DIRICHLET SERIES

I

GENERAL PROPERTIES OF CONVERGENCE

Let \(\{\lambda_n\} (n \geq 1) \) be a sequence of numbers all positive, except perhaps \(\lambda_1 \), which can be positive or zero, strictly increasing to infinity, and let \(\{a_n\}, (n = 1, 2 \ldots) \), be a sequence of complex numbers.

The series

\[
\sum_{n=1}^{\infty} a_n e^{-\lambda_ns},
\]

where \(s = \sigma + it \) is a complex number (with \(\sigma \) and \(t \) real), is called a Dirichlet series.

If in a Taylor series

\[
\sum_{n=1}^{\infty} a_n z^n
\]

we put \(z = e^{-s} \), the series becomes a Dirichlet series

\[
\sum_{n=1}^{\infty} a_n e^{-ns}
\]

which we shall call a \textit{Taylor-D} series. Here \(\lambda_n = n (n \geq 1) \). Another example of Dirichlet series is furnished by the series

\[
\sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} e^{-(\log n)s},
\]

\(^1\)A series of lectures delivered at the Rice Institute during the academic year 1942-43 by S. Mandelbrojt, Docteur ès Sciences (Paris), Professor at the Collège de France, Visiting Professor of Mathematics at the Rice Institute.

In the present course the author does not pretend to give a general theory of Dirichlet series. This was masterfully done some ten years ago by Vladimir Bernstein (see bibliography [3]). Apart from certain elementary results concerning convergence of Dirichlet series, we give here general results, some very recent, based essentially upon methods introduced by the author in his previous papers.
Dirichlet Series

which represents the famous $\xi(s)$ function of Riemann. In this case $\lambda_n = \log n$. The function $\xi(s)$, as well as the functions represented by the series of the more general form

$$\sum_{n=1}^{\infty} a_n \frac{1}{n^s} = \sum_{n=1}^{\infty} a_n e^{-(\log n)s}$$

plays a very important rôle in the theory of numbers.

Let us recall that the Taylor series (2) admits a radius of convergence, R, which may be equal to 0, to infinity, or to a positive finite number. In the first case, the series converges only for $z = 0$, in the second case it converges for every value of z, in the case when $0 < R < \infty$ the series converges for $|z| < R$ and converges for no value z such that $|z| > R$. The circle $|z| < R$ (if $0 < R$) is the circle of convergence of (2). In each case R is given by the formula:

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{1/n}.$$

It is, moreover, well known that the series (2) converges absolutely inside the circle of convergence, and converges uniformly in each closed bounded region situated inside the circle of convergence.

Since the transformation $z = e^{-t}$ gives $\sigma = -\log |z|$, $t = -\text{Arg}z$, we see that, if z varies on a curve L inside a circle $|z| < a$ the variable s varies on a curve L' which is situated in the half-plane $\sigma > \log a$. (If to a point z_0 of L we make correspond the point $s_0 = \sigma_0 + it_0$ with $0 \leq t_0 < 2\pi$ the curve L' is well defined, since we agree to consider s as varying in a continuous way as z varies on L).

The series (3) converges therefore absolutely for

$$\sigma > \limsup_{n \to \infty} \frac{\log |a_n|}{n} = \sigma_c,$$

if $\sigma_c < \infty$, and does not converge if $\sigma < \sigma_c$ (if $-\infty < \sigma_c$). The series (3) converges also uniformly in every closed bounded
Convergence Theorems

region situated in the half-plane (5). But the series (3) does not converge at any point if \(\sigma_0 = \infty \).

The facts just mentioned cannot be translated directly into general Dirichlet series, in replacing simply the quantities \(n \) by \(\lambda_n \). The most striking difference between general Dirichlet series and Taylor-D series, from the point of view of convergence, consists in the non-coincidence of the half-planes of different kinds of convergence.

