Accepted Manuscript

Regular Article

Surface Complexation Modeling of Calcite Zeta Potential Measurements in Brines with Mixed Potential Determining Ions (Ca\(^{2+}\), CO\(_3\)\(^{2-}\), Mg\(^{2+}\), SO\(_4\)\(^{2-}\)) for Characterizing Carbonate Wettability

Jin Song, Yongchao Zeng, Le Wang, Xindi Duan, Maura Puerto, Walter G. Chapman, Sibani L. Biswal, George J. Hirasaki

PII: S0021-9797(17)30761-0
DOI: http://dx.doi.org/10.1016/j.jcis.2017.06.096
Reference: YJCIS 22523

To appear in: Journal of Colloid and Interface Science

Received Date: 25 April 2017
Revised Date: 27 June 2017
Accepted Date: 28 June 2017

Please cite this article as: J. Song, Y. Zeng, L. Wang, X. Duan, M. Puerto, W.G. Chapman, S.L. Biswal, G.J. Hirasaki, Surface Complexation Modeling of Calcite Zeta Potential Measurements in Brines with Mixed Potential Determining Ions (Ca\(^{2+}\), CO\(_3\)\(^{2-}\), Mg\(^{2+}\), SO\(_4\)\(^{2-}\)) for Characterizing Carbonate Wettability, Journal of Colloid and Interface Science (2017), doi: http://dx.doi.org/10.1016/j.jcis.2017.06.096

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Surface Complexation Modeling of Calcite Zeta Potential Measurements in Brines with Mixed Potential Determining Ions (Ca$^{2+}$, CO$_3^{2-}$, Mg$^{2+}$, SO$_4^{2-}$) for Characterizing Carbonate Wettability

Jin Song†, Yongchao Zeng†, Le Wang†, Xindi Duan†, Maura Puerto†, Walter G. Chapman†,
Sibani L. Biswal†*, and George J. Hirasaki†*

†Rice University, 6100 Main St., MS-362, Department of Chemical and Biomolecular Engineering, Houston, TX, 77005 USA.

* To whom correspondence should be addressed:
email: biswal@rice.edu, gjh@rice.edu
telephone: (+1) 650-387-5438

Email addresses: js110@rice.edu (Jin Song), yz42@rice.edu (Yongchao Zeng), lw22@rice.edu (Le Wang), xd6@rice.edu (Xindi Duan), Maura@rice.edu (Maura Puerto), wgchap@rice.edu (Walter G. Chapman), biswal@rice.edu (Sibani L. Biswal), gjh@rice.edu (George J. Hirasaki)
ABSTRACT: This study presents experiment and surface complexation modeling (SCM) of synthetic calcite zeta potential in brine with mixed potential determining ions (PDI) under various CO$_2$ partial pressures. Such SCM, based on systematic zeta potential measurement in mixed brines (Mg$^{2+}$, SO$_4^{2-}$, Ca$^{2+}$ and CO$_3^{2-}$), is currently not available in the literature and is expected to facilitate understanding of the role of electrostatic forces in calcite wettability alteration. We first use a double layer SCM to model experimental zeta potential measurements and then systematically analyze the contribution of charged surface species. Calcite surface charge is investigated as a function of four PDIs and CO$_2$ partial pressure. We show that our model can accurately predict calcite zeta potential in brine containing a combination of four PDIs and apply it to predict zeta potential in ultra-low and pressurized CO$_2$ environments for potential application in enhanced oil recovery in carbonate reservoirs. Model prediction reveals that calcite surface will be positively charged in all considered brines in pressurized CO$_2$ environment (>1atm). The calcite zeta potential is sensitive to CO$_2$ partial pressure in the various brine in the order of Na$_2$CO$_3$ > Na$_2$SO$_4$ > NaCl > MgCl$_2$ > CaCl$_2$ (Ionic strength=0.1M).

KEYWORDS: Zeta Potential, Surface Complexation Model, Calcite Surface Charge, Wettability Alteration, Enhanced Oil Recovery, Smart Water Flooding
1. Introduction

1.1 Charge of Carbonate for Wettability Study

The injection of “smart water”, which refers to brine with designed ionic composition, can significantly increase oil recovery in a low-cost and effective way for carbonate reservoirs. The majority of carbonate reservoirs are preferentially oil-wet because of the strong affinity between the carbonate rock and the crude oil originating from charge interactions\(^1\). The current working hypothesis is that smart water alters the wettability of carbonate reservoirs to more hydrophilic condition, namely water-wet, which in turn releases crude oil attached to the rock surface, yet the underlying mechanisms regarding how smart water operates remain unclear.\(^1\)–\(^12\)

Carbonate surface is usually positively charged in brine as a result of complicated calcite surface reactions whereas crude oil in brine carries negative charges due to the partitioning of dissociated fatty acids at the oil/brine interface.\(^15\). Because of the electrostatic attraction, crude oil tends to adhere to carbonate rock surface and alter the wettability of carbonate rock to oil-wet conditions. Restoring the wettability of oil-wet carbonate rock to preferentially water-wet can significantly improve the oil recovery by eliminating the capillary entry pressure of injecting brine and increasing the relative permeability of oil.

Electrostatic interaction plays a crucial role in determining the surface wettability.\(^14\) Jackson et al.\(^15\) experimentally demonstrated the strong correlation between carbonate surface wettability and charge interaction among mineral/brine/oil. It is thought that multivalent ions are the potential determining ions (PDIs) that govern the surface charge of the rock\(^1,2,5,10\). Most research has focused on divalent ions \(\text{Ca}^{2+}, \text{CO}_3^{2-}, \text{Mg}^{2+}, \text{and SO}_4^{2-}\) which are abundant in most carbonate reservoirs. Divalent ions such as \(\text{Ca}^{2+}\) and \(\text{CO}_3^{2-}\) are found in equilibrium with calcite, the main
mineral in carbonate rock, and Mg$^{2+}$ and SO$_4^{2-}$ naturally exist in seawater, which is extensively used as injection fluid. Yet, the exact mechanism of how these four PDIs affect the wettability of calcite remains controversial.$^{1,2,11,12,16-18}$ Investigating how Ca$^{2+}$, CO$_3^{2-}$, Mg$^{2+}$ and SO$_4^{2-}$ influence the charge of calcite is needed for understanding wettability alteration induced by “smart water”.

