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ABSTRACT 

This study discusses an iterative approach to the problem of a 

continuous beam on discrete non-linear elastic supports and its 

application. The literature studied revealed that practically no work 

has been done on engineering approaches to this problem. 

The basic equations are developed from flexural theory and are 

solved by iteration utilizing Newton’s linear approximation method. 

The solutions obtained were checked by energy methods. 

Numerical results are presented for a marine fendering system, 

a typical example of a beam on non-linear elastic supports. For 

various loading conditions, a comparison is made between an approxi¬ 

mate linear solution and the solution obtained using the non-linear 

approach developed in this study. 
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I 

INTRODUCTION 

Beams \ hich are continuous over discrete supports are very 

commonly used as structural elements. In the majority of design 

studies rigid foundations are assumed but quite frequently the effect of 

support flexibility is of primary interest in the design. There are 

many cases where flexibility is purposely built into a continuous 

structure in order to reduce the forces transmitted to the supporting 

structures or to prevent damage to moving structures generating these 

forces. For example, marine fendering devices purposely employ 

beam supports which are selected on the basis of their elastic charac¬ 

teristics. 

The case of a linear elastic beam on non-linear elastic supports 

is of some interest analytically and will be considered in this thesis in 

detail. The special case of linear elastic supports is also of interest 

for purposes of comparison since this approximation is frequently used 

by design engineers. The popularity of this approximation is due to the 

fact that the solution to the system with linear elastic springs leads to 

a linear formulation, while the system with non-linear elastic springs 

leads to a rather involved non-linear fo rmulation. However, a linear 

approximation may give rise to inconsistency in actual design. 

An iterative technique has been developed in this study which can 

be applied to both linear and non-linear systems. All computations were 

performed on an IBM 1620 computor. Hand computation is possible on 

a desk calculator, but may be too time consuming for a beam which is 
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continuous over more than six spans. Considerable time may be 
I 

saved by utilizing an approximate linear solution as the initial guess. 
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EVALUATION OF SOME ENGINEERING APPROACHES TO THE PROBLEM 

OF ELASTIC SUPPORTS 

In order to select an approach best suited for the task of de¬ 

termining numerical results, a study of available approaches to the problem 

was conducted* A survey of the literature produced no engineering ap¬ 

proaches to the problem of non-linear supports. However, some appli¬ 

cations concerned with linear systems were of interest and consequently 

used as a basis for initial study of the non-linear case. 

(a) Maxwell1 s Method1 

For the case of a linear system, Maxwell1 s general method is an 

excellent one because it leads to a symmetric system of linear algebraic 

equations which can either be solved by a desk calculator or high speed 

computor without much difficulty. 

Maxwell1 s method may be applied as follows: Consider th'fe non¬ 

linear spring system shown below. 

 IT 

fJh = l   

b—A/?— 

i-o 

Procedure: 

(1) Remove the redundant supports, (1, 2) and find the deflections 

at all supports due to the external load, P. 
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(2) Remove the external load, apply a redundant force Xj and 

find the deflections at all supports, 

(3) Apply a redundant force X2 and find the deflections at the 

supports. 

Xz 
V 

(4) Write the equations of geometric compatibility for each re¬ 

dundant support. 

+ 6f1 + fif2 = yj = f (Xj ) 

A? + Sf1 + 6*2 = y2 = f (x2 ) 

(5) Solve this system of non-linear algebraic equations. 
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An important advantage of this method is the fact that each|step 

can be carried out with clear physical meaning. However, the practi¬ 

cability of the method is questionable because of the following reasons; 

1. Many non-linear spring systems encountered in,practice are 

characterized by symmetrical load deformation curves, that is, 

similar response to tension and compression forces. An attempt 

to analytically describe actual spring behaviors indicated that 

such symmetrical response can be expressed only by certain odd 

powered algebraic functions. To obtain a reasonable curve fit 

for some spring deflection cases requires high order polynomial 

functions which makes the solution to the compatibility equations 

extremely difficult. 

2. Direct application of the Maxwell approach requires that the 

load-deformation curve be a continuous function, whereas many 

non-linear spring systems have discontinuous characteristics. 

3. Those springs which have continuous unsymmetrical response 

are extremely difficult to describe with a single algebraic ex¬ 

pression over the working range. 

A numerical solution using Maxwell's method was achieved for 

a beam continuous over fpur supports with symmetrical loading. The 

spring load-deformation function assumed was very simple, (F =KY2 ), 

but of little practical importance since the beam stiffness had to be 

selected so that no spring had tensile loading. Formulation of this 
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simple case and relaxation of the resulting non-linear algebraic equations 

indicated that the approach may be of value when the load-deformation 

curve can be expressed by such a simple function. 