The following theorem furnishes the greater part of results concerning convergence properties of a Dirichlet series (see for instance \([3]\)):¹

Theorem I. If \(\sum a_n e^{-\lambda_n s_0} \), \((s_0 = \sigma_0 + it_0) \) converges, then \(\sum a_n e^{-\lambda_n s} \) converges uniformly in every closed angle given by

\[
|\text{Arg} \ (s - s_0)| \leq \gamma < \frac{\pi}{2}.
\]

Let us set \(s = s_0 + s', \ s' = \sigma' + it', \ \sigma' > 0, \ |\text{Arg} \ s'| < \gamma \), and let us write

\[
\sum_{1}^{m} a_n e^{-\lambda_n s_0} = A_m(s_0) = A_m
\]

\[
\sum_{1}^{\infty} a_n e^{-\lambda_n s_0} = S = \lim_{m \to \infty} A_m.
\]

We have: \(\sigma' > 0, \ \frac{|t'|}{\sigma'} \leq \tan \gamma = M < \infty \).

We have for \(s = s_0 + s' \) and \(q > p \geq 2 \):

\[
\sum_{p}^{q} a_n e^{-\lambda_n s} = \sum_{p}^{q} a_n e^{-\lambda_n s_0} e^{-\lambda_n s'}
\]

\[
= \sum_{p}^{q} (A_n - A_{n-1}) e^{-\lambda_n s'} = \sum_{p}^{q} [(A_n - S) - (A_{n-1} - S)] e^{-\lambda_n s'}
\]

\[
= \sum_{p}^{q-1} (A_n - S)(e^{-\lambda_n s'} - e^{-\lambda_{n+1} s'}) + (A_q - S) e^{-\lambda_{q} s'}
\]

\[
- (A_{p-1} - S) e^{-\lambda_{p} s'}.
\]

¹Numbers in brackets refer to the bibliography at the end of the Pamphlet.
If for \(\varepsilon > 0 \) given, \(p \) is chosen such as to have \(|A_n - S| < \varepsilon \) for \(n \geq p - 1 \), then

\[
|\sum_{\rho}^{\infty} a_n e^{-\lambda_n s}| \leq \sum_{\rho}^{p-1} |A_n - S| \cdot |e^{-\lambda_n s'} - e^{-\lambda_{n+1}s'}| + |A_{p-1} - S| e^{-\lambda_{p-1}s'}
\]

(7)

\[
\leq \varepsilon \sum_{\rho}^{p-1} |e^{-\lambda_n s'} - e^{-\lambda_{n+1}s'}| + 2\varepsilon.
\]

But

\[
|e^{-\lambda_n s'} - e^{-\lambda_{n+1}s'}| = |s'| \int_{\lambda_n}^{\lambda_{n+1}} e^{-us'} du \leq |s'| \int_{\lambda_n}^{\lambda_{n+1}} e^{-us'} du
\]

\[
= |s'| \left(e^{-\lambda_n s'} - e^{-\lambda_{n+1}s'} \right) \leq (M + 1) \left(e^{-\lambda_n s'} - e^{-\lambda_{n+1}s'} \right),
\]

and it follows from (7) that

\[
|\sum_{\rho}^{\infty} a_n e^{-\lambda_n s}| \leq 2\varepsilon + \varepsilon (M + 1) \sum_{\rho}^{p-1} \left(e^{-\lambda_n s'} - e^{-\lambda_{n+1}s'} \right)
\]

\[
= 2\varepsilon + \varepsilon (M + 1) \left(e^{-\lambda_n s'} - e^{-\lambda_{n+1}s'} \right) \leq \varepsilon (M + 3).
\]

This proves the theorem.

The following theorem is an immediate corollary of Theorem I.

Theorem II. If \(\sum a_n e^{-\lambda_n s}(s_0 = \sigma_0 + it_0) \) converges, the series \(\sum a_n e^{-\lambda_n s} \) converges at each point \(s = \sigma + it \) with \(\sigma > \sigma_0 \), and converges uniformly in each closed bounded region which is situated in the half-plane \(\sigma > \sigma_0 \).

If we now replace the series (1) by the series

(8)

\[
\sum_{1}^{\infty} |a_n| e^{-\lambda_n s},
\]

we see from Theorem II that if (8) converges for \(s_0 = \sigma_0 \) (real), it converges also for \(s = \sigma > \sigma_0 \). Since \(|e^{-\lambda_n s}| = e^{-\lambda_n \sigma} \), we see that the following theorem holds.

Theorem III. If the series (1) converges absolutely for \(s = s_0 = \sigma_0 + it_0 \), it converges absolutely for \(s = \sigma + it \) with \(\sigma > \sigma_0 \).