1.2 Zeta Potential Measurement of Carbonate in Brines

Due to the rapid dissolution and precipitation of calcite in brine, it is impractical to measure the surface charge by direct titration methods. Therefore, zeta potential measurements are the most commonly used method to quantify the electrostatic properties of calcite surface in brines. Somasundaran and Agar19 first reported the zero point of charge (ZPC) of calcite by measuring streaming potential as a function of pH in 1967. Then Thompson and Pownall20 compared two different approaches of changing solution pH, by adding strong acid/base or adding H$_2$CO$_3$/Ca(OH)$_2$, and concluded that the calcite potential determining ions are Ca$^{2+}$ and CO$_3^{2-}$ but not H$^+$ and OH$^-$. Recently, there is an increasing interest in carbonate zeta potential measurement for wettability alteration study. For example, Strand et al.1 and Zhang et al.2 measured the zeta potential of outcrop chalk in synthetic seawater to demonstrate their proposed mechanism of wettability alteration by surface ion exchange. Mahani et al.3 measured zeta potential of limestone in seawater and formation water in a wide range of pH to help study the wettability alteration by low salinity flooding. Alroudhan et al.7 measured the zeta potential of natural limestone in seawater and brines that varied in composition. Kasha et al.10 measured zeta potential of limestone and Iceland spar aged in stearic acid in solutions with Ca$^{2+}$, Mg$^{2+}$ and SO$_4^{2-}$, trying to study the effect of stearic acid adsorption on zeta potential. Alotaibi et al.21 measured limestone and dolomite zeta potential in aquifer water and seawater and investigated
the effect of temperature and divalent ions \(\text{Mg}^{2+}, \text{Ca}^{2+}, \text{SO}_4^{2-} \). The mineral surfaces showed negative zeta potential in a wide range of brine compositions at neutral pH (pH=7). Then Alotaibi and Yousef\(^2\) measured zeta potential of natural carbonate disk in different electrolyte solutions along with zeta potential of crude oil in these solutions to demonstrate the brine composition effects on oil/rock interaction. Jackson et al.\(^1\) measured the streaming potential of limestone in synthetic seawater and formation brine to demonstrate the importance of charge interaction for enhanced oil recovery by controlled salinity water flooding. Alshakhs and Kovscek\(^3\) took zeta potential measurement of pure calcium carbonate powder in diluted synthetic seawater (SW) and modified diluted SW with extra \(\text{Mg}^{2+} \) and \(\text{SO}_4^{2-} \) at various pH condition. The measured zeta potential was used to calculate the electrostatic component of disjoining pressure isotherm for demonstrating the effects of \(\text{Mg}^{2+} \) and \(\text{SO}_4^{2-} \) on rock wettability.

Though there have been numerous studies regarding the role of calcite surface charge, there remains significant controversies and inconsistencies in reported zeta potential measurements for the purpose of understanding rock wettability\(^7,23\). There are several reasons that can lead to this discrepancy in zeta potential reported in literature. First, the natural rocks tested in experiments are highly heterogeneous. Vdovic’ et al.\(^24,25\) showed that natural calcite, which contains trace amount of organic matters, has a completely different surface charge compared to synthetic calcite. The surface charge of natural calcites, such as limestone, chalk, and carbonates, highly depends on the mineral history and source, so the results cannot be easily utilized for modeling or comparison to similar minerals. Second, \(\text{CO}_2 \) partial pressure is not strictly controlled in most of these studies. However, \(\text{CO}_2 \) partial pressure can show dramatic impact on the surface potential of calcite by changing carbonate ion concentration in the brine.\(^26\) Under reservoir conditions, the \(\text{CO}_2 \) partial pressure can be higher than 3000psi in the case of miscible \(\text{CO}_2 \)
flooding.27 Third, synthetic seawater is oftentimes used as the aqueous phase. The effect of potential determining ions (PDIs), such as \(\text{Ca}^{2+} \), \(\text{CO}_3^{2-} \), \(\text{Mg}^{2+} \) and \(\text{SO}_4^{2-} \), on synthetic calcite surface charge under equilibrium condition with \(\text{CO}_2 \) has not been not systematically studied. Here we report the zeta potential of calcite in brines containing PDIs to further fundamental understanding and modeling of calcite wettability alteration.

1.3 Surface Complexation Modeling of Calcite in Brines

The surface complexation model (SCM) is widely used to model the surface charge of minerals. For the case of calcite, SCM can be used in reservoir simulations of “smart water” flooding and low salinity flooding.28,29 It can also be used to calculate disjoining pressure isotherm and predict contact angle for the purpose of understanding surface wettability14,30,31.

Van Cappellen et al.32 developed a SCM using the calcite point of zero charge (PZC) to determine model parameters. Pokrovsky et al.33 modified the model with the same surface reactions based on their FTIR data. Brady et al.34 followed the same SCM and used equilibrium constants of solution analogues to define surface reactions associating with \(\text{Mg}^{2+} \) and \(\text{SO}_4^{2-} \), however they lacked zeta potential measurements to confirm the accuracy of the equilibrium constants. Mahani et al.35 proposed a SCM to fit their zeta potential measurements of natural calcite (Iceland spar, limestone and chalk) in mixed brines with multiple PDIs. Yet the model was not satisfactory in terms of matching the measured data or catching the trend of the curve. The discrepancy is partially because no organic impurity reaction was included in the model to account for the differences between natural calcite and synthetic calcite surfaces. Heberling et al.26 proposed a Stern-model SCM with surface reactions based on electrostatic attraction between charged surface sites and ions in the aqueous phase. In Heberling’s work, a series of zeta
potential were measured by adjusting pH of solutions and equilibrating the samples with three different CO₂ partial pressure. Intrinsic reaction equilibrium constants are determined by fitting with zeta potential measurement. However only NaCl was used as brine in all experiments; therefore, Ca²⁺ and CO₃²⁻ were present as a result of calcite dissolution. The role of divalent ions such as Mg²⁺ and SO₄²⁻, which have been proven to be crucial for wettability alteration by “smart water”¹,²,¹¹ has not been investigated.

Here we present zeta potential measurements of synthetic calcite in mixed brines containing four PDIs and then develop a generalized double layer SCM to model the experimental results. The novelty of this work is to quantify the individual contribution of Ca²⁺, CO₃²⁻, Mg²⁺ and SO₄²⁻ on synthetic calcite surface charge. Moreover, we provide further clarification for the impact of CO₂ partial pressure in calcite system. This is of great importance because CO₂ generally exists in natural reservoirs as a component in produced gas and it can also be introduced as injection gas in the case of miscible CO₂ flooding.

2. Materials and Methods

2.1. Sample Preparation for Zeta Potential Measurement

The synthetic calcite powder (≥99.5%, 5 μm in diameter, from Alfa Aesar) was crushed and grounded using a mortar and pestle for 1 hour to make it finer (~1μm in diameter). Brines were prepared with DI water (18.2MΩ•cm) and ACS grade electrolytes including NaCl, NaHCO₃, Na₂CO₃•H₂O, CaCl₂•2H₂O, MgCl₂•6H₂O and Na₂SO₄•10H₂O (all ≥99.0%). All tested brines in this work had the same ionic strength of 0.1M in order to keep the Debye length constant. The concentration of all four PDIs varied in the range of 0 ~ 33 mM in the brine before equilibration.
A mass of 0.6g ground calcite powder and 75 mL brine were mixed to make 0.8%wt. sample. A sonifier (Branson) was used to sonicate the sample for 1 min to facilitate calcite dispersion.