(b) Timoshenko Method2 

This approach involves the closed form solution to the fourth 

order linear differential beam equation for the special case of a continu¬ 

ous linear elastic support. Application of the resulting solution has 

been extended to the case of discrete linear supports by Timoshenko2 

and by Seely and Smith3. These applications give only approximate 

results for the case of discrete support system. The limitations of this 

approach to discrete supports are discussed in reference (3). Since 

this method applied to the case of a continuous non-linear support 

system yields a fourth order non-linear differential equation which 

seemed too involved for a practical solution, no attempt was made to 

use this approach for the discrete non-linear system. 

(c) Method of Three Moments 

This method has been applied to the linear discrete system by 

Firmage and Chi^i4 who have provided a valuable design aid in publishing 

influence lines for continuous beams of this type. However, the Three- 

Moment approach is inherently restricted to linear systems and not 

applicable to the non-linear supports of primary concern in this study. 

(d) Newmark-Austin Method5 

This method has been advanced as a numerical approach to the 

problem of discrete linear elastic supports and involves successive 
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corrections to an assumed configuration. The method is primarily 

intended for desk calculator solutions and becomes tedious for multi¬ 

span beams. It does not lend itself readily to high speed computor 

solutions and is not easily extended to a non-linear system. 

(e) Koiter Method6’ 7 

This method is essentially the same as the Newmark-Austin 

technique except that the integrations performed do not involve numeri¬ 

cal approximations. Application prior to this study has been limited to 

the linear system. Since this method lends itself well to high speed 

computor programing and is also practical for desk calculator solution, 

a modification of the Koiter Method as applied by Biezno and Grammel 

for the linear case was selected as the best available approach to the 

problem under study. 
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U;I 

TYPICAL LOAD-DEFORMATION RELATIONSHIPS AND THEIR MATHE¬ 

MATICAL REPRESENTATION 

Figure (1) shows some of the load-deformation curves which 

are commonly used in marine fendering systems. Curves marked (a), 

(b), (c), and (d) show the load-deformation relations for the non-linear 

system, while (e) shows the load-deformation curve for a linear 

system. 

A very popular type of spring used in many bumper designs is 

the Shear Sandwich type whose load-deformation curve is shown in 

figure (la). To demonstrate the procedure developed, a curve of this 

type will be considered. The curve can be expressed in the form of a 

polynomial, i. e., 

F = f (ay + by2 + cy3 +  + py11) 
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FIG. 1 
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IV 

DEVELOPMENT OF ITERATIVE EQUATION 

Consider the jth span of a continuous beam on elastic non-linear 

supports subjected to any given loading as shown in Figure 2. Let Vj^ 

and Mji denote the shear and moment at the left end, and Vjr and Mjr 

the shear and moment at the right end. Let Pjn denote concentrated 

loads at distances Xjn from the left end, and let toj(x) denote the dis¬ 

tributed loading. 

FIG. 2 
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Then from the statics, the condition SV = 0 gives 

#*!. 

J co. • (x) dx V. = V., + EP. + 
jr jL n jn 

M. = M., + V. 1. + EP. (1. - x. ) + 
jr jl JP J h- jn j jn 

(x)dx 

(1) 

(2) 

The deflection and slope at the (j + l)th support can be obtained in terms 

of forces V.,, M.,. 
Jl Jl 

From the elementary beam theory the deflection of the elastic 

curve is approximated by the following relationship: 

d2 y M 
"S? =(EI). 

(3) 

Thus, 

M?(x) ZLL d _X)+^L 
(EI). (El). Uj X; + (El). 

(4) 

Where, M j (x) denotes the contribution of moment at a point in the jth 

P 
span due to any arbitrary loading. For example, the expression M. (x), 

for a concentrated and uniform load becomes 

U%)=SP . |*fe--x> + 
j n nj (EI). J (EI). 

x dx 

J '“*'1 

Integrating the equation (4) once with respect to x 

x. < x 
Jn (5) 

dy 
dx 

idx ( x j L f Mj(x) 
'dx'ji ■ -ji J (EI). Yji J (EI). dx + J iiirdx 

J o J o j 

This is the slope at any point x = ^ in the span considered. Since only 

the slope at the right end of the beam is of interest at this time, the 

integration must be performed up to ^ = lj. Then, the slope of the 

right end is obtained in the following form. 
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£ - + 

dx , ,r 1 j ^ J2\ 

nj fEO^ +Vjg (EljTxdX+j lElfj" ^ <« 

In like manner, in order to obtain the deflection at any point x - \ in 

the span considered, the equation (6) be integrated once again. 