By a classical reasoning, in which the notion of Dedekind's
Convergence Theorems 163

cuts is involved, Theorems II and III lead immediately to

Theorem IV. If there exists a point at which the series (1) converges, then either (1) converges for each value of \(s \) or there exists a real number \(\sigma_C (\infty < \sigma_C < \infty) \) such that (1) converges for \(\sigma > \sigma_C \) and converges for no \(s \) with \(\sigma < \sigma_C \). If \(\sum |a_n|e^{-\lambda_n \sigma} \) converges for one value of \(\sigma \), then either this series converges for all the values of \(\sigma \), or there exists a quantity \(\sigma_A (\infty < \sigma_A < \infty) \) such that this series converges for \(\sigma > \sigma_A \) and diverges for \(\sigma < \sigma_A \).

If the series (1) converges at no point we shall write \(\sigma_C = \infty \). If (1) converges at every point we shall write \(\sigma_C = -\infty \). If \(\sum |a_n|e^{-\lambda_n \sigma} \) converges for no value of \(\sigma \) we shall write \(\sigma_A = \infty \), and if it converges for each value of \(\sigma \) we shall write \(\sigma_A = -\infty \).

The quantities \(\sigma_C \) and \(\sigma_A \) are called, respectively, *abscissa of convergence*, and *abscissa of absolute convergence* of the series (1). The straight-lines given by \(\sigma = \sigma_C \), \(\sigma = \sigma_A \) are called *axis of convergence* and *axis of absolute convergence* of the series. Obviously \(\sigma_A \geq \sigma_C \). For a Taylor-D series \(\sigma_A = \sigma_C \), but this is not true in general. It is, for instance, known that the series \(\sum \frac{(-1)^n}{n^\sigma} \) converges for \(\sigma > 0 \) and does not converge for \(\sigma \leq 0 \). On the other hand, \(\sum \frac{1}{n^\sigma} \) converges for \(\sigma > 1 \) and diverges for \(\sigma \leq 1 \). For the series \(\sum \frac{(-1)^n}{n^\sigma} : \sigma_C = 0, \sigma_A = 1 \). The values of \(\sigma_C \) and \(\sigma_A \) are furnished by the following theorem.

Theorem V. Let us set

\[
(9) \quad a = \lim \sup_{n=\infty} \log \left| \sum_{1}^{n} a_m \right| \frac{1}{\lambda_n}.
\]

...
Dirichlet Series

The series \((1) \) converges for \(\sigma > \max (0, a) \), and if \(a > 0 \), then \(\sigma_C = a \). Let us set

\[
\log \sum_{n=1}^{\infty} |a_n| = \limsup_{n \to \infty} \frac{\log \sum_{1}^{n} |a_n|}{\lambda_n}.
\]

The series \((1) \) converges absolutely for \(\sigma > \max (0, b) \), and if \(b > 0 \), then \(\sigma_A = b \).

The part concerning the absolute convergence follows immediately from the first part if we replace the series \((1) \) by \(\sum |a_n| e^{-\lambda_n s} \).

Let us set \(A_n = A_n(0) = \sum_{1}^{n} a_n \). Let us suppose that

\[
\limsup_{n \to \infty} \frac{\log |A_n|}{\lambda_n} = a < \infty.
\]

If \(\epsilon > 0 \), then for \(n > n_{\epsilon} \),

\[
\frac{\log |A_n|}{\lambda_n} < a + \frac{\epsilon}{2}, \quad \text{if} \quad a > -\infty, \quad \frac{\log |A_n|}{\lambda_n} < \frac{\epsilon}{2}, \quad \text{if} \quad a = -\infty.
\]

Hence:

\[
|A_n| < e^{\lambda_n(a' + \frac{\epsilon}{2})} \quad \text{or} \quad |A_n| < e^{\lambda_n \frac{\epsilon}{2}} \quad \text{(if} \quad a = -\infty).\]

Let us set \(a' = \max (0, a) \).

