e be an edge of G. If e is not a loop, it is easy to see that G/e is bridgeless and has k components, $n - 1$ vertices and $m - 1$ edges. Thus, by induction, there exists a polynomial $F(G/e; t)$ of degree $m - n + k$ equal to $f(G/e; t)$ for all positive integers t. Similarly, $G - e$ has k components, n vertices, and $m - 1$ edges. If $G - e$ is bridgeless, by induction there exists a polynomial $F(G - e; t)$ of degree $m - n + k - 1$ equal to $f(G - e; t)$ for all positive integers t; if $G - e$ has a bridge, $F(G - e; t) = 0$. Thus, we define $F(G; t) = F(G/e; t) - F(G - e; t)$, so that $F(G; t) = F(G/e; t) - F(G - e; t) = f(G/e; t) - f(G - e; t) = f(G; t)$, at all positive integers t, and $F(G; t)$ has degree $m - n + k$.

If e is a loop, it is easy to see that G/e is bridgeless and has k components, n vertices and $m - 1$ edges. Thus, by induction, there exists a polynomial $F(G/e; t)$ of degree $m - n + k - 1$ equal to $f(G/e; t)$ for all positive integers t. By Lemma 3.1 $f(G; t) = (t - 1)f(G - e; t)$; thus, we define $F(G; t) = (t - 1)F(G - e; t)$, so that $F(G; t) = (t - 1)F(G - e; t) = (t - 1)f(G - e; t) = f(G; t)$, and $F(G; t)$ has degree $m - n + k$. This completes the induction. □

Remark 3.1 It should be noted that while the chromatic polynomial is often introduced rigorously in textbooks and papers, such introductions to the flow polynomial
are somewhat rare in the literature. The proofs of Lemma 3.1 and Theorem 3.4 included here are modeled after the discussions and proofs in [39, 41, 42] and attempt to provide (perhaps for the first time) a unified and rigorous introduction to the flow polynomial. □

Note that the number of nowhere-zero \(t \)-flows is generally not equal to \(F(G; t) \); however, \(F(G; t) > 0 \) if and only if \(G \) admits a nowhere-zero \(t \)-flow. The dependence of the flow polynomial on \(t \) is often implied in the context; if there is no scope for confusion, \(F(G; t) \) can be abbreviated to \(F(G) \). By convention, the graph with zero edges has flow polynomial equal to 1; this graph will be excluded from further considerations in this section.

Just as the chromatic number \(\chi(G) \) is the smallest number of colors needed to color \(G \), the flow number of \(G \), written \(\psi(G) \), is the smallest positive \(t \) for which \(G \) has a nowhere-zero \(t \)-flow (and therefore a nowhere-zero \(\mathbb{Z}_t \)-flow). While the chromatic number of a graph can be arbitrarily high (for example, \(\chi(K_n) = n \)), the same is not true of the flow number – in fact, Seymour [65] showed that the flow number of any graph is at most 6. Nevertheless, for any \(t \), deciding whether \(G \) has a nowhere-zero \(t \)-flow is an NP-hard problem. Indeed, even for planar graphs and \(t = 3 \), this problem is NP-complete [66].

3.2.3 Properties

Knowing the flow polynomial of a graph allows the flow number to be determined in linear time. In addition, the coefficients, roots, and evaluations of the flow polynomial at certain points contain various information about the graph. Below are several characteristics of the flow polynomial of a bridgeless graph \(G \) with \(n \) vertices, evaluated at specific points.
• $F(G; t)$ is the number of nowhere-zero \mathbb{Z}_t-flows on G for any positive integer t.

• In general, for a positive integer t, $F(G; t)$ is not the number of nowhere-zero t-flows on G; however, G admits a nowhere-zero t-flow if and only if $F(G; t) > 0$. Recently, Kochol [67] showed that there is a polynomial $F_Z(G; t) \neq F(G; t)$ which counts the number of nowhere-zero t-flows in G, and that F and F_Z can be used to estimate one another.

• 6-flow Theorem: $F(G; 6) > 0$, i.e., every bridgeless graph admits a nowhere-zero 6-flow. This result is due to Seymour [65] and is an improvement over the earlier result of Jaeger and Kilpatrick who showed that every bridgeless graph has a nowhere-zero 8-flow [68, 69].

• 5-flow Conjecture [7]: $F(G; 5) > 0$, i.e., every bridgeless graph has a nowhere-zero 5-flow. This conjecture cannot be strengthened to “$F(G; 4) > 0$”, since the Petersen graph does not admit a nowhere-zero 4-flow.

• The flow number of G is the smallest positive integer t for which $F(G; t) > 0$. In view of the 6-flow Theorem, $\psi(G)$ can be determined by evaluating $F(G; t)$ at $t = 1, \ldots, 5$.

• For any integers $t_2 \geq t_1 \geq \psi(G)$, $F(G; t_2) \geq F(G; t_1)$.

• Stanley and Noy [45, 70] give a combinatorial interpretation of the flow polynomial evaluated at negative integers in terms of orientations of G. In particular, $|F(G; -1)|$ is the number of totally cyclic orientations of G.

• $F(G; 1) = 0$, i.e., no graph admits a nowhere-zero 1-flow.

• $F(G; 2) > 0$ if and only if G is Eulerian.
- $F(G; t) > 0$ for all real $t > 2 \log_2 n$. This result is particularly useful for graphs with few vertices but many double edges and loops [71].

Let $F(G; t) = f_\nu t^\nu + \ldots + f_1 t + f_0$. The coefficients of the flow polynomial have the following properties:

- f_0, \ldots, f_ν are integers.
- $f_\nu = 1$.
- Computing f_0, \ldots, f_ν is \#P-hard, even for bipartite planar graphs [30].
- Dong and Koh [72] have showed that for $0 \leq i \leq \nu$, $|f_i|$ is bounded above by the coefficient of t^i in the expansion of a fixed polynomial of degree ν.

The degree ν of the flow polynomial has several interesting properties as well. Let G be a graph with m edges, n vertices, and k components; then,

- The degree ν of $F(G; t)$ is equal to $m - n + k$. This quantity is called the cyclomatic number of G, written $\nu(G)$.
- The cyclomatic number is equal to dimension of the cycle space of G — the set of all even subgraphs of G. There are many other connections between integer flows and the cycle space of G, especially involving cycle covers; Zhang’s monograph [41] is dedicated to this subject.
- A control flow graph is a directed graph representation of the different decision paths that can be taken in all possible executions of a computer program (cf. [24]). McCabe [25] introduced the cyclomatic complexity number of a program as a measure of a program’s complexity; this number is the cyclomatic
of the corresponding control flow graph. It is interpreted as the amount of decision logic in a program and a high cyclomatic complexity number correlates with a high error rate of the program.

