DICHOTOMY FOR ARITHMETIC PROGRESSIONS
IN SUBSETS OF REALS

MICHAEL BOSHERNITZAN AND JON CHAIKA

(Communicated by Alexander Iosevich)

Abstract. Let \mathcal{H} stand for the set of homeomorphisms $\phi: [0, 1] \to [0, 1]$. We prove the following dichotomy for Borel subsets $A \subset [0, 1]$:

• either there exists a homeomorphism $\phi \in \mathcal{H}$ such that the image $\phi(A)$ contains no 3-term arithmetic progressions;
• or, for every $\phi \in \mathcal{H}$, the image $\phi(A)$ contains arithmetic progressions of arbitrary finite length.

In fact, we show that the first alternative holds if and only if the set A is meager (a countable union of nowhere dense sets).

1. Definitions

Let \mathbb{R}, \mathbb{Q} denote the sets of real and rational numbers, respectively. By an AP (arithmetic progression) we mean a finite strictly increasing sequence in \mathbb{R} of the form $x = (x + kd)^{n-1}_{k=0}$, with $d > 0$ and $n \geq 3$. The convention is sometimes abused by identifying the sequence x with the set of its elements. An AP is completely determined by its first term $x = \min x$, its length $n = |x|$ and its step (difference) $d > 0$.

Denote by \mathcal{H} the set of homeomorphisms $\phi: [0, 1] \to [0, 1]$ of the unit interval. The result presented in the abstract can be restated as follows.

Theorem 1. Let $S \subset [0, 1]$ be a Borel subset. Then exactly one of the following two assertions holds:

1. (either) there exists $\phi \in \mathcal{H}$ such that $\phi(S)$ does not contain 3-term APs;
2. (or) for every $\phi \in \mathcal{H}$, $\phi(S)$ contains APs of arbitrarily large finite length.

Moreover, (1) holds if and only if S is meager.

Recall some basic relevant definitions. Let $S \subset \mathbb{R}$. A set S is called nowhere dense if its closure $\bar{S} \subset \mathbb{R}$ has empty interior. S is called meager (or a set of first category), if it is a countable union of nowhere dense sets. S is called residual, or co-meager, if $\mathbb{R} \setminus S$ is meager; S is called residual in a subinterval $X \subset \mathbb{R}$ if the complement $X \setminus S$ is meager. Finally, S is called a set of second category if it is not meager.

Received by the editors December 4, 2013 and, in revised form, March 2, 2015 and June 30, 2015.

2010 Mathematics Subject Classification. Primary 11B25, 26A21.

Key words and phrases. Meager subset, arithmetic progressions, homeomorphism.

The first author was supported in part by DMS-1102298.

The second author was supported in part by DMS-1300550.

©2016 American Mathematical Society
The following proposition lists some “largeness” properties of a set $A \subset \mathbb{R}$ which force it to contains APs of arbitrary large finite length. Denote by λ the Lebesgue measure on \mathbb{R}.

Proposition 1. The sets in each of the following five classes \mathcal{E}_i, $1 \leq i \leq 5$, contain arbitrarily long finite arithmetic progressions:

- $\mathcal{E}_1 = \{ S \subset \mathbb{R} \mid S$ is Lebesgue measurable with $0 < \lambda(S) \leq \infty \}$,
- $\mathcal{E}_2 = \{ S \subset \mathbb{R} \mid S$ is residual in some interval $U \subset \mathbb{R}$ of positive length $\}$,
- $\mathcal{E}_3 = \{ S \subset \mathbb{R} \mid S$ is winning in Schmidt’s game $\}$,

 (several versions of Schmidt’s games are possible; see [5, 8]),
- $\mathcal{E}_4 = \{ S \subset \mathbb{R} \mid S$ is Borel and not meager $\}$,
- $\mathcal{E}_5 = \{ S \subset \mathbb{R} \mid S$ has Baire property and is not meager $\}$.

Recall that a set $S \subset \mathbb{R}$ has the Baire property if it can be represented as the symmetric difference $S = F \triangle P = (F \setminus P) \cup (P \setminus F)$ where $F \subset \mathbb{R}$ is open and $P \subset \mathbb{R}$ is meager.

The family \mathcal{BP} of subsets of \mathbb{R} which have Baire property forms a σ-algebra containing the σ-algebra \mathcal{B} of Borel subsets of \mathbb{R}. (We refer to [6, §4, page 19] for the short review of relevant standard material.)