Thus, 

&L\ 
-f j f 

y(*’= yji+j dx + Mji J j'm.d? + VJ J" m-xixdf 

r r M? (x) 
V (EI>J 

dxd 

For the deflection at = l.» the following equation is obtained. 

*jr ■ 7,i+ + |f mr d?+ v J1’ m dxdf 
° ° J o o J 

+ f> rf M] 

Considering the free body of the portion-of the beam in the 

immediate vicinity of a support as shown in Figure (2b), ' ,the. . 

following relationship is established from statics. 

V = V + Q - F (v) 
j + V jr T J + l j + 1 KYt (8) 

where, F’(y) is the force introduced by the spring deflection and where 

is a concentrated force directly above the support. 

Equations (9) through (13;) presented again below for convenience, 

completely describes the mechanics of the beam problem under con¬ 

sideration and are the basic equations used in this approcah. 

rh 
l • coj(x) dx V, =V, ,+SP, + 

jr jl n jn (9) 
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Mjr = Mjr + Vjl lj +Pjn(1j-Xjn) +J J Uj - x)coj(x)dx (10) 

yJr = y*j^ + AmMjj + AvVji + Ap (ID 

Yjr = Yjl + y’jllj + BmMjl + BvVjl +Bp (12) 

vi«, 
1 + vjl + Qj+j - F(y) (13) 

The primes indicate the first derivative with respect to x and 

the constants Am, AK, Ap, Bm, Bv, and Bp, for uniform and concen¬ 

trated load, are given by the following expressions: 

m 
Clj dx 

= (EDj / A 
Av = \ - x dx 

- SP flj 1 rlj rp*i 
‘ ?Pjn J (EDj ^ J J (El)j 
o J o o J 

xdxdp 

■b r* 
B- ■ Jj I B' 

mJ 11 Wo]xdxd* 
o O J On ** 

,i4> wjn ^jn 

h 1 

O” O 

O o o 

The subscripts designate the terms to which constants apply, 

i. e. , the constants Am, Bm applied to moment terms, M^, in the 

expressions for slope and deflection respectively. The constants are 

not hard to evaluate once a given loading condition and beam constants 

are specified. Notice that Am, Ay, Bm, and Bv are determined by 

the properties of the cross section. Ap and Bp depend on the 
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properties of the section as well as on the type of loading. Expressions 

for Ap and Bp are given below for some frequently encountered cases 

of loading on prismatic beams. 

UT */' 

col4 

BP ■ 24EI 

A - ^Ol3 

P 8EI 
B = ^— 

P 30EI 

A - “°13 

P 10EI 
w l4 

Bw = nx 

P 4sEI 

P 

JL- 

A„ = 
PL2 

8EI 
B - PL3 

P 48EI 
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The numerical technique for applying equations (9) through (13) 

to accomplish a solution will be considered next. First, arbitrary 
M 

initial values of y0 and y{, at support 1 are assumed. Then the support 

reaction may be computed. The shear to the right of support (1) may 

be obtained from equation (13). Equations (9) through (12) may then be 

used to proceed to support 2. This process may be repeated to obtain 

a value of and Mn $6 the right of the last support. The values of Vn 

and Mn obtained are then compared to known boundary values. Since 

Y and M to the right of the last support are conipletely dependent upon 

the initial assumption for y0 and yjj, they may be related to these initial 

values. These may be written in functional form as follows: 

Vn ='Vn ty>» (15) 

Mn = Mn (YO» Ytf) (l6) 

Where, Vn and Mn are the shear and moment to the right of the nth 
/ 

support, that is the last support. For simple end supports the con¬ 

dition which must be satisfied to the right of the last support is that 

M,^ = Vn = 0. Equations (15) and (16) may be considered residual 

expressions equivalent to non-linear simultaneous algebraic equations 

and serve as a guide in establishing the next trial values of ym and y»t . 

There are a few suggested methods for solving certain types of 

non-linear algebraic equations in the literature. Newton* s Method is 

a very convenient one provided initial assumptions are reasonably 

accurate. It gives faster convergency than any other method studied. 
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Newton’s Method may be applied using the following procedure: 

1. Guess initial values, i. e., y0 and yj. 

2. Calculate Vn and Mn using equations (9) through (13). 

3. Replace Vn and Mn with approximate linear functions Vn and Mn. 

v jy /v yi\_y/v „> u-/.^.^n\ (y-yo)+(9vTI\ (y*-yj)) (17) 
n nly°’ Y°} nty°’ y°H9y (y0, yj) V '(%, y‘) U} 

Mn=Mn(y<l> y» =Mn(y0, yj) y^'^ ^\y0, y^' <18> 

4. Solve the resulting linear equations, 

vn (%» yj,) = 0 (19) 

M*n (yo» yo) = 0 (20) 

to obtain new approximate values for y^ and y^.. 