Finally, the flow polynomial contains information about the edge-connectivity of the graph. Below are some results about the existence of flows under given conditions. Recall that a graph has a nowhere-zero t-flow if and only if it has a nowhere-zero \mathbb{Z}_t-flow if and only if $F(G; t) > 0$; thus, the following results can also be stated in terms of the flow polynomial; for example, the first item below can be interpreted as “If $F(G; 3) = 0$, then G is not 6-edge-connected”.

- Every 6-edge-connected graph has a nowhere-zero 3-flow [73]. This was an improvement over Thomassen’s result that every 8-edge-connected graph has a nowhere-zero 3-flow [74]. Both of these important results are very recent, and have encouraged further research in the field.

- 4-flow Theorem [75]: Every 4-edge-connected graph has a nowhere-zero 4-flow.
 - 3-flow Conjecture [76]: Every 4-edge-connected graph has a nowhere-zero 3-flow.
 - A 3-regular graph admits a nowhere-zero 3-flow if and only if it is bipartite [75].

3.2.4 Computation

Just as the chromatic polynomial can be computed for general graphs using the deletion-contraction and addition-contraction formulas, so too can the flow polynomial be computed using the equations in Lemma 3.1 recursively. The computational analysis of such an algorithm is analogous to the one given in the previous section for the chromatic polynomial.
Furthermore, if a graph G has $k > 1$ components, the following identity allows the flow polynomial of each component to be found separately:

If $G = G_1 \cup G_2$ and $G_1 \cap G_2 = \emptyset$, then $F(G) = F(G_1)F(G_2)$. \hfill (3.15)

In fact, since flow is measured over edges and not vertices, this claim can be strengthened to biconnected components:

If $G = G_1 \cup G_2$ and $G_1 \cap G_2 = \{v\}$, then $F(G) = F(G_1)F(G_2)$. \hfill (3.16)

See [42] for proofs of these identities and [41, 77] for other decomposition formulas.

In addition, it will be shown in the next section that for planar graphs, many of the identities developed for chromatic polynomials can also be used in the computation of flow polynomials.

3.3 Connections between chromatic and flow polynomials

The chromatic and flow polynomials are closely connected, especially in planar graphs. Intuitively, in planar graphs vertex coloring is equivalent to face-coloring, and face-coloring is generalized by nowhere-zero flows. Thus, it can be expected that the chromatic and flow polynomials are very similar in planar graphs. Indeed, the following result by Jaeger [78] confirms this intuition:

If G is planar, then $F(G) = \frac{1}{t} P(G^*).$ \hfill (3.17)

Thus, many of the identities developed for chromatic polynomials can also be used in the computation of flow polynomials, as the flow polynomial can be easily obtained from the chromatic polynomial in planar graphs.
The duality relation of chromatic and flow polynomials will be used in the next two chapters to compute the flow polynomials of outerplanar graphs and generalized wheel graphs from the chromatic polynomials of their duals. At this point, a short discussion on the generalized vertex join operation is warranted.

Remark 3.2 Let $G = (V, E)$ be any graph, S be a multiset over V, and S' be the underlying set of S. Recall that a generalized vertex join of G is obtained by joining each vertex in S to a new vertex v^*. By equation 3.7, $P(G_S) = P(G_{S'})$. Thus, when computing the chromatic polynomial of G_S, we can assume without loss of generality that the multiplicity of every element in S is 1. The reason the definition of a generalized vertex join allows multisets instead of sets of vertices is because allowing certain multiple edges in a class of graphs corresponds to a larger class of dual graphs. In turn, this can lead to broader dual results about flow polynomials.

For instance, in the next chapter, I compute the chromatic polynomials of generalized vertex joins of trees. I show in Chapter 5 that the duals of these graphs are outerplanar graphs, where the added vertex v^* is the one corresponding to the outer face. Allowing multiple edges between v^* and each vertex of the tree means the family of duals includes all outerplanar graphs, instead of ones for which at most one edge from each bounded face borders the outer face. Thus, I am able to state a broader result about flow polynomials. A similar principle is used in Section 5.2 with the flow polynomials of generalized vertex join cycles. □

Finally, as mentioned earlier, both the chromatic and flow polynomials are special cases of the two-variable Tutte polynomial $T(G; x, y)$, which contains a great deal of information about the graph and has many far-reaching connections. A detailed study of the Tutte polynomial is outside the scope of this thesis, but it is worth noting
the relation of the Tutte polynomial to the chromatic and flow polynomials.

\[
P(G; t) = (-1)^{n-k} t^k T(G; 1-t, 0) = \sum_{S \subseteq E} (-1)^{|S|} t^{\kappa(G:S)}
\] \hspace{1cm} (3.18)

\[
F(G; t) = (-1)^{m-n+k} T(G; 0, 1-t) = (-1)^m \sum_{S \subseteq E} (-1)^{|S|} t^{\nu(G:S)}
\] \hspace{1cm} (3.19)

Here, \(\kappa(G : S) \) is the number of connected components in the spanning graph \(G : S \), and \(\nu(G : S) \) is the cyclomatic number of \(G : S \). These closed formulas are alternate definitions for the chromatic and flow polynomials of any graph. However, the summation in these closed formulas is over an exponentially large set, since \(|\{S : S \subseteq E\}| = O(2^{n^2})\). Thus, these closed formulas cannot be efficiently used in practice to compute chromatic and flow polynomials. Finally, the following identity of Kook, Reiner, and Stanton \[79\] expresses the Tutte polynomial in terms of the chromatic and flow polynomials of its minors:

\[
T(G; x, y) = \sum_{S \subseteq E} T(G/S; x, 0) T(G : S; 0, y).
\] \hspace{1cm} (3.20)

Below is a summary of the main characteristics of chromatic and flow polynomials discussed in the previous sections. Part of this table is adapted from \[80\].

<table>
<thead>
<tr>
<th>Counts</th>
<th>Chromatic polynomial</th>
<th>Flow polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree</td>
<td>(</td>
<td>V</td>
</tr>
<tr>
<td>Zero</td>
<td>loop (\implies P(G) = 0)</td>
<td>bridge (\implies F(G) = 0)</td>
</tr>
<tr>
<td>Unity</td>
<td>(</td>
<td>V</td>
</tr>
<tr>
<td>Reduction</td>
<td>(P(G) = P(G - e) - P(G/e))</td>
<td>(F(G) = F(G/e) - F(G - e))</td>
</tr>
<tr>
<td>Equivalence</td>
<td>small transformation</td>
<td>homeomorphism</td>
</tr>
<tr>
<td>Closed form</td>
<td>(\sum_{S \subseteq E} (-1)^{</td>
<td>S</td>
</tr>
</tbody>
</table>
Chapter 4

New results on chromatic polynomials

In this chapter, I introduce a low-order polynomial time algorithm for computing the chromatic polynomials of generalized vertex joins of trees, and closed formulas for the chromatic polynomials of generalized vertex joins of cycles and cliques. In the next chapter, I will use the results obtained here together with graph duality and equation 3.17 to compute the flow polynomials of outerplanar graphs and generalized vertex joins of cycles. In Chapter 6, these results are computationally compared against a general-purpose solver.