Proof of Proposition 1. For a set $S \in \mathcal{E}_1$, one easily produces APs in S near any of its Lebesgue density points. The argument for the classes \mathcal{E}_2 and \mathcal{E}_3 is even easier because the class \mathcal{E}_3 and the class of residual subsets of a fixed subinterval are closed under finite (and even countable) intersections.

Since $\mathcal{E}_4 \subset \mathcal{E}_5$ (because $\mathcal{B} \subset \mathcal{BP}$), the proof of Proposition 1 is completed by showing that $\mathcal{E}_5 \subset \mathcal{E}_2$. Given $S = F \triangle P \in \mathcal{E}_5$, the open set F cannot be empty (otherwise $S = P$ would be meager, contradicting $S \in \mathcal{E}_5$). Let $U \neq \emptyset$ be a subinterval of F; then S is residual in U, so that $S \in \mathcal{E}_2$. \[\square\]

For more references on Borel sets and Baire property we refer to [1] and [9] (in particular, see Proposition 3.5.6 and Corollary 3.5.2 in [9, page 108]).

Note that the problems of finding finite or countable configurations F in sets $S \subset \mathbb{R}$, under various “largeness” metric assumptions on S, have been considered by several mathematicians.

Following Kolountzakis [8], a set F is called universal for a class \mathcal{E} of subsets of reals if $F \ll S$ for all $S \in \mathcal{E}$. Henceforth $F \ll S$ means that S contains an affine image of F, i.e., that $aF + b \subset S$, for some $a, b \in \mathbb{R}$, $a > 0$.

Every bounded countable subset is universal for the classes \mathcal{E}_k, $1 \leq k \leq 5$. Every finite subset of reals is universal for all the classes \mathcal{E}_k, $1 \leq k \leq 5$.

An old question of Erdős is whether there is a universal infinite set $F \subset \mathbb{R}$ for the class \mathcal{E}_1 (of sets of positive measure). The question is still open even though some families of countable sets F are shown not to contain universal sets; see Kolountzakis [8], Humke and Laczkovich [7] and the references there. In [7] an elegant combinatorial characterization of universal sets F (for the class \mathcal{E}_1) is given which reproduces earlier results in the subject.

Keleti [2] constructed a compact set $A \subset [0,1]$ of Hausdorff dimension 1 which does not contain 3-term APs; on the other hand, Laba and Pramanik in [4] showed that under certain assumptions (on the Fourier transform of supported measure)
compact sets of fractional dimension close to 1 must contain 3-term APs. We refer to [4] for a survey of related questions.

The central result of the paper, Theorem 1, completely characterizes the topological (rather than metric) properties of a Borel set $S \subset \mathbb{R}$ which guarantee that it contains arbitrarily long APs. This theorem is an immediate consequence of the following proposition and the fact that the sets $S \in \mathcal{E}_4$ contain arbitrarily long APs (Proposition 1).

Proposition 2. For every meager subset $C \subset [0,1]$, there is a map $\phi \in \mathcal{H}$, $\phi: [0,1] \to [0,1]$, such that $\phi(C)$ does not contain 3-term APs.

A stronger version of Proposition 2 (Proposition 3) is presented and proved in the next section.

2. Proofs of Propositions 2 and 3

Denote by C the Banach space of continuous maps $f: [0,1] \to \mathbb{R}$ equipped with the norm

$$\|f\| = \|f\|_\infty = \max_{x \in [0,1]} |f(x)|.$$

Denote by \mathcal{F} and \mathcal{H}^+ the following subsets of C:

$$\mathcal{F} = \{ f \in C \mid f \text{ is non-decreasing with } f(0) = 0; f(1) = 1 \},$$

$$\mathcal{H}^+ = \{ f \in \mathcal{F} \mid f \text{ is injective} \} = \{ f \in \mathcal{H} \mid f \text{ is increasing on } [0,1] \}.$$

The set \mathcal{F} is a closed subset of C, while \mathcal{H}^+ is residual in \mathcal{F}. (Indeed,

$$\mathcal{H}^+ = \bigcap_{0 < a < b < 1 \text{ or } a,b \in \mathbb{Q}} F_{a,b}; \quad F_{a,b} = \{ f \in \mathcal{F} \mid f(a) < f(b) \},$$

where \mathbb{Q} stands for the set of rationals, and $F_{a,b}$ are open dense subsets of \mathcal{F}.)

The following proposition is a stronger version of Proposition 2.