We may write for \(q > p \geq 2 \):

\[
\sum_{p}^{q} a_n e^{-\lambda_n(a' + \epsilon)} = \sum_{p}^{q} (A_n - A_{n-1}) e^{-\lambda_n(a' + \epsilon)}
\]

\[
= \sum_{p}^{q-1} A_n (e^{-\lambda_n(a' + \epsilon)} - e^{-\lambda_{n+1}(a' + \epsilon)}) + A_{q} e^{-\lambda_{q}(a' + \epsilon)} - A_{p-1} e^{-\lambda_{p}(a' + \epsilon)}.
\]

It follows then from (11) that if \(p > 1 + n_{\epsilon} \) then:

\[
|\sum_{p}^{q} a_n e^{-\lambda_n(a' + \epsilon)}| \leq \sum_{p}^{q-1} e^{\lambda_n(a' + \frac{\epsilon}{2})} (e^{-\lambda_n(a' + \epsilon)} - e^{-\lambda_{n+1}(a' + \epsilon)})
\]

\[
+ e^{\lambda_{q}(a' + \frac{\epsilon}{2})} e^{-\lambda_{q}(a' + \epsilon)} + e^{\lambda_{p-1}(a' + \frac{\epsilon}{2})} e^{-\lambda_{p}(a' + \epsilon)}
\]
Convergence Theorems

(12) \[\leq \sum_{p}^{q-1} e^{\lambda_n(a'+\varepsilon)} (a'+\varepsilon) \int_{\lambda_n}^{\lambda_{n+1}} e^{-u(a'+\varepsilon)} \, du + e^{-\lambda_n^2} + e^{-\lambda_{n+1}^2} \]

\[\leq (a'+\varepsilon) \sum_{p}^{q-1} \int_{\lambda_n}^{\lambda_{n+1}} e^{-\frac{u^2}{2}} \, du + e^{-\lambda_n^2} + e^{-\lambda_{n+1}^2} \]

\[= (a'+\varepsilon) \int_{\lambda_n}^{\lambda_{n+1}} e^{-\frac{u^2}{2}} \, du + e^{-\lambda_n^2} + e^{-\lambda_{n+1}^2}, \]

and since

\[\int_{0}^{\infty} e^{-\frac{u^2}{2}} \, du < \infty, \]

one sees immediately that the expression

\[(a'+\varepsilon) \int_{\lambda_n}^{\lambda_{n+1}} e^{-\frac{u^2}{2}} \, du + e^{-\lambda_n^2} + e^{-\lambda_{n+1}^2} \]

tends to zero as \(p \) tends to infinity. This proves that the series (1) converges for \(s = a'+\varepsilon \), thus that \(\sigma_0 \leq a' \).

We shall now prove that if (1) converges for \(s = \sigma_0 > 0 \), then \(a \leq \sigma_0 \). This will prove that if \(a = \infty \), then \(\sigma_C = \infty \), and that if \(0 < a < \infty \), then \(a \geq \sigma_C \). This together with \(\sigma_C \leq a' \) proves the theorem.

We can write

\[A_n = \sum_{1}^{n} a_m = \sum_{2}^{n-1} A_m(\sigma_0)(e^{\lambda_m \sigma_0} - e^{\lambda_{m+1} \sigma_0}) + A_n(\sigma_0)e^{\lambda_n \sigma_0} + a_1 e^{-\lambda_n \sigma_0}(e^{\lambda_1 \sigma_0} - e^{\lambda_n \sigma_0}). \]

If \(\sum a_n e^{-\lambda_n \sigma_0} \) converges, there exists a constant \(M \) such that \(|A_n(\sigma_0)| < M, (n \geq 1) \), and

\[|A_n| \leq M \left[\sum_{1}^{n-1} (e^{\lambda_m+1} \sigma_0 - e^{\lambda_m} \sigma_0) + e^{\lambda_n} \sigma_0 \right] \]

\[= M(2e^{-\lambda_n \sigma_0} - e^{\lambda_1 \sigma_0}) < 2Me^{\lambda \sigma_0}, \]

which proves that

\[a = \limsup_{n \to \infty} \frac{\log |A_n|}{\lambda_n} \leq \sigma_0. \]

The next theorem is an immediate corollary of Theorem V.
THEOREM VI. If \(\sum a_n e^{-\lambda_n \sigma_0} \) does not converge, then
\[
\log | \sum_{1}^{n} a_m e^{-\lambda_m \sigma_0} | = \sigma_0 + \limsup_{n \to \infty} \frac{\log n}{\lambda_n}.
\]