Equilibrium is crucial for repeatability and reproducibility of zeta potential measurements. A home-made gas bubbling system including an air pump or a CO₂ tank and a gas humidifier was set up to bubble gas through the dispersion to equilibrate the sample with atmosphere air (gas phase 10⁻³.₄ atm CO₂, equivalent to 400ppm CO₂) or pure CO₂ (gas phase 1 atm CO₂) until the measured pH reached a calculated reference value predicted by PHREEQC, a widely used geochemistry software developed by US Geological Survey. By this procedure, calcite/brine/CO₂ three phase equilibrium is achieved. Sample equilibration typically occurred over a period of 1-4 days, where samples were weighed on a daily basis and DI water were added when needed to account for water loss due to evaporation. Samples equilibrated with pure CO₂ were sealed from atmosphere by storing in capped bottle before testing and were tested as soon as possible (within 5 min after removing pure CO₂ gas source).

Before zeta potential measurements were performed, samples were sonicated by sonifier (Branson) for 1 min to separate calcite particles that may have agglomerated during the equilibration process. It is particularly important to make sure the calcite weight percent is not too high, otherwise calcite particles move as clusters instead of individual particles in electric field, causing inaccuracy of zeta potential measurement. So the calcite particles were allowed to settle down for 1 hour to obtain supernatant with calcite weight percent 0.01%-0.03%. Supernatant (~65 mL) was transferred into a new vial for analysis.

Calcite mobility in brine was measured by electrophoretic phase analysis light scattering (PALS) method in a light scattering analyzer (DelsaMax PRO). The zeta potential of the calcite
surface was calculated using the Smoluchowski equation. Each sample was measured 6-10 times to minimize experiment artifacts. Mean value and standard deviation were obtained.

2.2. Quantification of Supernatant Calcite Weight Percent

The calcite weight percent of samples were quantified by measuring light transmittance using UV-Vis spectroscopy. Calibration curve was made by measuring light transmittance of calcite dispersion in 0.1M NaCl brine with various (known) weight percent. Wavelength 560nm was selected for the transmittance measurement which gave a perfect linear calibration curve (see supplementary material). Calcite weight percent of supernatant was in the range of 0.01% ~ 0.03% for all samples. Zeta potential measurement was experimentally proved to be independent of calcite weight percent in this range in preliminary experiment (see supplementary material).

2.3. Surface Complexation Model (SCM)

A generalized double layer model with a surface plane and a diffuse layer was used in this work (Figure 1). Surface potential is equivalent to the potential at the outer Helmholtz plane (x = x_d) where all ions are considered being absorbed in the same plane. As described by Borkovec and Westall36, the Poisson-Boltzmann equation is used to establish the relationship of potential and concentration of ions in brine. The equations can be solved for both symmetrical and asymmetrical electrolyte systems.

The unreacted Ca^{x} atom exposed at the surface of calcite crystal ideally has +1/3 charge instead of +1 charge due to the structure of calcite4,26 (>Ca^{+1/3}). As is described by Stipp4, the value x is strictly equal to +1/3 only when the bonding between the Ca atom and the O atoms from neighboring CO_3^{2-} is pure ionic bonding, which is not the case. As described in Heberling’s work26, we also assumed a value 0.25 (>Ca^{+0.25}) in this work. In an aqueous environment,
unreacted $>\text{Ca}^{+0.25}$ will bond with hydroxyl ion (OH) in water and becomes $>\text{CaOH}^{-0.75}$. Therefore, the two major surface sites are $>\text{CaOH}^{-0.75}$ and $>\text{CO}_3\text{H}^{+0.75}$ (site density 4.95nm$^{-2}$) in this system. As a result of electrostatic interaction, $>\text{CaOH}^{-0.75}$ and $>\text{CO}_3\text{H}^{+0.75}$ can bind with ions of the opposite charge in the aqueous phase and be converted to other charged surface complexes. The surface reactions described in Table 1 are based on electrostatic attraction that are assumed to influence the surface charge of calcite. Intrinsic equilibrium constants, K_1 and K_2 and intrinsic equilibrium ion binding constants, IB_1 to IB_7, are the nine tunable variables for fitting zeta potential measurements. The intrinsic equilibrium constants are functions of ion activities at the calcite/brine interface and surface species concentrations. The ion activities at the calcite/brine interface and the bulk solution ion activities are different and follow the Boltzmann distribution of ions (Eq. 1)37, where z_i is the charge of ion i (can be positive or negative) and ψ is surface potential:

$$
C_i = C_{i,\text{bulk}} \exp \left(\frac{-z_iF\psi}{RT} \right) \quad (\text{Eq. 1})
$$

All zeta potential measurements were found to be in the range from -20mV to 25mV, where the surface potential can be considered small and the Debye-Huckel equation applies. Measured zeta potentials were converted to surface potential using the Debye-Huckel equation37 (as is shown in Figure 1). The Debye length, κ^{-1}, is considered constant for all solutions with constant ionic strength 0.1M and slipping plane distance d_s is set to 0.33nm based on the slip plane distance – ionic strength relationship in the literature26.

PHREEQC (Version 3.3.7)38, a widely used software developed by USGS for geological system equilibrium calculation, is used for thermodynamic equilibrium calculation. The double layer model with explicit calculation of diffuse layer composition, initially proposed by
Borkovec and Westall, is selected in PHREEQC. Activities in non-ideal solutions are calculated using ion-association and Debye-Huckel expressions. By defining surface reactions and the equilibrium constant values, PHREEQC calculates the surface potential at a given equilibrium condition. PEST39 is combined with PHREEQC for optimization of adjustable parameters (K_1, K_2, IB\textsubscript{1}~IB\textsubscript{7}) to fit the experimentally determined zeta potential measurements.