In order to solve equations (19, 20) numerically, they must be 

expressed in the difference form shown below. 

o=vn(yo, rt)+ 

+[yT^yo> yo+Ay0)-vn(y6'-, yo)j A-,Q (21) 

Ayi 

0=Mn(y0, A- 
o 

,[-Mn(yo» yo + Ay’p)- Mn(yn', y},)^-, 
Ay|) 

(22) 

The new approximate values of y0 and yj, are obtained simply by 

adding the values Ay^and AyJ to the initial values y0and y’0. Thus, 

y0i
=VAy0 

y* = y* + Ay* 
01 7 0 7 0 
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5. Repeat steps 2 through 4 of the above procedure until the 

boundary conditions at the last support are satisfied. 
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V 

APPLICATIONS 

The iterative technique developed is applied to a typical marine 

fender system. From the standpoint of application, a nine-span con¬ 

tinuous beam on ten discrete non-linear elastic supports was considered 

sufficient. Since the effects transmitted to points remote from the point 

of application normally decay rapidly after traversing a few continuous 

spans, most multi-span structures of say 20 or 30 span could be satis¬ 

factorily studied by considering only 10 or less supports. 

a. Properties of spring 

All springs are considered identical having the same load-de¬ 

formation curve as shown in Figure 3. A mathematical expression for 

this force function in terms of deflection was found to be 

F = 44. 3y - 14. 698y2 + 2. 449y 3. 

where y is in ft. and F is in kips 

The expression is shown as a dotted line in Figure 3. A linear 

approximation commonly used in design is also shown in the figure. 

This linear function can be expressed mathematically by 

F = 24. 4y. 

where y is in ft. and F is in kips 

b. Loading 

Three separate types of loading are considered as shown in^the 

Fugures 4a and 4b; concentrated, parabolic and uniform loading. Compu¬ 

tations were made for the following two studies: 
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1. A comparison was made between the non-linear solution 

and the linear approximation for gradually increasing loads on the end 

span of the beam and on the center span. Both concentrated and uniform 

loads were considered. The loads were increased until either the 

elastic limit on the beam or the deflection limits of the springs were 

reached. 

2. A study was made of the effect on the beam and the springs 

of the shape of the load diagram. Equivalent concentrated, uniform and 

parabolically distributed loads were studied for both linear and non¬ 

linear spring supports. As in case 1, the loads were placed on the end 

span of the beam and on the center span. 

In all cases, it was assumed that the loads were applied sym¬ 

metrically within a span. 

c. Evaluation of constants for beam in Figure 4 and results. 

Case 1 

(a) Concentrated load at mid-point of a span. 

A_ = m El 1514708 
32 =0.2113 x 10"9 k-1 Ft _1 

A„ = 
32: 

v 2EI 2x 1514708 
= 0.3380 xlO'3 k”1 

A_ = 
P L,‘ 

P 8EI 8x 1514708 
Px322 =0.8450 x 10"4 P k"1 
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P (kips) 40 80 120 160 

AP 0.338x 10"2 0.676 x 10 0.1014x 10-1 0.1352x 10_1 

Bm4^v=°-J3,0,t10'’ k'“ 

B = 
32 

v 6EI 6x1514708 = 0.3605 3i 10“2 k-1 Ft 

BP=m! ‘ 48^51^08 = <U507X 10'3 P Ftk'‘ 

P(kips) 40 80 120 160 

Bp(Ft) 0.1803 x 10*1 0.3606 x 10”1 0. 5408 x 10"1 0. 7211x10"1 

(b) Uniform Load 
I 

All constants have the same value as in the previous case except 

the constants Ap and Bp which are functions of the loads. 

A_ = 
col 322 to. -2 

P “ 6EI “ 6x 1514708 
= 0. 3606 x 10 to „-i 

B„ = 
col' 324to .-l 

P 24EI “ 24x 154708 
= 0. 2884 x 10“ to Ft2 k“‘ 

to(k/j) 2 4 6 8 

AP 0. 7211 x 10“2 0.1442x 10"1 
0*2164X 10

-1 0. 2885 xlO-1 

Ep 0.5768 x 10”1 0.1154 0. 1730 0. 2307 
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LOAD ' 

DEFLECTION - INCHES 

FIG. 3 
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FIG. 4a 
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Case 2 

The constants Am, Av, Bm and Bv are the same as Case 1. 

