RICE UNIVERSITY

TWO APPLICATIONS OF RUNGE'S
TECHNIQUES ON APPROXIMATION

by

John Emerson McMillan

A THESIS SUBMITTED

IN PARTIAL FULFILIMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
| MASTER OF ARTS

Houston, Texas
May, 1962

aWwa 10/"197 196 L




ACKNOWLEDGEMENT

The author wishes to express his appreciation to
Professor G. R. Maclane whose suggestions and supervision
made this work possible.



SECTION I

Given M(r) for r > O with O </u(r) Y @, G. R. MacLane
[1, Thm. 3, Coroll.] has constructed a function @#(z), meromorphic
in lzl < ®, with the properties

(1) +the image under w = @(z) of an unbounded curve: z = ¥ (t)

(0<t<m, ¥ continuous, lim sup |\6(t)| = ® ) is dense
t>w .

on lwl € @, and
(2) the Nevanlinna characteristic of @ satisfies

T(r) < /M(r) l:g r.

The function @ was constructed geometrically by specifying the
Riemann surface of its inverse as a covering of the sphere. For

®
a given sequence [an} of points on |wl ¢ ® such that
1 .

(3) {n? is dense on le < o,

®
the construction defines an expanding sequence {Cnl of
' 1

analytic curves with the property that
' ‘ 1
(4) : '|,¢(z) - an! <= forzonC (n21).

It is clear that (1) follows from (3) and (4).

It should be noted that (2) is as strong as possible. For
a rational function clearly cannot satisfy (1), and the character-
istic of a function which is meromorphic in Izl < ® and non-

rational satisfies [3,p.218]

lim __ﬁ__LTr = @

r>® log r



The object of this section is to construct, by giving an
explicit formula, a function possessing the essential properties
- N L . @
of the function #. More specifically, let {%n} be a sequence
1

@

satisfying (3) and a, #0 (n > 1), and choose {;ng with e < 1

1

. N ®
and e Y 0. We will define a double sequence {kgh’rni}l

satisfying
(5) 0< QP <y <P, <y, <o b @

and such that if we let

| E : Prr1 ¢
6 - 3 kt+l - k ,
(6) plz) 1 %k Pr+12 Sx2

then #(z) is meromorphic in [zl < ® and
(7) ?¢(z) - an! <f.en for !z! =T, (n>1) .

Then since @#(z) has poles only on the {lzl = ¢, @and has only one
pole on each {lzl = 9n] » (2) will be satisfied if @ ¢ ®

sufficiently fast.
The idea of the proof of (7) is as follows.
For a fixed n and |zl sufficiently large

n

Pn7%
where we are using "o~ " to mean "approximately equal to'"; and for
a fixed |z| and n sufficiently large ’

~ 1



©n
P 7 ~ 1

®
Thus if {-(?n’-rn)]l is properly chosen,

1 for lzl =r,

$n+l _$n ~

Sa™ o |2l 2]
0 for —=— small or large.

9n ¢ ntl
Thus in particular d

1 for lzl =r

Sn+l _ ®n n~ - n

-2z -z = ,
Fne1 n 0 for lzl = re k £n

T

2
+
Now let g(r) = L log —2L 3o . We would like to
13 1 ie :
- re
o
let
(8) B= max g(r)
: O<r<l
and to establish that
(9) | - g(r) < g(1) for r 2 1.
It is elementary that l—-—;——iﬁ -is a decreasing function of r
1 - re

for r > 1. Thus to establish (8) and (9), it is sufficient to
proyve -the 'continuity of g(r) at r = 1. To this end we note that

2. ) )
1 - re.igl "= 1l - 2r cos © + rz = (1 - r cos 9)2 + re sin ©

Thus

1 - rei®] ¢

rlsin 6l < %Isin el for r > -]é'-



and
+

log L

l-reiO

Therefore, if we choose rn—> 1l, we have from Lebesgue's Dominated

< l:g(Zlcsc el) = log (2lcsc ol).