Proposition 3. Let $C \subset [0,1]$ be a meager subset. Then, for a residual subset of $\phi \in \mathcal{H}^+$, the image $\phi(C)$ does not contain 3-term APs.

Since a meager set is a countable union of nowhere dense sets, it is enough to prove the above proposition under the weaker assumption that C is nowhere dense. Indeed, a meager set C has a representation in the form $C = \bigcup_{k=1}^{\infty} C_k$ where C_k are nowhere dense.

Then the unions $U_k = \bigcup_{i=1}^{k} C_i$ form a non-decreasing sequence of nowhere dense sets, and $\phi(C)$ may contain a 3-term AP only if some $\phi(U_k)$ does.

Let

$$\mathcal{H}_\varepsilon(C) = \{ \phi \in \mathcal{H}^+ \mid \phi(C) \text{ has no 3-term APs of step } d \geq \varepsilon \}.$$

In the proof of Proposition 3 we need the following lemma. Its proof is provided at the end of the next section.

Lemma 1. Let $C \subset [0,1]$ be a nowhere dense subset and $\varepsilon > 0$. Then $\mathcal{H}_\varepsilon(C)$ contains a dense open subset of \mathcal{H}^+. In particular, $\mathcal{H}_\varepsilon(C)$ is residual in \mathcal{H}^+.

Proof of Proposition 3. We may assume that \(C \) is nowhere dense (see the sentence following Proposition 3). We may also assume that \(C \) is compact (otherwise replacing \(C \) by its closure \(\overline{C} \)).

By Lemma 1, each of the sets \(\mathcal{H}_\varepsilon(C) \), \(\varepsilon > 0 \), is residual in \(\mathcal{H}^+ \). It follows that the set \(\mathcal{H}_0(C) = \bigcap_{k=1}^{\infty} \mathcal{H}_{1/k}(C) \) is residual. It is also clear that, for \(\phi \in \mathcal{H}_0(C) \), the images \(\phi(C) \) do not contain 3-term APs.

This completes the proof of Proposition 3. \(\square \)

3. Proof of Lemma 1

First we prepare some auxiliary results.

Lemma 2. Let \(C \subset [0,1] \) be a nowhere dense set, let \(f \in \mathcal{H}^+ \) and let \(\varepsilon > 0 \) be given. Then there exists \(g \in \mathcal{H}^+ \) such that \(\|g - f\| < \varepsilon \) and the set \(g(C) \) has no 3-term APs with step \(d \geq \varepsilon \).

Proof. Without loss of generality, we assume that \(\varepsilon < 1/2 \). Pick an integer \(r \geq 3 \) such that \(\varepsilon r > 1 \).

Since \(C \) is nowhere dense, so is \(f(C) \), and one can select \(r - 1 \) points \(x_1, x_2, \ldots, x_{r-1} \in (0,1) \setminus f(\overline{C}) \),

\[
0 = x_0 < x_1 < x_2 < \ldots < x_{r-1} < x_r = 1,
\]

partitioning the unit interval into \(r \) subintervals \(X_k = (x_{k-1}, x_k) \), each shorter than \(\varepsilon \):

\[
0 < |X_k| = x_k - x_{k-1} < \varepsilon \quad (1 \leq k \leq r).
\]

Then one selects non-empty open subintervals \(Y_k = (y_k^-, y_k^+) \subset X_k, 1 \leq k \leq r \), in such a way that the following four conditions are met:

\[
\begin{align*}
(3.1) \quad & f(C) \subset \bigcup_{k=1}^{r} \bar{Y}_k, \\
(3.2) \quad & x_{k-1} < y_k^- < y_k^+ < x_k \text{ (i.e., } \bar{Y}_k \subset X_k) \text{, for } 2 \leq k \leq r - 1, \\
(3.3) \quad & 0 = x_0 = y_1^- < y_1^+ < x_1, \text{ and} \\
(3.4) \quad & x_{r-1} < y_r^- < y_r^+ = x_r = 1.
\end{align*}
\]

Set \(p_1 = 0, p_r = 1 \) and then select the \(r - 2 \) points \(p_k \in Y_k, 2 \leq k \leq r - 1 \), so that the set \(P = \{p_k\}_{k=1}^{r} \) contains no 3-term APs. Then the sequence \(\{p_k\}_1^r \) is strictly increasing, and

\[
\delta = \min_{1 \leq m < n < k \leq r} |p_m + p_k - 2p_n| > 0.
\]

Next, for \(1 \leq k \leq r \), we select open subintervals \(Z_k \subset Y_k \), each shorter than \(\frac{\delta}{4} \), with \(p_k \subset \bar{Z}_k \).