(a) Concentrated load of 96 kips 

96 x 322 .    -2 

Bn = 

8EI 8 x 1514708 

pi3 _ 96x32 3 

= 0. 8112 x 10 

-i. 
= 0. 4327 x 10 Ft. 

k 

P 48EI 48 x 1514708 

(b) Equivalent uniform load (96^ total load) 

col3 

AP 6EI 6 x 1514708 

^ v 'll 3 1 
= 0. 1082 x 10 

col4 3x324 

BP 24EI ,24 *1514708 
_i 

= 0. 8653 x 10 Ft. 

(c) Equivalent parabolic load (96 total load) 

4. 5 x 3c2 3 

A - 
P 10EI 

B - “o14 
BP 45EI 

10 x 1514708 

4. 5 x 324 

= 0. 9735 x 10 

_i 
= 0. 6924 x 10 Ft. 

45 x 1514708 
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(1) Results of Case 1 

(a) The moments and spring deflections at the supports 

due to concentrated loads at the center span. 

Spt. P(kips) Mn(ft-k) M^ft-k) >'n<« Yltft) .ML 
Mn 

IX 
Yn 

40 0 0 -0.0318 -0.0671 
. ; 

2.1100 

1 80 0 0 -0.0698 -0.1341 1.9212 

120 0 0 -0.1166 -0.2012 1.7255 

160 0 0 -0.1746 -0.2683 1.5366 

40 44.57 52.79 -0.0052 +0.0091 1.184 -1.750 

2 80.. 96. 75 105.59 -0.0082 +0,0182 1. 091 -2.219 

120 159.02 158.39 -0.0074 0.0272 tf.996 -3. 75 

160 233.59 211.18 -0.0004 0.0363 0.904 -90.75 

40 96,50 98,45 0.0523 0.1201 1.02 2.296 

3 80 205.09 196.89 0.1201 0.2402 0.96 2. 00 

120 328. 56 295.34 0.2104 0.3604 0. 898 1.712 

160 467,74 393.78 0.3318 0.4805 0. 841 1. 448 

40 75.52 49.54 0.1670 0.2872 0.655 1.719 _ 

4 80 149.78 99.07 0.3691 0.5746 0. 661 1. 556 

120 219.91 148.60 0.6197 0.8619 0.675 1.390 

16Q 280.49 198.14 0.9337 1.1491 0.706 1. 222 

40 -169.47 -225.54 0.3081 0.4630 1,330 1.502 

5 80 -368.60 -451.07 0.6682 0.9260 1.223 1. 385 

12Q -605.22 -676,60 1.0985 1.3890 1.117 1. 264 

16Q -884.10 -900.03 1,6174 1,8520 1.018 1.145 

Subscripts n and 1 indicate the forces of the non-linear and 

linear and linear system respectively. 
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FIG. 6 
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(b) The moments and spring deflections at the supports 

due to concentrated loads at the end span. 

Spt P(k) Mn(ft-k) Mi(ft-k) yn(ft) yi(ft) Mn 

IL 
yn 

40 0 0 0.5450 0.8207 1.505 

1 80 0 0 1. 3529 1.6414 1.213 

120 0 0 2.5072 2.4622 0.982 

40 -5.91 -6.07 0,3643 0.5617 1.027 1,5209 

2 80 28.94 12.15 0.8852 1.1235 0.419 1.269 

120 87.25 18.22 1.6129 1.6853 0.208 1.044 

40 164.88 185.63 0.153 0.2649 1.1258 1.7313 

. 3 80 397.20 371.26 0.3633 Qi530 0,934 1.458 

120 702.8 556.88 0.6690 0.7948 0.792 1.188 

40 129.38 168. 78 0.0256 0.0705 1.3045 2.7539 

4 80 308.73 337.56 0.0596 0.1411 1.093 2.368 

120 557.00 506.34 0.1163 0.2117 0.909 1.820 

40 57.82 96.384 -0.0183 -0.0158 1.669 0,8633 

5 80 137.46 192.77 -0.0446 -0.0316 1.402 0.708 

120 252.59 289.15 -0.0774 -0.0474 1.144 0.613 

40 12.07 36. 44 -0.0204 -0;0356 3.0316 1.745 

6 80 28.49 72.88 .-Q. 0490 -0.0713 2.5580 1.4551 

120 55.13 - 109.32 -0.0885 -0.1070 1.9829 1.209 

40 -5.01 4.58 -0.0111 -0.0278 -0.9141 2.5045 

7 80 -12.16 9.16 -0.6266 -0.0556 -0.7532 2.0902 

120 -20.46 13.74 -0.0490 -0.0834 -0.6715 1.702 
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Spt P(k) Mn(it-k) M^(ft-k) Yl(ft) 
ML 