4.1 Generalized vertex join trees

Let $T = (V, E)$ be a tree with $|V| = n$, S be a multiset over V, and let T_S be the generalized vertex join of T using S. See Figure 4.1 for an illustration. For short, T_S will be called a \textit{generalized vertex join tree}. In this section, I present an efficient algorithm to compute $P(T_S)$, the chromatic polynomial of a generalized vertex join tree.

First, by Remark 3.2, $P(T_S) = P(T_{S'})$ where S' is the underlying set of S; however, to simplify notation, we will simply assume that the multiplicity of every element in S is 1 when computing $P(T_S)$. This restriction will be lifted when computing flow polynomials of outerplanar graphs in the next chapter.

Two special cases of T_S occur when $|S| = 0$ and when $|S| = 1$. In the first case,
Figure 4.1: Forming a generalized vertex join tree T_S from a given tree T and a subset of its nodes S.

T_S consists of a tree on n vertices and an isolated vertex. Thus, by equations 3.4 and 3.10, $P(T_S) = t^2(t - 1)^{n-1}$. In the second case, T_S is a tree on $n + 1$ vertices, so by equation 3.10, $P(T_S) = t(t - 1)^n$. Thus, from now on, we will assume that $|S| \geq 2$.

Next, suppose there are b bridges in T_S, and let B be the set of vertices in T_S which are an endpoint of some bridge, but do not belong to a cycle. Note that since $|S| \geq 2$, there is at least one cycle, so not all edges of T_S are bridges. Let $T'_S = T_S - B$. Using (3.3), each bridge with a degree 1 endpoint can be separated from the rest of the graph, adding a factor of $\frac{P(K_2)}{P(K_1)} = \frac{t(t-1)}{t}$ to the chromatic polynomial of the resulting graph; once every bridge in T_S is removed, the resulting graph is T'_S and

$$P(T_S) = P(T'_S)(t - 1)^b.$$ (4.1)

See Figure 4.2 for an illustration of T'_S. In this graph, we define the indicator function $f : V(T'_S) \setminus \{v^*\} \to \{0, 1\}$ by $f(v) = 1$ if $v \in S$, $f(v) = 0$ if $v \notin S$.

We now introduce some definitions which are analogous to standard notions in graph theory and are slightly modified to suit our purposes. For simplicity, we will refer to these terms by the names of their standard analogues (cf. [81]).
Figure 4.2: Removing the bridges of T_S to form T'_S.

First, select an arbitrary vertex $r \neq v^*$ in T'_S called a root. The level of a node in T'_S is given by the function $L : V(T'_S) \setminus \{v^*\} \to \mathbb{N} \cup \{0\}$ by $L(v) = d(r, v)$, where $d(r, v)$ is the length of the shortest path between r and v in $T'_S - v^*$. Denote by $L_i(T'_S)$ the set of nodes at the ith level; more precisely, $L_i(T'_S) = \{v : L(v) = i\}$. Let \mathcal{L} be the height of T'_S, i.e., $\mathcal{L} = \max\{L(v) : v \in V(T'_S) \setminus \{v^*\}\}$.

If $L(v) = i$, w is a child of v if w is adjacent to v and $L(w) = i + 1$. Vertex z is a descendant of v if $z = v^*$ or if there is a path v, p_1, \ldots, p_r, z such that $L(v) < L(p_1) < \ldots < L(p_r) < L(z)$. The set of all descendants of v is denoted $D(v)$. See Figure 4.3 for an illustration of the levels in T'_S.

Finally, we will specify some subgraphs of T'_S to be used in the sequel. The purpose of these subgraphs is to facilitate an expression of $P(T'_S)$ in terms of the chromatic polynomials of smaller generalized vertex join trees, which in turn facilitates a recursive computation of $P(T'_S)$. For any $a \in V(T'_S) \setminus \{v^*\}$, we define:

- $T_a = T'_S[a \cup D(a)]$; this is a generalized vertex join tree with root a, which includes all of the descendants of a in T_S.
• \(\tilde{T}_c = T_S^\prime \{a\} \cup \{c\} \cup D(c) \); this is a generalized vertex join tree with root \(a \), which includes only the descendants of \(c \) in \(T_S \).

• \(H_a = T_a/av^* \); this is essentially a generalized vertex join of a forest with root \(a \): since \(T_a - v^* \) is a tree, \(T_a - v^* - a \) is a forest, and \(a \) is connected to some subset of the other vertices.

• \(\tilde{H}_c = \tilde{T}_c/av^* \), this is one ‘branch’ of the generalized vertex join forest \(H_a \), and is also a generalized vertex join tree with root \(c \), which includes all of the descendants of \(c \) in \(T_S^\prime \) (possibly with an extra connection between \(c \) and \(v^* \)).

See Figure 4.4 for an illustration of these subgraphs.

With this in mind, let \(a \neq v^* \) be a vertex with children \(c_1, \ldots, c_k \), and suppose we know \(P(T_{c_i}) \) and \(P(H_{c_i}) \) for \(1 \leq i \leq k \). Let \(I = \{i : f(c_i) = 1\} \) and \(Z = \{i : f(c_i) = 0\} \) be the sets of children of \(a \) which are connected and not connected to \(v^* \), respectively. Then, we can compute \(P(H_a) \) as follows.
Figure 4.4: From left to right: T_{a_1}; \tilde{T}_{a_1}; H_{a_2}; \tilde{H}_{a_2}, for two vertices a_1 and a_2 of the graph T'_S shown in Figure 4.3, right.

$$
P(H_a) = \frac{1}{t^{k-1}} \prod_{i=1}^{k} P(\tilde{H}_{c_i})
= \frac{1}{t^{k-1}} \prod_{i \in I} P(\tilde{H}_{c_i}) \prod_{i \in Z} P(\tilde{H}_{c_i})
= \frac{1}{t^{k-1}} \prod_{i \in I} P(T_{c_i}) \prod_{i \in Z} (P(T_{c_i}) - P(H_{c_i}))
$$

Here, the first equality follows from (3.3) and the definition of \tilde{H}_{c_i}, since $\tilde{H}_{c_1}, \ldots, \tilde{H}_{c_k}$ all have only the vertex a in common. The second equality is obtained by partitioning $\{1, \ldots, k\}$ into I and Z. Finally, if a was originally connected to v^*, then $\tilde{H}_{c_i} = T_{c_i}$; otherwise, the deletion-contraction formula (3.2) yields $P(\tilde{H}_{c_i}) = P(\tilde{H}_{c_i} - ac) - P(\tilde{H}_{c_i}/ac) = P(T_{c_i}) - P(H_{c_i})$, and the third equality follows.