If \(\sum |a_n| e^{-\lambda_n \sigma_0} = \infty \), then:
\[
\log (\sum_{1}^{n} |a_m| e^{-\lambda_m \sigma_0}) = \sigma_0 + \limsup_{n \to \infty} \frac{\log n}{\lambda_n}.
\]

It should be remarked that in Theorem V the hypothesis \(a > 0 \) (as well as \(b > 0 \)) is essential. Suppose indeed that the series (2) represents a function \(f(z) \) holomorphic in \(|z| < R_1 \) with \(R_1 > 1 \), and such that \(f(1) \neq 0 \). The series
\[
\varphi(z) = \frac{1}{1-z} f(z) = \sum A_n z^n, \quad (A_n = \sum_{1}^{n} a_m),
\]
has then the radius of convergence equal to unity, since the point \(z = 1 \) is singular for \(\varphi(z) \), and
\[
\limsup_{n \to \infty} \frac{\log |A_n|}{n} = 0,
\]
but, on the other hand, for the series (3), \(\sigma_0 \leq -\log R_1 < 0 \).

We shall have also to use the following theorem which furnishes cases in which the abscissas of convergence are obtained by formulas analogous to those for Taylor-D series.

THEOREM VII. If
\[
\limsup_{n \to \infty} \frac{n}{\lambda_n} < \infty,
\]
then
\[
\sigma_A = \sigma_C = \limsup_{n \to \infty} \frac{\log |a_n|}{\lambda_n}.
\]

Let us suppose that
\[
\frac{n}{\lambda_n} < \frac{1}{L} < \infty \quad (n \geq 2),
\]
and let us first suppose that \(a = \limsup \frac{\log |a_n|}{\lambda_n} < \infty \). If \(b_1 > a \), we have, for \(n > n_{b_1} \):
\[|a_n| e^{-\lambda_n \sigma} < e^{\lambda_n b_1} \]
and for \(\sigma > b_1 \):
\[|a_n| e^{-\lambda_n \sigma} \leq e^{\lambda_n (b_1 - \sigma)} < e^{\lambda (b_1 - \sigma) n}. \]
Convergence Theorems

Thus \(\sum |a_n| e^{-\lambda n} < \infty \) for \(\sigma > a \). On the other hand, if \(-\infty < a \leq \infty \), and if \(-\infty < \sigma < b_1 < a \), we have for an infinity of \(n \): \(|a_n| > e^{\lambda_n b_1} \), and \(|a_n| e^{-\lambda n} \geq e^{\lambda_n (b_1 - \sigma)} > 1(n > 1) \), the series (1) does not converge therefore for \(\sigma < a \). This proves the theorem.

Theorem VII holds also, as G. Valiron has proved, if the condition \(\lim \sup \frac{n}{\lambda_n} < \infty \) is replaced by the less restrictive condition \(\lim \frac{\log n}{\lambda_n} = 0 \) (see [3]).

A Dirichlet series may converge at every point and converge absolutely at no point, that is to say, the case may occur in which \(\sigma_C = -\infty, \sigma_A = \infty \).

Let us set: \(a_n = \frac{(-1)^n}{n}, \lambda_n = \sqrt{\log \log n}, (n \geq 3) \).

If \(k > 0 \), the following relationships hold:

(\(\alpha \)) \(\lim_{n \to \infty} a_n e^{\lambda_n k} = 0 \)

(\(\beta \)) \(|a_n| e^{\lambda_n k} < |a_{n-1}| e^{\lambda_{n-1} k} (n > n_k) \).

The first relationship is obvious. The second can be written in the form:

\[-\log \left(1 - \frac{1}{n}\right) > k \left(\sqrt{\log \log n} - \sqrt{\log \log (n-1)}\right), \quad (n > n_k) \]

which follows from \(-\log \left(\frac{n-1}{n}\right) > \frac{1}{n} \) and from the relationship

\[\sqrt{\log \log n} - \sqrt{\log \log (n-1)} \approx \frac{1}{2n \log n \sqrt{\log \log n}}. \]

The series \(\sum a_n e^{\lambda_n k} \) (alternating, for \(n \) sufficiently large) converges therefore for \(k > 0 \) arbitrary. This proves that \(\sigma_C = -\infty \). On the other hand, \(\sum a_m |\infty \log n \), hence

\[\sigma_A = \lim \sup \frac{\log \sum_{m=1}^n |a_m|}{\lambda_n} = \lim \frac{\log \log n}{\sqrt{\log \log n}} = \infty. \]
In this case $\limsup \frac{\log n}{\lambda_n} = \infty$. Let us remark that in this example the quantity a of Theorem V is equal to zero.