M'n 

J1_ 
yn 

40 -6.44 -5.40 -0.0034 -0.0144 0.8385 4.2352 

8 80 -15.49 -10.80 -0.0082 -0.0288 0.6972 3.5121 

120 -27.77 -16.20 -0.0157 -0,0432 .0.5833 2.7515 

40 * -2.97 -4.04 +0.0003 -0.0034 ' 1.3602 -11.3333 

9 80 -7.16 -8.089 0.0009 -0.0068 1.1297 -7.5555 

120 -12,98 -12.12 0.0013 -0.0102 0.9337 -7.8461 

40 0 0 0.0021 +0.0051 2.4285 

10 80 Q 0 0.005 +0.0103 2.060 

120 0 0 0.0092 0.0154 1.6739 
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FIG. 7 
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(c) The moments and spring deflections at the supports due to 

uniform loads at the center span 

Spt. co(k/j) Mn(k-ft) M1(k-ft) 

1 
^

 
l 

1 

Yl(ft) Mn 

1L 
yn 

2 0 0 -0.0533 -0.1055 1.979 

1 •4 0 0 -0.1256 -0.2110 1.679 

6 0 0 -0.2256 -0.3165 1.402 

8 0 0 -0.3359 -0.4220 1.256 

2 74.19 83.04 -0.0047 0.0186 1.186 -4.957 

Z) 4 170.83 166:09. -0.0012 0.0371 0.972 -30.916 

:6 296.78 249.14 0.0196 
[ i 

0.0557 0.839 2.841 

8 426.06 332.18 ! ! 0.05.8a 0.0743 0.779 1.274 

2 155.06 151.47 0.0947 0. 1972 0.978 2.082 

a 4 343. 41 302.94 0.2388 0.3943 0.882 1.651 

6 565.91 454.41 0,4624, 0.5915 0.802 1.274 

- 8 771.00 605.88 0.7310 0.7887 0.785 1.078 

2 105.78 64.69 0.2846 0.4610 0.615 1.619 

4 4 203.15 129.38 0.6766 0.9221 0.636 1.362 

6 272.31 194.03 1.2258 1.383 0.712 1.128 

8 299.82 258.72 1.8362 1.844 0.862 1.004 

2 -310.72 -385.02 0.5056 0.730 1.239 1.443 

5 -.4 -705.20 -770.03 1.1669 1.4572 1.091 1.248 

6 -1196.60 -1155.15 2.0435 2.186 0.965 1.069 

8 -1673.70 -1540.16 2.9776 2.914 0.921 0.978 
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(d) The moments and spring deflections at the supports due to 

uniform loads at the ehd span. 

Spt w(k/1 ) Mn(ft-k) Ml(ft-k) yn(ft) 7! (ft) 

Mi 
Mn 

n 
Yn 

1 0 0 0.4250 0.6609 1.558 

1 ’ 2 0 0 0.4956 1.3218 1.327 

3 0 .0 1.8068 1.9827 1.097 

4 0 0 2.7501 2.6435 0.895 

1 -11.51 -8.25 0.2824 0.4447 -0.739 1.574 

2 2 1.482 -16.50 0. 6454 0.8894 -11.133, 1.378 

3 48.32 -24.78 1.1444 1.3340 -0.512 1.165 

4 76.69 -32.98 1.7414 1.779 -0.430 1.021 

1 124.35 145.44 0.1183 0.2107 1.169 1.781 

3 2 286.89 290. 90 0.2674 0.4214 1.013 1.575 

3 508.85 436.32 0.4710 0.6321 0.857 1.342 

4 745.21 581.81 0.7296 0.8428 0.780 1.155 

1 98.91 133.29 0.0205 0.0567 L.,347. 2.765 

4 2 225.49 266.58 0.0450 0.1135 1.005 2.522 

3 397.79 399.86 0.0786 0.1702 1.005 2.165 

4 599.40 533.17 0.1317 0.2270 0.889 1.723 

1 44. 60 76.46 -0.0136 -0.0120 1.714 0.882 

5 2 100.98 152.92 -0.0318 -0.0240 1.514 0.754 

3 178.13 229.37 -0.0568 -0.0360 1.287 0.633 

4 274.80 305.84 -0.0807 -0.0481 1.112 0.596 

I 
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Spt w(k/a) Mn(ft-k) M^(ft-k) yn(ft> Yl(ft) 
Mi 