Figure 1 The schematic of the double layer model. The ψ equals to ψ_0 up to z_d and then decays exponentially with the distance z as governed by Debye-Huckel Equation
Table 1 Surface complexation reactions in the proposed model

<table>
<thead>
<tr>
<th>surface reaction</th>
<th>intrinsic equilibrium constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>$> \text{CaOH}^{-0.75} + \text{H}^+ \rightleftharpoons > \text{CaOH}_2^{0.25}$</td>
<td>K_1</td>
</tr>
<tr>
<td>$> \text{CO}_3\text{H}^{+0.75} + \text{OH}^- \rightleftharpoons > \text{CO}_3^{-0.25} + \text{H}_2\text{O}$</td>
<td>K_2</td>
</tr>
<tr>
<td>$> \text{CaOH}^{-0.75} + \text{Ca}^{2+} \rightleftharpoons > \text{CaOH} \cdots \text{Ca}^{1.25}$</td>
<td>IB_1</td>
</tr>
<tr>
<td>$> \text{CaOH}^{-0.75} + \text{Mg}^{2+} \rightleftharpoons > \text{CaOH} \cdots \text{Mg}^{1.25}$</td>
<td>IB_2</td>
</tr>
<tr>
<td>$> \text{CO}_3\text{H}^{+0.75} + \text{CO}_3^{2-} \rightleftharpoons > \text{CO}_3\text{H} \cdots \text{CO}_3^{-1.25}$</td>
<td>IB_3</td>
</tr>
<tr>
<td>$> \text{CO}_3\text{H}^{+0.75} + \text{SO}_4^{2-} \rightleftharpoons > \text{CO}_3\text{H} \cdots \text{SO}_4^{-1.25}$</td>
<td>IB_4</td>
</tr>
<tr>
<td>$> \text{CO}_3\text{H}^{+0.75} + \text{HCO}_3^- \rightleftharpoons > \text{CO}_3\text{H} \cdots \text{HCO}_3^{-0.25}$</td>
<td>IB_5</td>
</tr>
<tr>
<td>$> \text{CaOH}^{-0.75} + \text{Na}^+ \rightleftharpoons > \text{CaOH} \cdots \text{Na}^{0.25}$</td>
<td>IB_6</td>
</tr>
<tr>
<td>$> \text{CO}_3\text{H}^{+0.75} + \text{Cl}^- \rightleftharpoons > \text{CO}_3\text{H} \cdots \text{Cl}^{-0.25}$</td>
<td>IB_7</td>
</tr>
</tbody>
</table>

3. Results and Discussion

3.1. Zeta Potential Measurement

The zeta potential of calcite in different brines (I=0.1M) is shown in Figure 2. The baseline case is calcite in 0.1M NaCl brine because both Na$^+$ and Cl$^-$ are generally not considered potential-determining ions. Compared to NaCl (middle columns), divalent anions such as CO$_3^{2-}$ and SO$_4^{2-}$ result in the calcite becoming less positively charged and in some cases even negatively charged, while cations Ca$^{2+}$ and Mg$^{2+}$ further increases the positive charge of calcite. Note that for the cases presented, the equilibrium H$^+$ concentration varies 2~3 order of magnitudes (100 - 1000 times) when the CO$_2$ partial pressure changes from 400ppm to 1atm; however, the zeta potential is not significantly altered for the NaCl, CaCl$_2$, MgCl$_2$ samples. This is not the case when the solution pH is altered by adding an acid, such as HCl, which shows a dramatic impact on zeta potential since there is a change the relative concentration of the PDIs.
Figure 2 Zeta potential of calcite in different single component brines. Red bars were measured under $P_{CO_2}=10^{-3.4}$ atm (400ppm) whereas black bars were measured under $P_{CO_2}=1$ atm. The ionic strength was $I=0.1M$ for all measurements.

Changes in the calcite zeta potential when mixing the NaCl brine with CaCl$_2$, MgCl$_2$, Na$_2$SO$_4$ and Na$_2$CO$_3$ respectively to different ratios are shown in Figure 3. The ionic strength of brines was kept constant while the concentration of PDIs (Ca$^{2+}$, Mg$^{2+}$, CO$_3^{2-}$, SO$_4^{2-}$) was changed. The horizontal axis on the figures are used to show the initial concentration of a given PDI in the brine solution. However, for the case of Ca$^{2+}$ and CO$_3^{2-}$, the initial concentration and equilibrium concentration can be dramatically different as a result of calcite dissolution.

Varying CO$_2$ partial pressure from $10^{-3.4}$ atm to 1 atm does not appear to significantly affect the zeta potential of calcite in the tested brines with high Ca$^{2+}$ or Mg$^{2+}$ concentrations. However, for brines containing a high concentration of CO$_3^{2-}$, there is a significant change in the zeta potential of calcite (up to 20mV). Further analysis of the change of zeta potential of calcite and variation of charged species concentration can be analyzed using the SCM.
Figure 3 Zeta potential of calcite in the mixed brines. The ionic strength (I=0.1M) was the same in all measurements. Upper left is NaCl/CaCl$_2$ brine (to different mixed ratios); upper right is NaCl/MgCl$_2$ brine; lower left is NaCl/Na$_2$CO$_3$ brine; and lower right is NaCl/Na$_2$SO$_4$ brine. Red data were measured under P_{CO_2}=10$^{-3.4}$ atm (400ppm) and black data were measured under P_{CO_2}=1 atm.

3.2. Surface Complexation Modeling (SCM)

A total of 34 experimental measurements of zeta potential were used to fit the 9 adjustable parameters (K_1, K_2, IB_1-IB_7). Additionally, two different CO$_2$ partial pressure environments were tested and the concentration of PDIs was varied in a relatively wide range among all 34 observations to better optimize the fitting parameters. Based on PHREEQC calculations, equilibrium Ca$^{2+}$ concentration ([Ca$^{2+}$]) ranged from 2 × 10$^{-6}$M to 4 × 10$^{-2}$M, [CO$_3^{2-}$] ranged from 6 × 10$^{-7}$M to 1 × 10$^{-2}$ M, while [Mg$^{2+}$] and [SO$_4^{2-}$] ranged from 0 to 3 × 10$^{-2}$M.
The optimized parameters are listed in Table 2 and compared with experimental observations in Figure 4. The association constants for divalent ions (IB$_1$~IB$_4$) are at least one order of magnitude higher than those determined for the monovalent ions (K$_1$, K$_2$, IB$_5$~IB$_7$), indicating that the divalent ions in the brine are the main factor determining the variation of calcite surface charge. The small values of K$_1$ and K$_2$ also indicate that H$^+$ is not a PDI for calcite. For the ions with the same valence and surface binding sites, it is observed that the binding constants are negatively correlated to the ionic radius. IB$_3$>IB$_4$, radii(CO$_3^{2-}$) < radii(SO$_4^{2-}$); IB$_5$>IB$_7$, radii(HCO$_3^-$) < radii(Cl$^-$); IB$_1$>IB$_2$, radii(Mg$^{2+}$) > radii(Ca$^{2+}$) (the ionic radius were compared at ambient temperature40). The fitted parameters are compared with a similar basic-Stern SCM proposed by Heberling et al.26 The major difference is the value of K$_2$. In our presented model, K$_1$ and K$_2$ are both close to zero, indicating a weak dependence of surface charge to pH. In the original work of Heberling et al.26, reaction 2 is expressed as $>$CO$_3^-$H$^{0.75}$ \Leftrightarrow $>$CO$_3^{-0.25}$ + H$^+$, log$_{10}$K = 0.17. The water dissociation constant is assumed to be 10^{14} to calculate the K$_2$ in Table 2. However, if K$_2$ is as high as 14.17, the majority of major sites $>$CO$_3^-$H$^{0.75}$ will be converted to $>$CO$_3^{-0.25}$, which is unlikely.
Table 2 Parameterization of Surface Complexation Modeling