Convergence Thoerem

glr)) —ea(1) .

@
We define the sequence {cn} by
o}

(o =184 10ela. | + Loz 6
o 2 g_l 8

2
+
B + % g(1) + Z log lakl + log 18

(10) { ¢ =
1
n+l
\cil =B + g(1) + Z log lakl + log 30 (n 2 2) .
n-1 '

For notational convenience we will assume that /U\(r) is
continuous and strictly increasing. This is no restriction since for
any/o((r) given for r > 0 with 0 < M(r) M ®, we may choose a
continuous, strictly increasing /u‘(r) with O</u'(r)< M(r) (r >0)
and such that /4,(' Mw. Then

/u'(r) l:g T </.((r) l:g r .

We may also assume without restriction that /M(O) < 2.

' ®
Now define r_ and the sequence (( Q rn)} by

1
ﬁo max{/b\-l(Z co) , e}

2lal|

Q= max{ r, (l + -—-e-:[-—-) ) /u'l(Q Cl)}

23|all
?l (l + max —E]—__— s 2 )
n+l n
2 lan I 2%la |

max{rn_l(l + max . =L, énn.’ 2jl> :/(/(”1(2611) ,/M—l(2n)}

(n-1)2B+2 ? lakl
——, 2 ) (n>2).

(11)¢*,

39

H
i

€

?n (l+max N



Note that ((?n } ‘satisfies (5)

Upon taking (6) as our definition of the function @ we can

prove
Theorem 1. (6) converges subuniformly to a meromorphic function

@ and satisfies (7) and (2).

Then we have ‘ |
Corollary. The function @(z) is meromorphic in lz| < @ and

has the properties (1) and (2).
Now for lzl r,; (k2 1) we have from (5)

2(Q, = Fpeia)
Q41727 (g2

S+l Px
Pri1-% Q2

T1e-1 (P41 -Sk)
(Qps1Tx-1) QxTi-1)

Sk _ Pr+l
Sk Tk-1  Sk+1 k-1

< Sk _ 4
P k-1
T
k-1
So from (11)
€
(12) -?-L{"'l - Pi_ ¢ =t for |zl L1 4 (k > 1).

Crs1"2  Px~Z = 2k|ak|



We may now prove that (6) converges subuniformly in lz] € ® .

Let K be a compact subset of |zl < ®, and choose r, such”that
EKC lzl < r,. et

Ry(z) = Z ak (%ﬁi—z - gf:-z) y

1

Observe that from (12) we have
®

z o [Deri Sk

£ K| Pp41™2 Px~2
Thus since en‘l’ 0 we see that

R L 7
B =R+ > ey (—-—“—*—1—-?&;)

-2
= P k+1

< e zek (m>n) .

is the sum of the rational function Rn(z) and the infinite sum
which is uniformly convergent on K. Thus @(z) is meromorphic in
IZI < .

Now for |zl > r, (n 2 2) we have for k < n

’91: < Pr_ _ 1 1
e e e N
A?k | 911
Thus from (11)
9k < _ &n | < T’;n (n > 2)
SkZ T . ne2 2 - oht
(n-‘_l)z z |an| (n-1) (lak|+|ak_l|.)
i - - ' ‘

and for lzl 2> T (n > 2) and k. < n we have



ksl Pk » €n
(13) - <
-z -Z| = n+2
Prr1 Px (n-1)2""( lak+l|+l.akl)
€, €,
(n-1)2%*2(lay l+lay, 1 1) (n-1)2" g |
Now for lzl = o (n > 1) we have from (11)
®n+l -1l = 1 1 €n
$ 12 On+1 n+1 o™+2 |, 0!
z T n
n
Also from (11) for lzl = ry
S 05 1 l
P17z T17P1 0 I, 2°la, |
$1 ‘
and for lzl = r, (n > 2)
®n < n - 1 €n
fn™?| T ™ %n In_, 7 2n+2|anl
®n
Thus for lzl = r, (n > 1) we have
(14) | Pn+1 - .49_-'&._ -1« _.?_I.l;"_l-___ -1 + Pn
Pn+1™? Pn~2 - 1”2 Pn2

‘n

- n+1l
2 lan!