The following theorem gives a general relationship between the two abscissas of convergence.

Theorem VIII. For every Dirichlet series

$$\sigma_A - \sigma_C \leq \limsup_{n \to \infty} \frac{\log n}{\lambda_n}. \quad (13)$$

The examples above show that the sign of equality cannot be omitted in this theorem.

Let us set

$$\limsup_{n \to \infty} \frac{\log n}{\lambda_n} = b.$$

Any positive ϵ being given, we have to prove that

$$\sum |a_n| e^{-\lambda_n(\sigma + b + \epsilon)} < \infty.$$

From the convergence of (1) for $s = \sigma + \frac{\epsilon}{2}$ it follows that

$$|a_n| e^{-\lambda_n(\sigma + \frac{\epsilon}{2})} < A < \infty,$$

and

$$|a_n| e^{-\lambda_n(\sigma + b + \epsilon)} < Ae^{-\lambda_n(b + \frac{\epsilon}{2})};$$

but for $n > n_e$:

$$\frac{\log n}{\lambda_n} < b + \frac{\epsilon}{4}.$$

Hence

$$|a_n| e^{-\lambda_n(\sigma + b + \epsilon)} < Ae^{-\log n \left(\frac{b + \frac{\epsilon}{2}}{b + \frac{\epsilon}{4}} \right)} = An^{b + \frac{\epsilon}{4}},$$

which proves the theorem.

If $\sigma_C < \infty$, the series (1) converges uniformly in every closed bounded region situated in the half-plane $\sigma > \sigma_C$. This series represents then an analytic function $f(s)$ holomorphic for $\sigma > \sigma_C$:

$$f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}. \quad (14)$$
By $f(s)$ we shall understand not only the sum of the series, but generally the function given by its analytic continuation, and we shall call it the function represented by the series $\sum a_n e^{-\lambda_n s}$. The actual sum of this series in $\sigma > \sigma_c$ will be called the principal branch of $f(s)$ in $\sigma > \sigma_c$. To be more specific, the corresponding abscissas σ_c, σ_A will be denoted, when needed, by σ_c', σ_A'.

It is obvious that the principal branch of $f(s)$ is bounded in $\sigma \geq \sigma_A + \varepsilon$, if $\sigma_A > -\infty$, $(\sigma_A < \infty)$, the quantity $\varepsilon > 0$ being chosen arbitrarily. We have as a matter of fact, in this half-plane:

$$|f(s)| \leq \sum |a_n| e^{-\lambda_n (\sigma_A + \varepsilon)}.$$

Before we close this chapter we should remark that in contrast to a Taylor-D series, a general Dirichlet series does not converge uniformly in every half-plane $\sigma \geq \sigma_0 > \sigma_c (\sigma_c < \infty)$, although it does converge uniformly in every bounded closed region of such a half-plane. This is, for instance, the case of the series $\sum \frac{(-1)^n}{n^s}$, which does not converge uniformly in the half-plane $\sigma \geq \sigma_0 > 0$ with $\sigma_0 < 1$, and yet here $\sigma_c = 0$. A Dirichlet series does converge uniformly, as is readily seen, in each half-plane $\sigma > \sigma_1 > \sigma_A (\sigma_A < \infty)$. H. Bohr introduced the notion of the abscissa σ_u of uniform convergence which is the g. l. b. of quantities σ_0, such that (1) converges uniformly for $\sigma \geq \sigma_0$. Obviously $\sigma_c \leq \sigma_u \leq \sigma_A$. Bohr has shown (see [3]) that

$$\sigma_u = \lim \sup_{n \to \infty} \log \left(\text{l. u. b. } \left| \sum_{-\infty < \lambda < \infty} a_m e^{i \lambda n} \right| \right),$$

if the right-hand expression is positive.