... Mn 

yi 
Vn 

1 9.53 29.09 -0.0155 -0.0280 3.0524 1.8064 

'.6 2 21.26 58.17 -0.0356 -0.0561 2.7361 1.5758 

3 37.53 87.26 -0.0632 -0.0841 2.3725 1.3306 

4 61.73 116.34. -0.0950 -0.1122 1.8846 1.1810 

1 - 3.66 3.79 -0.0085 -0.0220 -1.0355 2.5882 

7 2 -8.65 7.59 -0.0194 -0.8774 -0.8774 2.2680 

3 -15.35 11.38 -0.0345 -0.0659 

C
O

 
r*H

 • 
o

 i 1.9101 

4 -20.97 15.17 -0.0531 -0.0879 -0.7234 1.6553 

1 -4. 8 -4. 20 -0.0027 -0.0114 0.8750 4.2222 

8 2 -11,23 -8.39 -0.0061 -0.0229 0.7471 3.7540 

3 -19.92 -12.59 -0.011 -0.0343 0.6320 3.1181 

4 -29.68 -16.78 -0.0273 -0.0458 0.5653, 1.6776 

1 -2. 15 -3.18 0.0003 -0.0027 1.4790 -9.0000 

9 2 -5.22 -6.36 0.0006 -0.0055 1.2183 -9.1666 

3 -9;23 -9.54 0.0011 -0.0082 1.0335 -7.4545 

4 -14.03 -12.68 0.0012 -0.0110 0.9002 -9.1666 

1 0 0 0.0018 0.0040 2.2222 

10 2 0 0 0.0037 0.0081 2,1891 

3 0 0 0.0065 0.0121 1.8615 

4 0 0 0.0100 0.0162 1.6200 
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(2) Results of Case 2 

(a) Equivalent load of 96 kips at center span 

Types of load 
Non-linear system Linear.- System ~ Roinfc'bf 

^max(^“k) Ymax^t) Mmax(ft“k) Ymax(ft) Mmax 

Concentrated 1225 0.831 1308 1.111 Center of 
the span 

Parabolic 960 0.820 1024 1.10 " 

Uniform 879 0.811 961 1.093 " 

Maximum spring deflection occurs at the 5th support in all types 

of loading. 

(b) Equivalent load of 96 kips at end span 

Types of load 
Non-linear system Linear System Point of 

Mmax(ft'-k); ymax(ft) Mmax(ft-k) Ymax(ft) Mmax 

Concentrated 739 1.789 775 1.970 Under load 

Parabolic 512 1.799 440 1.977 3rd support 

Uniform 508 1.805 436 -.983 
ft 

Maximum spring deflection occurs at the 1st support in all types 

of loading. 
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VI 

ENERGY CHECK 

In order to verify the numerical results obtained from this approach 

an energy check was performed on some particular cases during the 

early phases of this study. Since the actual problem encountered in 

marine fendering design is one of energy absorption, the check has some 

practical significance and will be presented here. For simplicity, a 

four span continuous non-linear system will be considered. The same 

size of beam and type of spring which have been considered in the 

previous example is also considered in this check. 

Fig. 11 

During the lbading process, the work done by the external loads, We, 

must be equal to the internal energy stpred in the system, Wb i. e., 

= Wi 

or We*Ub + Us 

where, Ub and Us are strain energy stored in the beam and springs, 

respectively. Due to the non-linear nature of the system, the loads 

were applied starting from 10 kips up to 100 kips with increment of 10 

kips to get the deflection configuration at the load point. The reactions 

and deflections due to application of this series of loads are shown in 

tables A and B. With this information energy can be computed as follows: 
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(a) Bendiiig strain energy in the beam is 

ub ■ w J 
o 

Taking the coordinates as in Fig. 11 

M = Ra x + [ Ra ( h + x* ) + Rb X'* ] 

-:T.h‘ia.si. considering symmetry 

h h 
(Rax) 2 dx + J [Ra (h+x*v 

Performing integration and simplifying 

ub ( 8R| + 5RaRb + R^,) ] (25) 

Substituting the proper values from table (B) into equation (25), the 

following value for Ub is obtained. 

]2 dx* 

ElUb = 32 3 [ (8 x 53. 7084 + 5 x 189. 8422 + 671.0328) ] 

= 323 [\\429.6672 + 949.2110 + 671.0328) ] 

Ub 

= 32 3 x 2049.9110 ] = 22390492. 0328 

22390492. 0328 _ j. 7g?o j. 
" 1514 708 14.7820 k-it. 

(b)t Strain energy in the springs 

■»k „k 
Us = J' Fdy - J [ay + by2 + cy3]dy = [-|y2 +3Y3+-|y4] ^ 

- — k2 +—k3 +—k4 

" -2 k + 3* + 4 i 
(26) 

Substituting the values for a, b and c from equation 23, the following 

expression for the strain energy in a spring is obtained. 
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Us = 22. 15 k2 - 4. 8994k3 + 0. 6122k4 (27) 

where, k is maximum deformation of a particular spring and corre¬ 

sponds to ya, yk and yc in the table B. 