Next, we compute $P(T_a)$ by considering two cases: a is either in S or not. Let $P_1(T_a) = P(T_a)$, where $f(a) = 1$, and $P_0(T_a) = P(T_a)$, where $f(a) = 0$. Clearly, $P(T_a) = f(a)P_1(T_a) + (1 - f(a))P_0(T_a)$. We now find $P_1(T_a)$ and $P_0(T_a)$ separately as follows.
\[P_1(T_a) = \frac{1}{(t(t-1))^{k-1}} \prod_{i=1}^{k} P(\tilde{T}_{c_i}) + \prod_{i \in I} P(\tilde{T}_{c_i}) + \prod_{Z} P(\tilde{T}_{c_i}) \]

\[= \frac{1}{(t(t-1))^{k-1}} \prod_{I} P(\tilde{T}_{c_i}) \prod_{Z} P(\tilde{T}_{c_i}) \]

\[= \prod_{I} P(T_{c_i}) (t-2) \prod_{Z} \left(P(\tilde{T}_{c_i} + c_i v^*) + P(\tilde{T}_{c_i}/c_i v^*) \right) \]

\[= \prod_{I} P(T_{c_i}) (t-2) \prod_{Z} \left(P(T_{c_i} + c_i v^*)(t-2) + P(H_{c_i})(t-1) \right) \]

\[= \frac{1}{(t(t-1))^{k-1}} \prod_{I} P(T_{c_i})(t-2) \prod_{Z} \left((t-2)P(T_{c_i}) + P(H_{c_i}) \right) \]

\[P_0(T_a) = P(T_a + av^*) + P(T_a/av^*) = P_1(T_a) + P(H_a) \]

In the computation of \(P_1(T_a) \), the first equality follows from (3.3) and the definition of \(\tilde{T}_{c_i} \), since \(\tilde{T}_{c_1}, \ldots, \tilde{T}_{c_k} \) all have the edge \(av^* \) in common, which is a clique of size 2. The second equality is obtained by partitioning \(\{1, \ldots, k\} \) into \(I \) and \(Z \). In the third equality, the vertices \(a, c_i, \) and \(v^* \) form a clique of size 3 in \(\tilde{T}_{c_i} \) for \(\{c_i : i \in I\} \); this clique is connected to the rest of \(\tilde{T}_{c_i} \) by the edge \(c_i v^* \), which is a clique of size 2. Moreover, the rest of the graph is precisely \(T_{c_i} \); thus, formula 3.3 is applied to obtain \(P(\tilde{T}_{c_i}) = \frac{P(T_{c_i}) P(K_3)}{P(K_2)} = P(T_{c_i})(t-2) \). For the vertices \(\{c_i : i \in Z\} \), the addition-contraction formula (3.1) is applied to add the edge \(c_i v^* \) to get \(P(\tilde{T}_{c_i}) = P(\tilde{T}_{c_i} + c_i v^*) + P(\tilde{T}_{c_i}/c_i v^*) \). In the fourth equality, the graph \(\tilde{T}_{c_i} + c_i v^* \) for \(\{c_i : i \in Z\} \) is the same as the graph \(\tilde{T}_{c_i} \) for \(\{c_i : i \in I\} \); thus, a similar argument as before can be used to show that \(P(\tilde{T}_{c_i} + c_i v^*) = P(T_{c_i} + c_i v^*)(t-2) \) (by separating a clique of size 3 using formula 3.3). Moreover, \(\tilde{T}_{c_i}/c_i v^* \) is precisely \(H_{c_i} \) with the additional edge \(ac_i \). This edge can be separated from \(H_{c_i} \) using (3.3): \(P(\tilde{T}_{c_i}/c_i v^*) = \frac{P(H_{c_i}) P(K_2)}{P(K_1)} = P(H_{c_i})(t-1) \). The fifth
equality follows from the deletion-contraction formula (3.2) applied to the edge $c_i v^*$, so that $P(T_{c_i} + c_i v^*) = P(T_{c_i} + c_i v^* - c_i v^*) - P((T_{c_i} + c_i v^*)/c_i v^*) = P(T_{c_i}) - P(H_{c_i})$. Finally, the last equality is obtained by simple algebraic manipulations.

In the computation of $P_0(T_a)$, the first equality follows from the addition contraction formula (3.1), as the edge $a v^*$ is added. Then, by the definitions of P_1 and H_a, $P(T_a + a v^*) = P_1(T_a)$ and $P(T_a/a v^*) = P(H_a)$ and the second equality follows.

Thus, I have shown how to express $P(T_a)$ and $P(H_a)$ in terms of $P(T_{c_i})$ and $P(H_{c_i})$, $1 \leq i \leq k$. Using these identities, I propose the following algorithm for finding the chromatic polynomial of a generalized vertex join tree T_S.

\begin{algorithm}
1. Find and remove the bridges of T_S to acquire T'_S

2. For $i = \mathcal{L}$ to 0

 Compute $P(T_a)$ and $P(H_a)$ for each $a \in L_i(T'_S)$

3. Compute $P(T_S)$ using (4.1)
\end{algorithm}

\textbf{Theorem 4.1}

Algorithm 1 finds the correct chromatic polynomial of a generalized vertex join tree T_S using $\mathcal{O}(n^2 \log n)$ time and $\mathcal{O}(n)$ space.

\textbf{Proof 4.1} It was shown in (4.1) and the preceding discussion that by finding the bridges of T_S and the chromatic polynomial of T'_S, $P(T_S)$ can be easily computed as well. Thus, we only need to verify that Step 2 of the algorithm correctly computes $P(T'_S)$.
It was already established that for every \(a \in V(T'_S) \setminus \{v^*\} \), \(P(T_a) \) and \(P(H_a) \) can be expressed in terms of \(P(T_c) \) and \(P(H_c) \) for every child \(c \) of \(a \). Note that this expression is trivially satisfied for vertices which have no children. By construction, vertices in \(L_i(T'_S) \) have no children, so \(P(T_a) \) and \(P(H_a) \) can be found immediately for any vertex \(a \in L_i(T'_S) \). For \(L > i \geq 0 \), a vertex \(a \) in \(L_i(T'_S) \) either has no children, or has all of its children in \(L_{i+1}(T'_S) \). In either case, \(P(T_c) \) and \(P(H_c) \) are known for every child \(c \) of \(a \) — either vacuously or inductively. Thus, \(P(T_a) \) and \(P(H_a) \) can also be computed using the formulas derived earlier in this section. Since by construction, \(P(T'_S) = P(T_r) \) and \(L_0(T'_S) = \{r\} \), Algorithm 1 indeed finds the correct chromatic polynomial of \(T_S \).