Combining (12), (13), and (14) we have for lzl| = r

1



®
l¢(z) - a) | < la l , _5r Z Ia _Skes1 Pk
§272 $1-2 > Pre1™? FkZ
€ L €
-+ k
< €1
and for Izl =r, (n22)
n-1l
Pres1 Px Pnil @ l
I#(z) - a | lal——"'—-—-——+|a|_r.L'L____I.1.___l
n £ Z r+17%  Fx? Pn+l™? Pn7?
® | .
| Pkl Pk
+ la e L 2
,;1 Pr+12 P2
-1
) n-l €n . o . i €
_1)on+l ¢ n+l o K
1 (n-1)2 2 n+l e
®
- Z X
n 2
< e,

Thus (7) has been proved.
Now for [zl £ ®n (n 2 1) we have from (11)

_?.Q'LJ.'__. - 1l = ___J;__._ ___L___
Sn+172 ixﬂ, -1 Cn+l -1
” Lhro
n
< 1 < %
£n+l -1
r



Thus

On+l
l o S
(25) Pn+17?

<% for FZFS ?n (n>1) .

Also from (11) for |zl > On (n22)

¥n-1
fn-172

$n-1 1 1
= < <
?n"fn-1 Sn S
?n—l ?n—l

(16)

R

<

We are now in a position to prove
27
an m 5= LogIp(rei®) | 1 o
m(r,m) = T ogl@(re=") | de < E/q(r) logr (r>0) .
o

In the following computation we will use the facts that

+ 2 P4
log [« £ Z logoy and
1 1
+ 2 &+
log Z Xy S Z log O(i + log p .
1 1 '

@®
PIORLINE Z o, | P?’k+1 - P?k -
' ‘ 1 k+l ~ TC x ~ T



10

Thus
(18) n(r,o) =0 for 0 < r<ry

For ro< g Q1 ve have again from (12)

@

o €
k io ie k
Z | Pryp-re Py —re ' Z

Thus for r,. < T £ @, We have from (15)

P2 P1

? 2—:c'eig Ql-re

+ 16 + |
logl@(re™) £ log | lay |

+ log 2

D
+
+ log Z le| el Sk
>

| Qpqp-re 10

? re |

+ +
£ log & 5|+ g + log lall + log 2
?l-re .
< . 3 log la,| + log 6
C log |75 | + log la| + log
1;«?;3,;19 DL
oL

Thus from (9) and (10), for r,<rsQ

1

lr ie
§1

s

2n + 2n +
f logl¢(reig)l dae < .;2-1? J’ log ' dae
o] ’ (o)

+
+ loglall + log 6
1 +
< =B + loglall + log 6

-2

=C°’



and we have

(19) n(r,w ) < c, forr < r <¢ -

For ¢; < r ¢ @, Wwe have as before from (12)

i €11 P i &y
3 ok ?k L1-re ?k-—re 3 2

Thus for Q, < r ¢ ¢, it follows from (15) and (16) that

|

+ log (la l ’ ?3_re ig - gz-reig I)

‘> %
?2--:c‘eig ?l_-re

ie

+ 16 +
logl@(re™™)| < log |al|

89)

11

..|.
L TS A Prre
+ 92 91
< 1o —_— —_—
S 08 ( 92 _rei® Pl-reig )

2
+ +
+ log( —-Sz-g-——?@ +g) + Z log lakl + log 3

9 o-Te 1

o+ 1 +
£ 2 log ——=| + log
1-E-1° 1-Le10
2 ?1

+ log 18 ,

Z logla
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and from (8), (9), and (10) we have for Q< <@