<table>
<thead>
<tr>
<th>parameter (log₁₀K)</th>
<th>value</th>
<th>literature(Heberling ⁵)</th>
<th>surface reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₁</td>
<td>0.30</td>
<td>-0.17</td>
<td>>CaOH⁺⁰.⁷⁵ + H⁺ ⇄ >CaOH₂⁻⁰.₂⁵</td>
</tr>
<tr>
<td>K₂</td>
<td>0.50</td>
<td>14.17</td>
<td>>CO₃H⁻⁰.⁷⁵ + OH⁻ ⇄ >CO₃⁻ + H₂O</td>
</tr>
<tr>
<td>IB₁</td>
<td>1.74</td>
<td>1.68</td>
<td>>CaOH⁺⁰.⁷⁵ + Ca²⁺ ⇄ >CaOH···Ca¹⁺²⁵</td>
</tr>
<tr>
<td>IB₂</td>
<td>1.62</td>
<td>-</td>
<td>>CaOH⁻⁰.⁷⁵ + Mg²⁺ ⇄ >CaOH···Mg¹⁺²⁵</td>
</tr>
<tr>
<td>IB₃</td>
<td>2.23</td>
<td>3.26</td>
<td>>CO₃H⁻⁰.⁷⁵ + CO₃⁻ ⇄ >CO₃⁻ ···CO₃⁻¹²⁵</td>
</tr>
<tr>
<td>IB₄</td>
<td>1.00</td>
<td>-</td>
<td>>CO₃H⁻⁰.⁷⁵ + SO₄²⁻ ⇄ >CO₃⁻ ···SO₄⁻¹²⁵</td>
</tr>
<tr>
<td>IB₅</td>
<td>0.09</td>
<td>0.04</td>
<td>>CO₃H⁻⁰.⁷⁵ + HCO₃⁻ ⇄ >CO₃⁻ ···HCO₃⁻⁰²⁵</td>
</tr>
<tr>
<td>IB₆</td>
<td>0.14</td>
<td>0.56</td>
<td>>CaOH⁺⁰.⁷⁵ + Na⁺ ⇄ >CaOH···Na⁺⁻⁰²⁵</td>
</tr>
<tr>
<td>IB₇</td>
<td>-0.64</td>
<td>-0.05</td>
<td>>CO₃H⁻⁰.⁷⁵ + Cl⁻ ⇄ >CO₃⁻ ···Cl⁻⁻²⁵</td>
</tr>
</tbody>
</table>

Figure 4 Comparison between measured calcite zeta potential and the surface complexation modeling in the mixed brines. Upper left is NaCl/CaCl₂ brine; upper right is NaCl/MgCl₂ brine; lower left is NaCl/Na₂CO₃ brine; and lower right is NaCl/Na₂SO₄.
brine. Red data were measured under \(P_{\text{CO}_2} = 10^{-3.4} \) atm (400ppm) and black data were measured under \(P_{\text{CO}_2} = 1 \) atm.

Because the calcite zeta potential is determined by surface speciation, the analysis of surface species contribution can provide better insights on the observed zeta potential trends. We introduce the contribution of a surface charged species \(\text{contribution}(i) \) to quantify the surface species contribution. It is defined as the product of its surface concentration and the molar fraction of this species, as shown in Eq. 2.

\[
\text{contribution}(i) = \text{frac}(i)^{\gamma z_i} \\
\text{frac}(i) = \frac{[\text{surface specie } i]}{[> \text{CaOH}^{-0.75}]_0} \quad \text{(cationic surface species)} \\
\text{frac}(i) = \frac{[\text{surface specie } i]}{[> \text{CO}_3H^{+0.75}]_0} \quad \text{(anionic surface species)}
\]

Eq. (2)

In the previous literature, the surface concentration was used to compare and analyze different species’ contribution. However, such comparison and analysis suffer two major drawbacks: (1) the surface concentration failed to include the effect of valency of the species. Given the same surface concentration, surface species of different valences contribute differently to the surface charge. (2) The practice of using surface concentration for comparison is not convenient. Because the surface concentrations span several orders of magnitude for different species, it is hard to compare in normal scale. However, when plotted the surface concentration in log-scale, the contribution, in turn, seems to be equally important for many different species. The definition of \(\text{contribution}(i) \) overcomes the two drawbacks. It normalizes the contribution of different species within the range of 0~1, which allows the analysis to be clearer and more intuitive.
The major surface sites of calcite surface are $>\text{CO}_3\text{H}^{+0.75}$ and $>\text{CaOH}^{-0.75}$. Under all brine conditions tested, the calculation shows that their contribution outweigh all other species: contribution ($>\text{CO}_3\text{H}^{+0.75}$) ranges from 0.68 to 0.72 and contribution ($>\text{CaOH}^{-0.75}$) ranges from -0.72 to -0.63, while contribution of all other species is within ±0.16. This indicates that only a small portion of the major sites are converted to a charged surface complex. Instead of analyzing $>\text{CO}_3\text{H}^{+0.75}$ and $>\text{CaOH}^{-0.75}$ contribution individually, the algebraic sum of $>\text{CO}_3\text{H}^{+0.75}$ and $>\text{CaOH}^{-0.75}$ contributions are used for analysis. The variation of charged species contribution and zeta potential under two different P_{CO_2} in different brines are shown in Figure 5 – Figure 8. The net charge of the calcite surface, which directly correlates to zeta potential, is calculated by summing up contributions of all charged species.

The surface species contribution analysis also sheds light upon the mechanism of carbonate wettability alteration in the presence of PDIs. As shown in Figure 5, the $>\text{CaOH}…\text{Ca}^{+1.25}$ contribution increases when the initial SO_4^{2-} concentration is higher. This observation provides additional proof to the hypothesis proposed by Strand et al.1 and Zhang et al.2 that the presence of SO_4^{2-} can lower the surface charge of calcite and facilitate the free Ca^{2+} in solution to bind and release the surface carboxylic acid. However, the experimental results also reveal another possible explanation for the calcite wettability alteration. It is observed that the positively charged synthetic calcite surface can be tuned to carry negative charge by simply increasing the amount of SO_4^{2-} in the brine. When the calcite surface becomes negatively charged, the carboxylic acid will be repelled from the surface by electrostatic forces. In other words, the SO_4^{2-} itself can induce the wettability alteration without the aid of Mg^{2+}. Further investigation of wettability alteration by contact angle measurement and spontaneous imbibition will be required to verify this hypothesis.
Another interesting observation is that the CO$_2$ partial pressure can affect the zeta potential by changing the initial Ca$^{2+}$ concentration in solution. Increasing CO$_2$ partial pressure will lower the CO$_3^{2-}$ concentration, resulting in a higher Ca$^{2+}$ concentration and therefore increasing the zeta potential. Consequently, if the reservoir is pressurized with a high CO$_2$ content, the correspondingly high Ca$^{2+}$ concentration will make it more difficult for the carbonate surface to become negatively charged.