To verify the time-complexity of the algorithm, let \(|V(T)| = n \). The bridges in \(T_S \) and the graph \(T'_S \) can be found in \(\mathcal{O}(n^2) \) time\(^*\) by successively finding and deleting degree 1 vertices of \(T_S \). Also, the level and list of children of each vertex of \(T'_S - v^* \) can be found with \(\mathcal{O}(n) \) time by a breadth-first scan.

Each evaluation of \(P(T_a) \) and \(P(H_a) \) requires the multiplication of \(\mathcal{O}(a_k) \) polynomials, where \(a_k \) is the number of children of \(a \). Since we evaluate \(P(T_a) \) and \(P(H_a) \) for \(\mathcal{O}(n) \) vertices, and the total number of children in \(T'_S \) is \(\mathcal{O}(n) \), the evaluation of \(P(T'_S) \) requires the multiplication of \(\mathcal{O}(n) \) polynomials. Each of these polynomials has degree at most \(\mathcal{O}(n) \), since \(P(T'_S) \) has degree \(\mathcal{O}(n) \). The time-complexity of multiplying two polynomials of degree \(n \), using a Fast Fourier Transform, is \(\mathcal{O}(n \log n) \), so the total time complexity of Algorithm 1 is \(\mathcal{O}(n^2 \log n) \).

Finally, to verify the space-complexity, note that the total number of vertices in the set of graphs \(\{T_a, H_a : a \in L_i(T'_S)\} \) is at most \(\mathcal{O}(n) \). Recall that the chromatic

\(^*\)By the restriction that every element in \(S \) has multiplicity 1, \(|E(T_S)| = \mathcal{O}(n) \). Thus, using the algorithm of Tarjan [81], all bridges of \(T_S \) can actually be found in \(\mathcal{O}(n) \) time.
polynomial of a graph with \(k \) vertices has degree \(k \); hence, the sum of the degrees of the set of polynomials \(\{P(T_a), P(H_a) : a \in L_i(T_S')\} \) is \(O(n) \). A set of polynomials whose degrees add up to \(n \) can be stored with \(O(n) \) space. Thus, since we only have to store the polynomials \(P(T_a) \) and \(P(H_a) \) for \(a \) in one level at a time, the total space-complexity of Algorithm 1 is \(O(n) \). □

4.2 Generalized vertex join cycles

Let \(C = (V, E) \) be a cycle, \(S \) be a multiset over \(V \) and let \(C_S \) be the generalized vertex join of \(C \) using \(S \). For short, \(C_S \) will be called a generalized vertex join cycle. In the literature, graphs of a similar form have also been called “generalized wheel” graphs, and have been investigated by other approaches and in different contexts (cf. [82, 80, 40]). In the remainder of this section and in Section 5.2, I will present closed formulas for \(P(C_S) \) and \(F(C_S) \) in a unified framework.

Suppose the generalized vertex join cycle \(C_S \) is equipped with a “wheel” plane embedding obtained by placing \(v^* \) in the bounded face of a plane drawing of \(C \), and drawing edges from the vertices in \(S \) to \(v^* \) so that the resulting graph remains plane. Since cycles have a unique plane embedding, the “wheel” embedding of \(C_S \) is unique up to topological conjugacy. Moreover, since chromatic and flow polynomials are independent of embedding, this embedding can be considered without loss of generality. The vertices along the outer face of \(C_S \) will be labeled in clockwise order as \(v_1, \ldots, v_n \); see Figure 4.5 for an illustration. The edges incident to \(v^* \) will be called spokes.

If \(S = \emptyset \), then by equation 3.11, \(P(C_S) = tP(C_n) = t((t - 1)^n + (-1)^n(t - 1)) \); thus, suppose hereafter that \(S \neq \emptyset \) and consider \(S' \), the underlying set of \(S \). By (3.7), \(P(C_S) = P(C_{S'}) \). Without loss of generality, suppose that \(S' = \{v_{a_1}, \ldots, v_{a_s}\} \).
where $1 = a_1 < \ldots < a_s$. Also, let e_1, \ldots, e_s be the spokes of $C_{S'}$, with $e_i = v_{a_i}v^*$, and F_1, \ldots, F_s be the faces of $C_{S'}$, with F_i clockwise of edge e_i; see Figure 4.6 for an illustration.

Let f_i be the size of face F_i, i.e., the number of edges along the boundary of F_i, with cut edges being counted twice. It is easy to see that $f_i = 2 + a_{i+1} - a_i$ for $1 \leq i \leq s - 1$ and $f_s = 2 + (n + 1) - a_s$.

With this in mind, some auxiliary graphs will be introduced in order to express $P(C_S)$ as a combination of the chromatic polynomials of simpler graphs. For $1 \leq i \leq$
s, define \(C_{i}^{s'} = C_{s'} - \{ e_{i}, \ldots, e_{s} \} \) and for notational simplicity, \(C_{s'+1}^{s'} = C_{s'} \). Then, applying the deletion-contraction formula (3.2) consecutively on the edges \(e_{s}, \ldots, e_{1} \) yields the following identity; see Figure 4.7 for an illustration of this decomposition.

\[
P(C_s) = P(C_s - e_s) - P(C_s / e_s) \\
= P(C_s^s) - P(C_s^{s+1} / e_s) \\
= P(C_s^{s-1}) - P(C_s^s / e_{s-1}) - P(C_s^{s+1} / e_s) \\
\vdots \\
= P(C_1^s) - P(C_2^s / e_1) - \ldots - P(C_s^s / e_{s-1}) - P(C_s^{s+1} / e_s) \\
= tP(C_n) - \sum_{i=1}^{s} P(C_i^{s+1} / e_i).
\]

Thus, \(P(C_{s'}) \) is decomposed into the chromatic polynomials of the collection of graphs \(\{ C_{i}^{s'+1} / e_i \}_{i=1}^{s} \). The faces of \(C_{s'} \) can be regarded as cycles of sizes \(f_1, \ldots, f_s \); thus, the graphs \(\{ C_{s'}^{i+1} / e_i \}_{i=1}^{s} \) can be further decomposed into the cycles making up their bounded faces. Let \(U_{i} \) be the face of \(C_{s'}^{i+1} \) corresponding to the union of \(F_i, \ldots, F_s \) after edges \(e_{i+1}, \ldots, e_s \) are deleted. Then, the faces of \(C_{s'}^{i+1} \) have sizes \(f_1, \ldots, f_{i-1}, u_i, \ldots, u_s \).
where \(u_i \) is the size of \(U_i \); more precisely,

\[
\begin{align*}
\quad u_i & = 2 + (f_i - 2) + \ldots + (f_s - 2) \\
& = 2 + (-2)(s - i + 1) + \sum_{j=i}^{s} f_j \\
& = 2(i - s) + \sum_{j=i}^{s} f_j.
\end{align*}
\]