N

r 1o

l—=—e

2n " ‘ 2n +
f logl¢(rej‘g)l ae S‘:,l,"' ( log
ok %

2 .
ae + Zloglakl

ie
1-E—e
1 1
+ log 18
2n + 1 2 +
<B# 33 log -eigl de + Zlog!ak.l
0
+ log 18 1
= Qlo
Thus
(20) M(r,m) < c, for 91 < r< P e

Now for On <r< ?n+l (n 2 2) we have from (12) and (13), if we

0
interpert Z ()=0,
1 .
n-2 n-2
la, | ?'15"']_" - P | < Z n-l <1 and
T Qe pre®® T (n-2)2"
® ®
€
Z 'ak" SDML:'.“Q"'?I{ 6| & Z < <1.
n+2 P xr1Te Qe nt2 2
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Thus
' n-2
+ + ,
log I (re®)] < log Z la, | Prcer 5 - ?-IS I
) ; B -re ¢ -re
1 9k+l k
n+l
: S o S A
.= -Tre 9 -re
n-1 Prrl Xk
®
+ ,
+ log Z Iakl P+ 5 - 3" 15| + log 5
} -re 33 -re
n+2 el K
n+l n+l
+ . +
< Z log ——-&-ﬂ-’-—-—-—-—g&——- + Z log la, |
- —rel® Q —rei® k-
n-1 Px1 Sk n-1 -
+ log 5 .
So from (15) and (16) we have for Pn< T <O (n >2)
+ + + -
log|¢(reig)l £ log( —?-I-l———i-é- + %_-‘ + log Sni1 5| + ¥n 5
) , Qn-Te Gny1~TE o,~Te
‘ n+l
+ +
+ log | Tl +2 | + Z log la, | + log 5
| o0 Y2 K
?n-i-l n-1 -7
+ 1 + 1
seglog |95 | *21% 77 15
?n+l 9n
n+1l

+ Z log lakl + log 30
n-1 T
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Thus for Pn< TS @i (n > 2). we have from (8),(9), and (10)

‘——rl—ral ae
l-——e

2% + 27 +
1 .
5% logl?(reig)l de 5_% ( log
° Pn+1

1 27 +
+ 7 log
o]

n+l >
+ log lakl + log 30
n-1 o

27:. "
log
o]

n+l _
+ Z log I-akl + log 30
n-1 T

1l—~—e
n

—1
r iO,d‘g

al-

l-e

il
0
-

and
(21) n(r,o ) £ c, for ©n< T < Pnu1 (n>2).
Thus from (18) through (21) and (11)

m(r,®) =0 , 0L rsr
.anq- ‘
%ﬂ(ro) <%}A(r) logr , T, < TLQq

m(r,® ) <

_%/u(?n) < %/u(r) logr , @< T<Qny (n> 1),



15

and we see that (17) has been proved.
Now since ?l > 1, we have for ?n <r £ Qo1 (n>1)

r .
Nz, ) =f a{t:@) - 0(0.®) g4 4 n(0,0) log r
) |

(l

=n log rr

d-lp-
ct

Thus for Pn< T<On (n > 1) we have f'xifélm'_(ll):

L 1 .
N(r,m) £ 2/4'“?11). log r £ 2/4A(r) log r
Then since it is clear that N(r,® ) =0, forr L9, , we have

> 0)

N(r,@ ) < %/x(r) lgg r (r

This result combined with (17) yields (2).
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SECTION II

G.R. MacLane has proved
Theorem 2. Let f(z) be holomorphic in Izl € 1 and suppose

' there exi.sts a dense set ® on [0,21] such that

l .
(22) ( (1 -1r) lgglf(reig)l dr < ® o e® .
o .

Then any component of {z. llf(z)l = c] which is not compact must

tend, at each end, to a définite point of {lzl = l} .
The purpose of this section is to constrict a meromorphic

function with "wobbly" level curves, which indicates that some
condition, such as (22), is necessary to conclude that level curves
end at points . More specifically, we will construct a function,
holomorphic in |zl < 1, which has a level curve one component of
which tends, at one end, to an arc on {lzl = l) .