Figure 5 Contribution analysis of charged surface species for calcite in the mixed brines of NaCl/Na$_2$SO$_4$ (I=0.1M). The surface species that make the major contribution are highlighted.

Based on our model, in the mixed brine of NaCl/Na$_2$CO$_3$, the dominant charged species vary as a function of CO$_2$ partial pressure, as shown in Figure 6. When $P_{CO_2}=10^{-3.4}$ atm, increasing
[\text{CO}_3^2\text{H}...\text{CO}_3^{-1.25}] \) is the major reason why the calcite zeta potential becomes more negative when the initial \(\text{CO}_3^{2-} \) concentration increases. However, when \(P_{\text{CO}_2} = 1 \text{atm} \), the rise of \([\text{CaOH}...\text{HCO}_3^{-0.25}] \) and drop of \([\text{CO}_3^2\text{H}...\text{Ca}^{+1.25}] \) are responsible for the variation of zeta potential. Because of the high \(\text{CO}_2 \) partial pressure, a large portion of \(\text{CO}_3^{2-} \) is converted to \(\text{HCO}_3^- \) in equilibrium. So \([\text{CO}_3^2\text{H}...\text{CO}_3^{-1.25}] \) is not one of the dominant species under such \(\text{CO}_2 \) partial pressure. The \(\text{CO}_2 \) partial pressure shows a dramatic effect on calcite charge in \(\text{CO}_3^{2-} \)-concentrated brines because the equilibrium \(\text{CO}_2 \) phase can significantly vary the equilibrium \([\text{CO}_3^{2-}] \) from initial \(\text{CO}_3^{2-} \) concentration. In the case of \(P_{\text{CO}_2} = 1 \text{atm} \), equilibrium \([\text{CO}_3^{2-}] \) is so low that the charge of the calcite surface is a result of \(\text{Ca}^{2+} \) adsorption.

Figure 6 Contribution analysis of charged surface species for calcite in the mixed brines of NaCl/Na$_2$CO$_3$ (I=0.1M). The surface species that make the major contribution are highlighted.
Figure 7 shows the variation of contributions of charged surface species in the brines of CaCl₂/NaCl. For both cases of $P_{CO_2} = 10^{-3.4}$ atm and $P_{CO_2} = 1$ atm, \([>CaOH…Ca^{+1.25}]\) dominates the surface charge variation when initial \(Ca^{2+}\) concentration increases. Furthermore, calcite zeta potentials are almost the same if the initial \(Ca^{2+}\) concentration is high but are somewhat different if the initial \(Ca^{2+}\) concentration is low. This is because P_{CO_2} affects equilibrium \([Ca^{2+}]\) as a function of the initial \(Ca^{2+}\) concentration. Increasing P_{CO_2} can raise equilibrium \([Ca^{2+}]\) by converting \(CO_3^{2-}\) into \(HCO_3^-\), causing a shifting in the calcite dissolution equilibrium. Such impact is negligible when the initial \(Ca^{2+}\) concentration is high (close to 0.033M) because the \(CO_3^{2-}\) concentration is low even before equilibration. Based on PHREEQC calculations, when the brine is I=0.1M NaCl (no initial \(Ca^{2+}\) before equilibrium), the equilibrium \([Ca^{2+}]\) = 8.1 × 10^{-4} M at $P_{CO_2} = 10^{-3.4}$ atm versus the equilibrium \([Ca^{2+}]\) is 1.1 × 10^{-2} M at $P_{CO_2} = 1$ atm.
Figure 7 Contribution analysis of charged surface species for calcite in the mixed brines of NaCl/CaCl$_2$ (I=0.1M). The surface species that make the major contribution are highlighted.

Mg$^{2+}$ as a PDI shows positive impact on the calcite surface charge by forming positively charged surface complex $>$CaOH…Mg$^{+1.25}$ (Figure 8). This effect is similar to Ca$^{2+}$ shown in Figure 7 except that in I=0.1M MgCl$_2$ solution the calcite zeta potential is 2–3mV lower than that in I=0.1M CaCl$_2$ solution for both CO$_2$ partial pressures. Unlike Ca$^{2+}$, which indirectly participates in the equilibrium of CO$_3^{2-}$ due to a constant CaCO$_3$ solubility product, increasing the Mg$^{2+}$ concentration does not impact bulk solution CO$_3^{2-}$ concentration. Thus in I=0.1M MgCl$_2$ solution, $>$CO$_3$H…CO$_3^{1-25}$ and $>$CO$_3$H…HCO$_3^{-0.25}$ are higher than those in I=0.1M CaCl$_2$ solution, resulting in the relatively lower zeta potential. Moreover, at P_{CO_2}=1atm, we observe a decrease of $>$CaOH…Ca$^{+1.25}$ contribution as Mg$^{2+}$ concentration increases. Increasing
Mg$^{2+}$ concentration makes calcite surface more positively charged, resulting in stronger electrostatic repulsion between Ca$^{2+}$ and calcite surface. So [Ca$^{2+}$] near calcite/brine interface decreases when Mg$^{2+}$ concentration increases, even though bulk Ca$^{2+}$ concentration is nearly constant.

Figure 8 Contribution analysis of charged surface species for calcite in the mixed brines of NaCl/MgCl$_2$ (I=0.1M). The surface species that make the major contribution are highlighted.

In order to verify the validity and robustness of our model, an additional experiment condition was conducted but not included in the SCM model fitting to verify the validity of the parameters. A I=0.1M MgCl$_2$ solution and I=0.1M Na$_2$SO$_4$ solution were mixed together at varying ratios to obtain brines with different concentration of Mg$^{2+}$ and SO$_4^{2-}$ but the same ionic strength as 0.1M. Because Ca$^{2+}$ and CO$_3^{2-}$ always exist in the brine from calcite dissociation, the tested brines have
four PDIs present. The sample were equilibrated at atmospheric condition (400 ppm CO$_2$). The measured zeta potential is compared with our model prediction in Figure 9. The SCM successfully predicts the zeta potential of calcite in brines with all four PDIs, confirming the reliability of the model.

![Graph showing zeta potential vs. ratio of Mg$^2+$/([Mg$^2+]+$[SO$_4^{2-}$])](image)

Figure 9 Model prediction and experimental measurement of calcite zeta potential in the mixed brine of MgCl$_2$/Na$_2$SO$_4$ (I=0.1M, $P_{CO_2} = 10^{-3.4}$ atm). These data were not included in the model parameter fitting.