Let \(J_i \) be the multiset of sizes of faces of \(C_{S_i} + 1 \), i.e., \(J_1 = \{ n \} \) and for \(2 \leq i \leq s \),

\[
J_i = \{ f_1, \ldots, f_{i-2}, f_{i-1} - 1, u_i - 1 \}.
\]

Then, starting from a face of \(C_{S_i} + 1 \) which borders the contracted edge, and using the fact that this face shares just one edge (which is a clique of size 2) with the rest of the graph, formula 3.3 can be successively applied to decompose \(C_{S_i} + 1 \) into cycles with sizes in \(J_i \) in order to evaluate \(P(C_{S_i} + 1) \). In particular, \(P(C_{S_i} + 1) = P(K_2)^{1-i} \prod_{j \in J_i} P(C_j) \). Thus, by (4.2) we have

\[
\begin{align*}
P(C_S) & = P(C_{S'}) = tP(C_n) - \sum_{i=1}^{s} \prod_{j \in J_i} \frac{P(C_j)}{P(K_2)^{i-1}} \\
& = t((t - 1)^n + (-1)^n(t - 1)) - \sum_{i=1}^{s} \prod_{j \in J_i} \frac{((t - 1)^j + (-1)^j(t - 1))}{(t(t - 1))^{i-1}}.
\end{align*}
\]

Note that formula (4.5) depends only on the sequence of face-sizes of \(C_{S'} \) and hence only on \(S \).

4.3 Generalized vertex join cliques

Let \(K = (V, E) \) be a complete graph, \(S \) be a multiset over \(V \) and let \(K_S \) be the generalized vertex join of \(K \) using \(S \). For short, we will call \(K_S \) a generalized vertex join clique. Let \(|V| = n \), \(S' \) be the underlying set of \(S \), and \(|S'| = s \). Then,
\[P(K_S) = P(K_{S'}) = \frac{P(K_n)P(K_{s+1})}{P(K_s)} = (t - s) \prod_{i=0}^{n-1} (t - i), \]

where the first equality follows from equation 3.7, the second follows from (3.3) — since \(K_{S'}[S' \cup \{v^*\}] = K_{s+1} \), and the third follows from equation 3.9.

Since in general complete graphs are not planar, graph duality cannot be applied to generalized vertex join cliques to obtain a result about flow polynomials. However, it would be interesting to investigate the flow polynomials of generalized vertex join cliques directly. This will likely be a challenging task: Tutte [8] derived a formula and a generating function for the flow polynomial of a complete graph which is quite complicated; adding a vertex with arbitrary connections to the others will complicate this formula even more. Such investigations will be the focus of future work.
Chapter 5

New results on flow polynomials

In this chapter, I show that the family of outerplanar graphs is dual to the family of generalized vertex join trees. Thus, Algorithm 1 from Chapter 4 can be adapted to compute the flow polynomials of outerplanar graphs. I also show that the family of generalized vertex join cycles is self-dual, so formula 4.5 from Chapter 4 can be transformed into a closed formula for computing the flow polynomials of generalized vertex join cycles.

5.1 Outerplanar graphs

Let B be a biconnected outerplane graph with bounded faces F_1, \ldots, F_s and outer face F_*. The weak dual of B is a tree $T = (V, E)$, where vertex $v_i \in T$ corresponds to face $F_i \in B$ (see [83] for more details). Suppose F_i shares f_i edges with F_*, and let v^* be the vertex in the dual of B corresponding to F_*. Then, the dual of B is the generalized vertex join tree T_S, where S is the multiset over V in which v_i appears f_i times.

With this in mind, the flow polynomial of an arbitrary outerplanar graph G can be computed by applying Algorithm 1 to the dual of each biconnected component of G. This procedure is formally outlined in Algorithm 2 below.
Algorithm 2

1. Find the biconnected components G_1, \ldots, G_k of G

2. Find the dual graphs G_1^*, \ldots, G_k^*

3. Compute $P(G_1^*), \ldots, P(G_k^*)$ using Algorithm 1

4. Compute $F(G)$ by
 \[F(G) = \frac{1}{t^k} \prod_{i=1}^{k} P(G_i^*) \]

Theorem 5.1

Algorithm 2 finds the correct flow polynomial of an outerplanar graph G using $O(n^2 \log n)$ time and $O(n)$ space.

Proof 5.1 Consider the biconnected components of G as separate graphs, i.e., $G_i = G[V_i]$ where V_i is a maximal subset of $V(G)$ such that $G[V_i]$ is biconnected. Then, each G_i is a biconnected outerplanar graph and by (3.16) and (3.17),

\[F(G) = \prod_{i=1}^{k} F(G_i) = \frac{1}{t^k} \prod_{i=1}^{k} P(G_i^*). \]

Since the dual of a biconnected outerplanar graph is a generalized vertex join tree, Algorithm 1 can be used to compute $P(G_i^*)$ for $1 \leq i \leq k$, so Algorithm 2 indeed finds the correct flow polynomial of G.

To verify the time- and space-complexity, let $|V(G)| = n$ and $|V(G_i)| = n_i$; clearly $n_1 + \ldots + n_k = O(n)$. By the algorithms of Hopcroft and Tarjan [84, 85], the biconnected components G_1, \ldots, G_k of G can be found, embedded in the plane, and have their dual graphs G_1^*, \ldots, G_k^* computed, with $O(n)$ time and space. Finally, note that Algorithm 1 runs with $O(n_i^2 \log n_i)$ time on the generalized vertex join tree
and that
\[k \sum_{i=1}^{k} (n_i^2 \log n_i) \leq \left(\sum_{i=1}^{k} n_i \right)^2 \log \left(\sum_{i=1}^{k} n_i \right) = O(n^2 \log n). \]
Hence, Algorithm 1 can be applied to find \(P(G_1^*), \ldots, P(G_k^*) \) in \(O(n^2 \log n) \) time and \(O(n) \) space. Thus, the total time complexity of Algorithm 2 is \(O(n^2 \log n) \) and the total space complexity is \(O(n) \). \(\square \)

I conclude this section with a characterization of the duality between outerplanar graphs and generalized vertex join trees.

Proposition 5.1

Let \(G \) be a simple biconnected outerplane graph and \(T_S \) be its dual generalized vertex join tree. \(G \) is simple if and only if every vertex of \(T_S \) has degree at least 3.

Proof 5.2 Suppose \(G \) is a simple biconnected outerplane graph. \(G \) has no parallel edges or loops, so \(G \) has no faces of size 1 or 2. Thus, each face of \(G \) is incident to at least 3 edges, so each vertex of \(T_S \) has degree at least 3.