Let S denote the partially open square
{z=x+iy|0<x<l, 0<y ¢ l} . o Letl=2a > a2>...>an$,0
be a given sequence. Define

r’= (L? (z‘x:an, O<y5%})U{z,O<x_<_l,y=lo}
P (9 (el 28 3 o< D) U (focx 35200 - )

il

N
)

P e e e e e St e e . e e s e S S o g
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We can prove
Theorem 3, Given € > O. There exists a function f(z),
holomorphic in S, such that

If(z) =1l < e , z e[

(23) - ,
,f(Z)l < € y 2 SP*

From Theorem 3 the desired result easily follows. We choose
' *
0< el % and let T =(Z| I£(z) | < % } . Then | = is contained

in some component, say T', of T. We let A denote the boundary of
T' and note that A is a component of the level curve{ , I£(z) ] =
Note also that ["N(T'UA) = . We now let ' be a conformal
map of |zl < 1 onto the interior of S. Then 'Y' has a continuous
extension Y to |zl < 1 and Y gives a one to one correspondence
between {l zl = l} and the boundary of S. Thus letting

k]-[_)(z) = £(Y(z)) we have
Corollary_. The function Lp(z) is holomorphic in |zl < 1 and

the component \P l(A) of the level curve (z “\I}(z)l } tendgs,
at_one end, to an arc on {lzl } .

The proof of Theorem 3 is an extension of a familiar argument.
If there existed a rectifiable Jordan curve C which contained [
in its interior and ['* in its exterior, then we would have

0 z e ¥

1 a3

(24) F(Z) = 27‘1 3 - ‘Z = {l Z € r1 .
C

Nlr—*

}-

We could then find a rational function R(z), with poles only on C,
approximating F(z) on [ and ["* and, using Runge's pole-pushing
process, obtain a function f(z), holomorphic in S, approximating
R(z) on ' and ['*. Then Theorem 3 would be proved.



But clearly no such rectifiable curve can exist.

e

33

and prove that the improper integral J =
c
suitable sense) and satisfies (24). It will

to approximate f 3‘332 on [T and T* by
C

in S.
Now define

S
S

(25) 5, = -
n a - a a - a
min{ n-1. n n n+1

and let
an{Zan+l"'5n+l—<-x-<an+‘s’n’ y =
U{ n+].'*"5n+lSX & " 8p =
U{ZX=an+5n’%-<~ }U(l
U{z Izléan—jf:il 8,2 y>2}
Xn=.{zx=an+5n,—%<y<—é-]

¥ ={zx=0, -%<y<-38;]

]

.

18

We will define
a curve C which contains r‘ in its interior and V' * in its exterior

~ "converges" (in a

then be a simple matter

a function holomorphic

(n21),
(nél):

and

The curve § will be considered as oriented with the negative

direction of the imaginary axis. We will consider. Xn

oriented as shown in the following diagram.

and Cn

i)
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A c
n
r AT,
a
n
Cn
Figure 2

We also define

C=@C UXlUX 4

1
D {z‘dlst (z,C )< } (n2>21), and

Note from (25) it is clear that [ is interior and ['* exterior
to C. Note also that ¢ C D and (PUM*)ND=¢ .

We now write formally

©
1 as 1 3 1 as
T
c Cn b’\
\ d3
tawm | 3 - %
and prove ¥

Lemma 1. (26) converges subuniformly in S - C to a function

F(z) which satisfies

0, 2z exterior to C

(27) F(z) =
l, 2z interior to C .
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Write S =¥+ in . Now choose z_ ¢ 8 - C and let N be a disc
about z  and k, an integer such that x - a, - 5, 2 Q ? 0 for
z=x+iysNandk2ko. Then

1 1
8 8
2 | _a3 _ 2 a3 |_ 1 an _ _M
2ni JI-2 2%i I=-z |~ 2% ak+5k+iYI—z 1 i\z -2
1
1
8
< e Ok ay
= 2% L ?ak+ak+17- AREYR z!
"8
1
1 8 a, + 61{
< 5 ——3 4
L ¢
8
8 + §
= —— (zel, kD k) .
81:9 :
Thus
1
lim 5= a5 1 a3 :
k—o ani f 3...5:21;1 [ T~ 2 (ZE S)
(28) ¥ -¥ |

and the convergence is subuniform in S.