Additionally, the impact of CO$_2$ partial pressure on calcite zeta potential for CO$_2$ is important to consider since in applications such as miscible CO$_2$ flooding, the CO$_2$ partial pressure can go to 3000 psi ($10^{2.3}$ atm). The zeta potential of calcite in I=0.1M different electrolyte solutions as a function of CO$_2$ partial pressure is calculated using the presented model, shown in Figure 10. Ionic strength of equilibrium solution can deviate dramatically from 0.1M when $P_{CO_2} > 10$ atm, as
significant amount of CO\textsubscript{2} dissolved in the brine. At these conditions, the Debye length and slip plane distance are recalculated when converting surface potential to zeta potential.

The trend shows different characteristics in low P_{CO_2} (<1atm) region and high P_{CO_2} region. In the low P_{CO_2} region, the sensitivity of calcite zeta potential in different brines to gas phase CO\textsubscript{2} is in the sequence of Na\textsubscript{2}CO\textsubscript{3} > Na\textsubscript{2}SO\textsubscript{4} > NaCl > MgCl\textsubscript{2} > CaCl\textsubscript{2} (all I=0.1M). Due to the high initial concentration of Ca2+ in I=0.1M CaCl\textsubscript{2} solution, equilibrium [Ca2+] will be in a high level and equilibrium [CO\textsubscript{3}2-] will be low invariant of the CO\textsubscript{2} partial pressure. In this case, [>CaOH…Ca1.25] is the major contribution to surface charge and is not sensitive to the variation of CO\textsubscript{2} partial pressure. In I=0.1M Na\textsubscript{2}CO\textsubscript{3} solution, the situation is different because the major species >CO\textsubscript{3}H…CO\textsubscript{3}2- is strongly dependent on CO\textsubscript{3}2- concentration. For the rest cases of MgCl\textsubscript{2}, NaCl and Na\textsubscript{2}SO\textsubscript{4} solution, the impact of CO\textsubscript{2} partial pressure obviously depends on the significance of >CaOH…Ca1.25 and >CO\textsubscript{3}H…CO\textsubscript{3}1.25 contributions in the brine. For example, when P_{CO_2}=1atm, contribution of >CaOH…Ca1.25 is 0.124 in I=0.1M Na\textsubscript{2}SO\textsubscript{4} solution, while in I=0.1M NaCl it is 0.042 and it is 0.025 in I=0.1M MgCl\textsubscript{2} solution. However, in the high CO\textsubscript{2} partial pressure region (>1atm), the calcite zeta potential in different brines tends to converge to around 10mV as the CO\textsubscript{2} partial pressure keep increases.
Figure 10 Model prediction of calcite zeta potential in I=0.1M different electrolyte solutions as a function of CO$_2$ partial pressure.

Species contribution analysis for calcite in I=0.1M NaCl is performed to understand the effect of P_{CO_2}, shown in Figure 11. When P_{CO_2} is low (<0.01atm), both net charge and the contribution of all surface species vary in a relatively small range. However, as P_{CO_2} increases, >CaOH…Ca$^{+1.25}$ and >CO$_3$H…HCO$_3^{-0.25}$ contributions have a dramatic rise simultaneously. At the same time, >CaOH$^{-0.75}$ becomes more abundant than >CO$_3$H$^{-0.75}$ (P_{CO_2} >0.25atm) and contributes to the decrease of calcite zeta potential. The change in >CaOH…Ca$^{+1.25}$, >CO$_3$H…HCO$_3^{-0.25}$ and >CaOH$^{-0.75}$ contributions almost cancel each other out, resulting in the net charge of calcite only varying slightly when CO$_2$ partial pressure changes.

![Graph](image.png)

Figure 11 Contribution analysis of charged surface species for calcite in I=0.1M NaCl under different CO$_2$ partial pressure. The surface species making the major contributions are highlighted.

4. Conclusions
The zeta potential of synthetic calcite in brines containing different PDIs (Mg$^{2+}$, SO$_4^{2-}$, Ca$^{2+}$, CO$_3^{2-}$) under 10$^{-3.4}$ atm (400ppm) CO$_2$ and 1atm CO$_2$ were measured. The role of four major divalent ions that either naturally exist in carbonate reservoirs (Ca$^{2+}$, CO$_3^{2-}$) or enriched in seawater (Mg$^{2+}$, SO$_4^{2-}$) were investigated. The zeta potential of calcite can shift from positive to negative value when increasing the content of CO$_3^{2-}$ or SO$_4^{2-}$ in $P_{CO2}=10^{-3.4}$ atm. However, when the system is equilibrated with 1atm CO$_2$, even if the brine is Na$_2$CO$_3$ or Na$_2$SO$_4$ (I=0.1M) solution, the zeta potential of synthetic calcite does not become negative.

A new surface complexation model was proposed based on a generalized double layer model. Our model assumes that surface potential is equal to the potential at the substrate side of the diffuse layer. This model includes the effect of four divalent PDIs in carbonate reservoir thus can be useful for application of carbonate wettability alteration study. Compared to the previous SCM proposed by van Cappellen et al. 32, Pokrovsky et al. 33 and Brady et al. 34, our model parameters are derived from direct zeta potential measurements and therefore are more realistic. Compared to the SCM proposed by Heberling et al. 26, our model has included two additional yet very crucial PDIs: Mg$^{2+}$ and SO$_4^{2-}$ and enhanced the robustness of the predictability to a wider range of ion concentrations. We confirm that the binding constants for divalent ions are at least one order of magnitude higher than those for monovalent ions, confirming the importance of divalent ions in determining calcite surface charge.

To our best knowledge, it is the first time that we discovered the negative correlation between the surface binding equilibrium constants and the hydrated ionic radius for ions of the same charge in a calcite surface complexation model. We have also proposed a new definition to quantify the contribution of charged specie. The use of the newly proposed quantity $contribution(i)$ is clearer and more intuitive than surface concentration when comparing the
different ion’s contribution to the overall surface charge. According to our surface species contribution analysis, it is revealed that increasing SO$_4^{2-}$ content in the solution can effectively facilitate the adsorption of Ca$^{2+}$ due to electrostatic interactions. High SO$_4^{2-}$ concentration can effectively reduce the positively charged surface species concentration and make the surface negatively charged. Therefore, high SO$_4^{2-}$ concentration can lead to the detachment of carboxylic acids as a result of electrostatic repulsion. Consequently, the mechanism of carbonate wettability alteration cannot simply be concluded from the charge interaction measurements. SO$_4^{2-}$ can induce wettability alteration by either facilitating Ca$^{2+}$ surface adsorption or changing the calcite surface to be negatively charged by itself.

We also highlight the role of CO$_2$ partial pressure in the study of wettability alteration in carbonate reservoirs. The species that make the major contributions to the calcite surface charge vary under different CO$_2$ partial pressures and the effect of CO$_2$ partial pressure is not monotonic.