The total strain energy in the springs is from symmetry 

Us 
= 2 (Us> a + Us, b) 4 Us> c. 

Where, Us, a» Us b and Us> c are the strain energy in the springs 

a, b and c respectively. The computations are carried out as follows: 

II 0. 0307 y3 = 0. 0054 II 0. 0009 

II 0. 5571 y3 = 0.4158 
b 

0. 3104 

yc - 
1. 1410 y3 = 1. 2188 

c 
1. 3018 

Us, a= 0. 6616 - 0. 0264 + 0. 0006 = 0. 6376 

Us> b= 12. 3398 - 2. 0372 + 0. 1900 = 10. 4926 

U = 25, 2732 - 5. 9714 + 0. 7970 = 20. 2788 s, c ■ 

Us = 2(Ug> a + USi b) + Us> c= 2(10. 4926 + 0. 6376)+20. 2788 

= 22. 2604 + 20. 2788 = 42. 4852 ft-kip 

The total internal work is then 

WJ ;s Ui, + Us - 14. 7820 + 42. 4852 = 57. 2672 ft-kips 

(c) Wo^rk done by the external load 

The external work is the area under the curve in Fig. 12 and 13. 

Simpson* s rule has been used to compute this area. 
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Fig. 13 

P (Kip) 

A(Ft) 

A* = -|[(y0 
+ yn) + 4 +- — + yn-i) + 2<yz + yn)] 

= ~[1. 0682 + 4(0. 0880 + 0. 2742 + 0. 4761 +0. 6946 + 0. 9382) 

+ 2(0. 1793 + 0. 3730 + 0. 5837 + 0. 8144)] 

= ~[ 1. 0682 + 4 x 2. 4729 + 2 x 1. 9504] 

= j x 14. 8606 = 49. 535 k-ft 

and 

We = A = 100 x 1. 0682 - A 1 = 57. 285 kips - ft, 

which checks within the limits of computational accuracy the value 

obtained for internal energy. 

(d) Comparison of strain energy between non-linear and 

approximated linear system. 

The strain energy in the approximated linear system has been 

computed using the information in Table B, and its value is found to 

be 

W.2 = U2 + U2 = 40. 2873 + 17. 0815 = 66. 3716 kips - ft. 
I s b 

and 

wli_ 66. 3716 
~ 57. 2672 

1. 1589, 
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which demonstrates that in this example the linear approximation 

indicates that about 15% more energy would be stored in the 

system that is actually the case. 

TABLE A and B 

A. Loads and Deflections at the Load Point (3rd support) 

Load (kip) 10 20 30 40 50 60 

Defl. at c. (ft) 0.0880 0.1793 0.2742 0.3730 0.4761 0.5837 

70 

0.6964 

80 

0.8144 

. 90 

0.9382 

: 100 

1.0682 

B. Deflections and Reactions at the Supports a, b and c Due to 

100 kips 

Supports a b 

yn(ft) 0.1753 ,0.7647 1.0681 

Rn(kips) 7.3286 25.9044 33.5341 

yx(ft) 0.369 0.995 1.337 

R^(kips) 9.0812 24.4691 • ‘32? 8993 

where the subscript 1 and n indicate the linear and non-linear 

systems. 
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FIG. 12 
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VII 

CONCLUSION 

1. The two criteria for designing beams on discrete elastic 

supports ape generally the beam working at a specified limiting flex¬ 

ural stress, while the springs are operating at their specified limit 

deflection. Analytical methods based on linear approximations are 

not able to predict achievement of either of these criteria, and a 

different method of analysis based on non-linearity is recommended. 

The technique developed in this study will furnish this alternate 

approach. 

2. Although it was assumed that the mechanical behavior of 

the spring is the same in both tension and compression in the example 

considered, the method is still applicable in the case of springs whose 

mechanical behavior is not the same in tension and compression or 

when some mathematical discontinuities occur in the force function. 

3. No attempt has been made in this study to rigorously resolve 

the important question of convergence which merits consideration for 

further study. However, the behavior of many particular examples 

studied was observed and is worthy of comment here. 

For all the numerical examples considered in this study, no 

difficulty with slow convergence was experienced. In all attempts to 

force divergence by purposely assuming unrealistic initial displace¬ 

ment and slope values, divergence was very rapid and easily recog- 
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nizable. No difficulty with an elusive oscillating type divergence was 

found to occur. No solutions obtained appeared unreasonable from 

the standpoint of physical behavior of the beam. 

4 Solution by desk calculator using the method proposed is 

practical for beams of not more than 5 or 6 spans. 
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