Now, suppose \(T_S \) is a generalized vertex join tree, and that every vertex of \(T_S \) has degree at least 3. We will show that \(T_S \) is the dual of a simple biconnected outerplanar graph by induction on the number of vertices of \(T_S \). If \(T_S \) has two vertices \(v \) and \(v^* \), all the edges in \(T_S \) must join \(v \) to \(v^* \) since by construction, \(T_S \) can have no loops. Thus, \(T_S \) is the dual of some cycle of size at least 3 (which is simple, biconnected, and outerplanar). Next, let \(T_S \) be a generalized vertex join tree on \(k+1 \) vertices with minimum vertex degree at least 3, and let \(v \) be a leaf of \(T \). Since \(T \) is a tree, \(v \) has a unique neighbor \(u \) in \(T \) with exactly one edge between \(u \) and \(v \). Moreover, by assumption, \(v \) must be connected to \(v^* \) by \(\ell \geq 2 \) edges and \(u \) must be incident to at least two edges other than \(uv \). Thus, if we delete \(v \) from \(T_S \) and add an edge from \(u \) to \(v^* \), we obtain a generalized vertex join tree on \(k \) vertices, which by induction is the
dual of some simple biconnected outerplanar graph G. In this graph, u corresponds to some bounded face F and v^* corresponds to the outer face F_*. Since we added an edge uv^*, F shares at least one edge e with F_*. Now, if we glue a cycle of size $\ell + 1$ to e, we obtain a simple biconnected outerplanar graph whose dual is T_S. □

5.2 Generalized wheel graphs

Let C_S be a generalized vertex join cycle. If $S = \emptyset$, then $F(G) = t - 1$; thus assume hereafter that $S \neq \emptyset$. To compute the flow polynomial of C_S, note that by (3.17),

$$F(C_S) = \frac{1}{t} P(C^*_S),$$

where C^*_S is the dual of C_S. But C^*_S is again a generalized vertex join cycle. To see why, note that each bounded face of C_S is incident to two spokes — hence the weak dual of C_S is a cycle; in addition, each bounded face of C_S may share any number of edges with the outer face, making the vertex of C^*_S corresponding to the outer face of C_S a generalized vertex join. See Figure 5.1 for an illustration.

![Figure 5.1: Left: C_S and its weak dual. Right: C^*_S, the dual of C_S, is also a generalized vertex join cycle.](image_url)

Let $\tilde{s} = |S|$ and $s = |S'|$ where S' is the underlying set of S. Let \tilde{C} be the weak dual of C_S; \tilde{C} is a cycle with \tilde{s} vertices. Let \tilde{S} be the multiset of vertices of \tilde{C} such that $C^*_S = \tilde{C}_S$ and let \tilde{S}' be the underlying set of \tilde{S}. Then,
\[F(C_S) = \frac{1}{t} P(C_S^*) = \frac{1}{t} P(\tilde{C}_S) = \frac{1}{t} P(\tilde{C}_{\tilde{S}}). \]

(5.1)

It is easy to see that \(C_S' \) and \(\tilde{C}_{\tilde{S}}' \) have the same number of faces. Moreover, if \(\tilde{f}_1, \ldots, \tilde{f}_s \) are the sizes of the faces of \(\tilde{C}_{\tilde{S}} \) in clockwise order, then \(\tilde{f}_i \) equals the multiplicity of \(v_{a_i} \) in \(S \) plus 2. Thus, to find \(F(C_S) \), we simply plug in the sequence of face-sizes of \(C_S^* \) into (4.3), (4.4), and (4.5) as follows:

\[F(C_S) = (t - 1)^{\tilde{s}} + (-1)^{\tilde{s}}(t - 1) - \frac{1}{t} \sum_{i=1}^{s} \prod_{j \in \tilde{J}_i} ((t - 1)^j + (-1)^j(t - 1)) \frac{\prod_{j \in \tilde{J}_i} ((t - 1)^j + (-1)^j(t - 1))}{(t(t - 1))^{i-1}}, \]

where \(\tilde{J}_1 = \{ \tilde{s} \} \) and \(\tilde{J}_i = \{ \tilde{f}_1, \ldots, \tilde{f}_{i-2}, \tilde{f}_{i-1} - 1, 2(i - s) + \sum_{j=1}^{i-1} \tilde{f}_j - 1 \} \) for \(2 \leq i \leq s \). Note that this closed formula again depends only on \(S \), since the face-sizes of \(C_S^* \) are determined from \(S \).
Chapter 6

Computational results

In this chapter, Algorithm 1 and formulas (4.5) and (4.6) are computationally compared to the general-purpose \texttt{ChromaticPolynomial} function found in Version 10.0 of the computer algebra system Mathematica. The \texttt{ChromaticPolynomial} function is an implementation of the deletion-contraction algorithm for finding the chromatic polynomials of general graphs. The computations described in this chapter were performed on an HP-Pavilion desktop with an \texttt{IntelR CoreTM 2 Quad Q9300 2.50GHz} processor. All coding was done in Mathematica, which has a native ability to multiply and divide polynomials and manipulate graphs. Other than that, no high-level functions were used in the implementation of Algorithm 1 and formulas (4.5) and (4.6).

6.1 Generalized vertex join trees

A test graph T_S was created by first generating a random tree T on n vertices, then adding a new vertex and connecting it to all of the leaves of T plus a random subset of the other vertices of T.

The level of each vertex was found by computing its distance from a randomly chosen root r, and the children of each vertex were identified as the adjacent vertices with a higher level. Finally, the sets I and Z were computed for each vertex by intersecting the set of its children with the set of neighbors of v^*. Then, the polyno-
mials $P(T_a)$ and $P(H_a)$ were computed for each a as described in Section 4.1, with $P(T_r)$ giving $P(T_S)$. The order of the graph n was varied and the corresponding computation time was recorded.

The chromatic polynomials given by Algorithm 1 exactly matched those given by the ChromaticPolynomial function. However, the ChromaticPolynomial function was only able to handle graphs with $n \leq 65$ before running out of memory, and Algorithm 1 was able to handle much larger graphs. In addition, for $n \leq 65$, the computation time of Algorithm 1 was between 0.001 and 0.15 seconds whereas the ChromaticPolynomial function was more than 10 times slower. See Figure 6.1, right, for the run times of Algorithm 1 and Figure 6.1, left, for the run times of the ChromaticPolynomial function on graphs of increasing order.

By inspection, the growth rate in Figure 6.1, left, appears to be exponential, while the growth rate in Figure 6.1, right, appears to be polynomial; this agrees with the theoretical complexities of the two approaches. In addition, Algorithm 1 was used on graphs with up to 500 vertices, and ran relatively quickly; see Figure 6.2. The long-term growth rate of the run-time appears to be polynomial as expected.
6.2 Generalized vertex join cycles

For short, the implementation of formula (4.5) will be called Algorithm 3. A test graph C_S was created by first generating a cycle C with n vertices, then adding a new vertex and connecting it to a random subset of size between $\frac{3n}{10}$ and $\frac{7n}{10}$ of the other vertices of C. The sets J_i were computed as described in (4.4) and the following discussion, and $P(C_S)$ was computed by summing the products of polynomials as described in (4.5). The order of the graph n was varied and the corresponding computation time was recorded.