. Now for 2z ex’ce:&ior to C we have

)
2 .0 (k21) .

Cx "'Xk"xkﬂ
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Thus for z exterior to C we have from (28)

® , n o ' <
1 a3 e Z 1 a3 1 d
oy = 1lim roymry - r
Z 2n1f3-z N> z (2MJ; J-2z 211 3-2)
- ¢, ot B Byl B~ Y1
A A 3
. 1 aJd -
= lim Z -
n->o 1 28l S-z
V41 ™%
1 as 1 a3
= lim <= n
n->e 2™ f 3. 2™ 3I- 2z
Yn+l 58
_ 1 az__ _1 as
- 2ni I-z 2uni S-z °
-y %

Thus from (28)

@
1 a3 1 as 1 as . _
Z .'2‘7:'5[ 3-z+2nif -z T 2ni 5.z = O
1 % 4] Y

for z exterior to C and the convergence is subuniform in S.

(29)

Now define r‘m =Cp + Cpq +¥ -Xm+2 . Then for z interior to C

we have z interior to some My + Then

a5 _
-z

Cp + Vi1

0 (k #m mtl, k > 1) and
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Thus for z interior to C we have from (28)

@® n .
1 a3 ) 1 , a3 1 a3
Z oni T_ g = tin Z 2ni -2z 2ni 3-2
1 n-—>o 7
Ve e N1 O Ve
! as_ . 1 43
- 2ni T -z 2ni I-12z
Coyton™ );n-i-l C m+l+Xm+l-b,m+2
N 3
, 1 d
- lim Z — —_—
n—=>uwm T 2ni f 3-z
’ el Y
1 a3 1 azs 1 a3
e + lim = QR
2ni [ I -2z N> 21l I~z 271 T-z
I_;n Xn+l Xl
(-
1 az 1 a3
=1+ 355 Tz~ 2 S-z °
- 3’1
Thus from (28)
= | ny
1 a3 1 a 1 a3
Z o <=zt o1 Tzt | Iz = 1
1

for z interior to C and the convergence is subuniform in S,

Combining (29) and (30), we see that Lemma 1 has been proved.
It should be noted that in particular (24), with the suitable

interpretation of [SESZ , 1s satisfied.
c
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Now for each n, choose a rational function Rn(z) with poles
only on C, such that '

(31) '

1 a3 _ ' €

2ni f -z Rn(z) < 2n-l-:L for z ¢ Dn °
C
n

Using Runge's pole-pushing process, let ¢n(z) be a function,
holomorphic in S, obtained by pushing the poles of Rn(z) out

®
toward x = O through the channel A = W, D, in such a way that
n .
I €
(32) !Rn(z) - ¢n(z)| < 2n+l for z ¢ S - An .
Thus
(33) S d3—¢(z)<-e—-forzes-A
2ni . 3-z n oh n °

n

Now the series

®
Z 1 as
2ni T -z
n
Cy

isy as we have seen, subuniformly convergent in S - An; thus from
(33) we see that
®

#z) = ). B (2)
1

converges subuniformly in S to a holomorphic functien @. Also
from (33)

®

(34) ‘¢<z>- R
1

£ € forz e S-D .




We note that the functions i [ dS  .na == d3
' ¥

are holomorphic in S. Thus if we set

g g [ ¥8ed [ 7
£ ¥

we see from (26), (27), and (34) f(z) satisfies (23).

24
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