We also used our model to predict the zeta potential of calcite in high CO$_2$ partial pressure up to 500 atm (~7000 psi) for possible applications in research of miscible CO$_2$ flooding. Prediction reveals that the sensitivity of calcite zeta potential to P_{CO_2} differs in different electrolyte solutions in the order of Na$_2$CO$_3$ > Na$_2$SO$_4$ > NaCl > MgCl$_2$ > CaCl$_2$ (I=0.1M). However, in high P_{CO_2} conditions (>1 atm), the synthetic calcite surface remains positively charged in all considered brine solutions.

We plan to extend the current SCM to take into account the trace amount of organic impurities on the natural carbonate surface so that the model can predict both synthetic and natural calcite surface charge. We also plan to extrapolate our SCM to predict calcite surface charge in high temperature conditions.
5. Acknowledgement

We acknowledge the financial support from Abu Dhabi National Oil Company (ADNOC) and the Rice University Consortium for Processes in Porous Media (Houston, TX, USA). We thank Mr. Tao Deng and Ms. Ying Wang for their help in developing procedure for zeta potential measurement. We also thank Professor Clarence A. Miller and Professor Francisco Vargas for their insightful discussion.

6. References

(20) Thompson, D. W.; Pownall, P. G. J. Colloid Interface Sci. 1989, 131 (1), 74–82.
(33) Pokrovsky, O. S.; Mielczarski, J. A.; Barres, O.; Schott, J. Langmuir 2000, 16 (6), 2677–2688.
Table 1 Surface complexation reactions in the proposed model

<table>
<thead>
<tr>
<th>surface reactions</th>
<th>intrinsic equilibrium constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CaOH}^{-0.75} + \text{H}^+ \rightleftharpoons \text{CaOH}_2^{+0.25})</td>
<td>(K_1)</td>
</tr>
<tr>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{OH}^- \rightleftharpoons \text{CO}_3^{-0.25} + \text{H}_2\text{O})</td>
<td>(K_2)</td>
</tr>
<tr>
<td>(\text{CaOH}^{-0.75} + \text{Ca}^{2+} \rightleftharpoons \text{CaOH} \ldots \text{Ca}^{+1.25})</td>
<td>(\text{IB}_1)</td>
</tr>
<tr>
<td>(\text{CaOH}^{-0.75} + \text{Mg}^{2+} \rightleftharpoons \text{CaOH} \ldots \text{Mg}^{+1.25})</td>
<td>(\text{IB}_2)</td>
</tr>
<tr>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{CO}_3^{-2} \rightleftharpoons \text{CO}_3\text{H} \ldots \text{CO}_3^{-1.25})</td>
<td>(\text{IB}_3)</td>
</tr>
<tr>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{SO}_4^{-2} \rightleftharpoons \text{CO}_3\text{H} \ldots \text{SO}_4^{-1.25})</td>
<td>(\text{IB}_4)</td>
</tr>
<tr>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{HCO}_3^- \rightleftharpoons \text{CO}_3\text{H} \ldots \text{HCO}_3^{-0.25})</td>
<td>(\text{IB}_5)</td>
</tr>
<tr>
<td>(\text{CaOH}^{-0.75} + \text{Na}^+ \rightleftharpoons \text{CaOH} \ldots \text{Na}^{+0.25})</td>
<td>(\text{IB}_6)</td>
</tr>
<tr>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{Cl}^- \rightleftharpoons \text{CO}_3\text{H} \ldots \text{Cl}^{-0.25})</td>
<td>(\text{IB}_7)</td>
</tr>
</tbody>
</table>

Table 2 Parameterization of Surface Complexation Modeling

<table>
<thead>
<tr>
<th>parameter (log(_{10}K))</th>
<th>value</th>
<th>literature(^{26})</th>
<th>intrinsic equilibrium constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_1)</td>
<td>0.30</td>
<td>-0.17</td>
<td>(\text{CaOH}^{-0.75} + \text{H}^+ \rightleftharpoons \text{CaOH}_2^{+0.25})</td>
</tr>
<tr>
<td>(K_2)</td>
<td>0.50</td>
<td>14.17</td>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{OH}^- \rightleftharpoons \text{CO}_3^{-0.25} + \text{H}_2\text{O})</td>
</tr>
<tr>
<td>(\text{IB}_1)</td>
<td>1.74</td>
<td>1.68</td>
<td>(\text{CaOH}^{-0.75} + \text{Ca}^{2+} \rightleftharpoons \text{CaOH} \ldots \text{Ca}^{+1.25})</td>
</tr>
<tr>
<td>(\text{IB}_2)</td>
<td>1.62</td>
<td>-</td>
<td>(\text{CaOH}^{-0.75} + \text{Mg}^{2+} \rightleftharpoons \text{CaOH} \ldots \text{Mg}^{+1.25})</td>
</tr>
<tr>
<td>(\text{IB}_3)</td>
<td>2.23</td>
<td>3.26</td>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{CO}_3^{-2} \rightleftharpoons \text{CO}_3\text{H} \ldots \text{CO}_3^{-1.25})</td>
</tr>
<tr>
<td>(\text{IB}_4)</td>
<td>1.00</td>
<td>-</td>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{SO}_4^{-2} \rightleftharpoons \text{CO}_3\text{H} \ldots \text{SO}_4^{-1.25})</td>
</tr>
<tr>
<td>(\text{IB}_5)</td>
<td>0.09</td>
<td>0.04</td>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{HCO}_3^- \rightleftharpoons \text{CO}_3\text{H} \ldots \text{HCO}_3^{-0.25})</td>
</tr>
<tr>
<td>(\text{IB}_6)</td>
<td>0.14</td>
<td>0.56</td>
<td>(\text{CaOH}^{-0.75} + \text{Na}^+ \rightleftharpoons \text{CaOH} \ldots \text{Na}^{+0.25})</td>
</tr>
<tr>
<td>(\text{IB}_7)</td>
<td>-0.64</td>
<td>-0.05</td>
<td>(\text{CO}_3\text{H}^{+0.75} + \text{Cl}^- \rightleftharpoons \text{CO}_3\text{H} \ldots \text{Cl}^{-0.25})</td>
</tr>
</tbody>
</table>
Equation 1.

\[C_i = C_{i, x=\infty} \exp\left(\frac{-z_i F \psi}{RT}\right) \]

Equation 2.

\[
\text{contribution}(i) = \text{frac}(i) \cdot z_i \\
\text{frac}(i) = \frac{[\text{surface specie i}]}{[> \text{CaOH}^{-0.75}]_0} \quad \text{(cationic surface species)} \\
\text{frac}(i) = \frac{[\text{surface specie i}]}{[> \text{CO}_3H^+0.75]_0} \quad \text{(anionic surface species)}
\]