Define \(u \in \mathcal{H} \) to be the homeomorphism \([0,1] \to [0,1]\) which affinely contracts \(\bar{Y}_k \) to \(\bar{Z}_k \) and affinely expands the gaps between the intervals \(\bar{Y}_k \) to fill it in. Note that

\[
(3.2) \quad |u(x) - x| < \varepsilon, \quad \text{for } x \in \bigcup_{k=1}^{r} \bar{Y}_k,
\]

because \(x \in \bar{Y}_k \) implies \(u(x) \in \bar{Y}_k \) and hence \(|u(x) - x| \leq |Y_k| < |X_k| < \varepsilon \).

Since \(u(x) - x \) is linear on each of the \((r-1) \) gaps between the intervals \(\bar{Y}_k \), the inequality \((3.2)\) extends to the whole unit interval: \(\|u(x) - x\| < \varepsilon \).
Let $\delta > 0$ exist a M.

Corollary 1. Let g which is positive because $|\epsilon| > |\alpha|$. Note that the sets H assumes its minimum $\gamma > 0$. Assume to the contrary that such an AP exists, say $A = \{a_1, a_2, a_3\}$. Then, for both $\epsilon > 0$, the set H contains an AP with step $d = 2\epsilon$. It remains to show that $\gamma > 0$. Define $g = 2\epsilon$. Then there exists a $\gamma > 0$ such that for all $h \in H$ such that $\|h - g\| < \delta$ the sets $h(C)$ have no 3-term APs with step exceeding 2δ.

Proof. Let $M = \{(x_1, x_2, x_3) \in g(C)^3 \mid x_2 - x_1 \geq \epsilon$ and $x_3 - x_2 \geq \epsilon\}$. Then M is compact, and $F: M \to \mathbb{R}$ defined by $F(x_1, x_2, x_3) = |x_1 + x_3 - 2x_2|$ assumes its minimum $\gamma = \min_{x \in M} F(x) > 0$ which is positive because $g(C)$ has no 3-term APs with step $d \geq \epsilon$. Take $\delta = \min(\epsilon/2, \gamma/5)$.

Assume to the contrary that for some $h \in H$ with $\|h - g\| < \delta$, the set $h(C)$ contains an AP with step $d' > 2\epsilon$, i.e., there are $c_1, c_2, c_3 \in C$ such that $h(c_3) - h(c_2) = h(c_2) - h(c_1) > 2\epsilon$.

Then, for both $i = 1, 2$, we have $g(c_{i+1}) - g(c_i) > h(c_{i+1}) - h(c_i) - 2\delta > 2\epsilon - 2\delta \geq \epsilon$, as claimed.

Define $g \in H$ as the composition $g(x) = (u \circ f)x = u(f(x))$. Then

$$\|g - f\| = \|u \circ f - f\| = \|u(x) - x\| < \epsilon.$$
whence \((g(c_1), g(c_2), g(c_3)) \in M\) and hence
\[
\gamma \leq F(g(c_1), g(c_2), g(c_3)) = |g(c_1) + g(c_3) - 2g(c_2)| \\
\leq |h(c_1) + h(c_3) - 2h(c_2)| + 4\delta = 0 + 4\delta \leq \frac{4\delta}{5} < \gamma,
\]
a contradiction. \(\square\)

Proof of Lemma 1. It follows from Lemma 3 that there is an (intermediate) open subset \(U \subset H^+\) such that
\[
H_\varepsilon(C) \subset U \subset H_{2\varepsilon}(C) \subset H^+.
\]
This set \(U\) is dense in \(H^+\) because its subset \(H_\varepsilon(C)\) is (by Corollary 1). Thus the set \(H_{2\varepsilon}(C)\) contains an open dense subset \(U \subset H^+\). Since \(\varepsilon > 0\) is arbitrary, the proof is complete. \(\square\)

Acknowledgments

The authors thank the referee for suggestions that improved the paper. The second author thanks Rice University for its hospitality.

References

Department of Mathematics, Rice University, Houston, Texas 77005
E-mail address: michael@rice.edu

Department of Mathematics, University of Utah, 155 S. 1400 E Room 233, Salt Lake City, Utah 84112
E-mail address: chaika@math.utah.edu