The polynomials given by Algorithm 3 exactly matched the polynomials given by the ChromaticPolynomial function. However, the ChromaticPolynomial function was only able to handle graphs with $n \leq 60$ before running out of memory, and Algorithm 3 was able to handle much larger graphs. In addition, for $n \leq 60$, the computation time of Algorithm 3 was predominantly less than $\frac{1}{1000}$ seconds (the minimum time interval recorded on the system) whereas the ChromaticPolynomial function ran nearly 100 times slower. See Figure 6.3 for the run times of Algorithm 3 and Figure 6.4 for the run times of the ChromaticPolynomial function on graphs of
increasing order.

Figure 6.3: Computing the chromatic polynomial of a generalized vertex join cycle using the closed formula 4.5 derived in Chapter 4.

Figure 6.4: Computing the chromatic polynomial of a generalized vertex join cycle using the ChromaticPolynomial function of Mathematica. The ChromaticPolynomial function fails to run for \(n > 60 \).

Note the difference in \(n \) when comparing Figures 6.3 and 6.4. By inspection, the growth rate in Figure 6.1 appears to be polynomial, while the growth rate in Figure 6.2 appears to be exponential. Detailed analysis of the growth rates are outside the scope of this study.
6.3 Generalized vertex join cliques

For short, the implementation of formula (4.6) will be called Algorithm 4. A test graph K_S was created by first generating a clique K with n vertices, then adding a new vertex and connecting it to a random subset of the other vertices of K. $P(K_S)$ was computed by multiplying a number of terms as described in (4.6). The order of the graph n was varied and the corresponding computation time was recorded.

The polynomials given by Algorithm 4 exactly matched the polynomials given by the ChromaticPolynomial function. However, the ChromaticPolynomial function was only able to handle graphs with $n \leq 16$ before running out of memory, and Algorithm 4 was able to handle significantly larger graphs. In addition to running out of memory for much smaller graphs, the ChromaticPolynomial function is more than 100 times slower, even for small graphs. See Figure 6.5 for the run times of Algorithm 4 and Figure 6.6 for the run times of the ChromaticPolynomial function on graphs of increasing order.

![Figure 6.5](image)

Figure 6.5: Computing the chromatic polynomial of a generalized vertex join clique using the closed formula 4.6 derived in Chapter 4.

The deletion-contraction algorithm used by Mathematica performs very poorly on dense graphs, as is to be expected. A clear exponential trend in its run time is
Figure 6.6: Computing the chromatic polynomial of a generalized vertex join clique using the ChromaticPolynomial function of Mathematica. The program fails to run for \(n \geq 16 \).

exhibited in Figure 6.6; moreover the function fails for generalized vertex join cliques with more than 16 vertices. On the other hand, Algorithm 4 is much faster, is able to handle graphs with thousands of vertices in less than 5 seconds, and has a polynomial growth rate as can be seen from Figure 6.5.

6.4 Discussion

All three computational experiments reveal that my algorithms were much faster than the ChromaticPolynomial function and able to handle much larger graphs from the appropriate family. This is not surprising, since generality is often achieved at the expense of speed. However, this motivates the inclusion of a preprocessing step in general purpose algorithms: if a general graph is suspected to contain one or more subgraphs whose chromatic polynomials can be found efficiently, it may be worth to locate those subgraphs and modify the deletion-contraction algorithm so that they appear as components in some step of the recursion. This will remove a large part of the recursion tree and may speed up the computation of the chromatic polynomial.
Finally, note that simply having a closed formula for a chromatic polynomial does not mean it can be used efficiently. For instance, recall from Chapter 3 that the chromatic polynomial of any graph $G = (V, E)$ can be computed by the closed formula

$$P(G; t) = \sum_{S \subseteq E} (-1)^{|S|} t^{\kappa(G : S)},$$

where $\kappa(G : S)$ is the number of connected components in the graph (V, S). However, this formula requires, among other things, a summation with an exponential number of terms. In contrast, formulas 4.5 and 4.6 (and Algorithm 1) can be used in polynomial time in practice, as seen from the preceding experiments.
Chapter 7

Conclusion

This thesis gave an overview of chromatic and flow polynomials, and presented new efficient methods to compute these polynomials on specific families of graphs. The presented methods were validated by computational results. In particular, a low-order polynomial time algorithm for computing the chromatic polynomials of generalized vertex join trees was presented; this algorithm was also adapted to find the flow polynomials of outerplanar graphs. In addition, closed formulas were derived for the chromatic polynomials of generalized vertex join cliques, and the chromatic and flow polynomials of generalized vertex join cycles. My experiments showed that computation based on the proposed formulas and algorithms strongly outperforms the general-purpose deletion-contraction algorithm used by Mathematica on the considered families of graphs. The novel theoretical results presented in this thesis appear in [86].

Applications of chromatic and flow polynomials to statistical physics, combinatorics, theoretical computer science, and other branches of graph theory were discussed throughout this thesis. In addition, the chromatic and flow polynomials of a graph count the number of ways to color and assign flow to the graph; their roots, coefficients, derivatives, and values at specific points contain other important information and are of independent interest.

Unfortunately, these graph polynomials are generally difficult to compute; thus, research in this area has focused on exploiting the structure of specific families of
graphs in order to characterize their chromatic and flow polynomials. There are a number of simple graphs whose chromatic polynomials are being sought. Of note is the problem of efficiently finding the chromatic polynomial of an \(m \times n \) grid graph, which is largely still unsolved. Grid graphs may have arbitrarily large treewidth, which renders bounded-treewidth algorithms like the ones discussed in Chapter 3 inapplicable. In the words of Read and Tutte, “that is an easy question to ask, but without a doubt a fiendishly difficult one to answer” [56].

The generalized vertex join operation provides a natural extension to all families of graphs; thus, future work may focus on finding closed formulas for the chromatic polynomials of generalized vertex joins of various families of graphs whose chromatic polynomials are already known, such as star graphs, helm graphs, and sun graphs.

Additionally, the chromatic polynomials of graphs obtained by a sequence of generalized vertex joins may also be of interest. In particular, multiple vertex joins of cliques are a promising start. Of course, one cannot expect too much: any loopless graph on \(n \) vertices can be obtained through a sequence of \(n - 1 \) vertex joins starting from a single vertex, so an efficient formula or algorithm cannot be expected for an arbitrarily long sequence of generalized vertex joins. However, for short enough sequences, useful results may be obtained.

This also motivates preprocessing in general purpose algorithms. If a general graph is suspected to contain one or more subgraphs whose chromatic or flow polynomials can be found efficiently, locating those subgraphs and modifying the deletion-contraction algorithm so that they appear as components in some step of the recursion may speed up the computation of the chromatic and flow polynomials significantly.
Bibliography

