


ABSTRACT

Synthesis of Iback silicon anti-reflection layers for
silicon solar cells

by
Yen-Tien Lu

Solar energy is one of the most important renewable energy resources in the world.
Among all kinds of solar cells, the fabrication technology of silicon solar cells is relatively
mature which makes them more popular in the solar cell market. Howevedentor
compete with the traditional energy sources, decreasing cost of per watt output seems
necessary. Hence, increasing the energy conversion efficiency with an economical
approach is an unavoidable issue. One solution is applyingedietition layersonto the
silicon solar cells to maximize energy conversion efficiency. Recently, black silicen anti
reflection layers have attracted attention because theiredlgtction ability is less confined
by the incident light angle and wavelength. In this thegie methods, the metaksisted
chemical etching and the contadsisted chemical etching method, which have potential
to economically fabricate laregrale black silicon on silicon solar cells are systematically
studied. The complete etching mechanisthshese two methods are also proposed to

clearly describe the fabrication process of black silicon.
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Another strategy to cutofdo®n stibeawisred b
economi cal approhaehesner gyrmd» cimmentehyeni ndust
semi conduef ¢ AR b ncloaay darmogp tsi ¢ a | coating whi

widelytopprl Sedsol ar co®lall iasy@grrf gmers eisihséee ARRe d

refractive index between the air and the S
reflectivity on Si wafer surface to absorb
effi dt%Yowgver, the most tshAeRoo &fl mge@tr iltismittha
only pwetwbrtrms a narrow range of Il nci dent I

working pricoaitpsing acsfedARR N t hheavenceati od; gk
oncei nchiedent | i ght aangdee, atnhdet wisetkned teanight g fc h

dramatically decrease.

Wor king principl e PReff rAaRc tciovaet iinngd el xa yaerrds . |
AR coating | ayer are the madrertall materals,ithempor t ar
refractive indexesisually vary withincident light wavelengthhenceit is difficult to find
a specificAR coating materialwhich can matctthe whole solar spectrum perfectly.
However,materials possessing refractive indewdsch work well for a certain range of
wavelength range for electricity generatsiitl can be found. On the other hand, a quarter
wave coating icommonlyusedto decide the thickness of AR coating layer. A proper
thickness of AR coating layer allows thR coatinglayer toproducea destruct i
interferemoee effectifVvely iSSiupwerfeesrs ostegr f ac e s
to find the thickness of quarterave coating, the incident light wavelength and the
refractive index valueof AR coating layer must be specified in advance, but good
performance can usually be achieved for a relatively wide range of wavelengths.

As incident light travels from one medium to another one, a certain ratio of the light
is reflected on the interfadeetweenwo different media. The percentage of the reflected

light to the total incident light, or reflectivity, depends onrtfieactive indersof the two



media and thancident angle. Thealue ofreflectivity could be calculated from the Fresnel
equationsin the @se of thathe incident light is perpendicular to the interface of the two

media, theeflectivity is

(1

whereRis the reflectivity,ny andnz is therefractive indexof the first and second medium,
respectively.

TheR value should b&% to 100%, and its corresponded transmittafices ( 1 T R)
when the light absorption and scattering of the second medium are negligible. Thus, if an
incident beam with luminanck,vertically hits on the interface, luminance of the re#ec
beam id AR, and luminance of the transmitted bearhA§, orl Al 1 7.R)

For Si solar cells, there is an AR coating layer between theradr theSi wafer,

therefore, the luminance of the transmitted beam which arrives thafer is

@Y JIY ®@p Y Dp Y (1

whereTom and Rom represent the transmittance and reflectivity on the interface of the air
and the AR coating layer, respectivellins and Rns represent the transmittance and
reflectivity on the interface of the AR coatitayer and th&i wafer, respectively. Figure
l.4 shows a schematic of the interfaces &fi aolar cell system with an incident beam.

As the optimum refractive index of the AR coating layer is applied, the total
transmittance would be maximized which mgeahe derivative of Eq. I.2 ta, should be

zero, and the following equation will be obtained

3 e (1



wherenm, No, andns represents the refractive index of the AR coating layer, the air, and the

Si wafer, respectively.

AR
coating

Figure 1.4. A schematic of the interfaces ofsasolar cell system with an incidelnéam

According toEq. I.3, the optimunvalue of refractive indefor the AR coating layes
on Siwafersurfaceshould be 1.99¢= 3.95) under amcident lightwith wavelengtiof
600 nm. However, a practical AR coating also relies on its destructive interference effect
to further diminish the light reflectance. The minimum thickness of AR coating layer for

occuring destructive interference followise principle of quartewave coating

Q —= (1.

whered is the optimum thickness of AR coating layer. Rar= 1.99,d is equal ® 75 nm

under the incident lighwith wavelengthof 600 nm.



As previously mentioned, the real solar spectrum spans many wavelengths; therefore,
aproperrefractive indexalue and thickness of AR coating are necessary to fit within the
main absorbed range of incitdight to maximize the energyonversion efficieay of Si

solar cells
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Figure .7 Mechani sm of el ectroless Ag depsositio
s ol uAd amt. e: Babricationrof SinglCrystalline Silicon Nanowires by Scratching

a Silicon Surface with Catalytic Metal Particl&s, Q. Peng, J. J. Hu,
Fang, Y. Xu, S.AdV.. [Faea,cda2 @ eVehIGE right © 2006

WILEY -VCH Verlag GmbH & Co. KGaA, Weinheim.

Whi ltehe nel ectrol ess ¢che#hepalbgNeRschitnhge pSio
surftame ef eaditaincel y hef etBc hihreg HhpEAtE@ A NO bec al
t he'/ Agouphse a more positive redbKepoapeértia
The 3Fehsnctamxi éisz ibnmb taamegme ct r o hAsgNP s @ mb e
reduced othes Faend tthleea roixiind NBthe g28igeanwhi | e,
HF n t heccerntcihmnmdus l-yormexdhe iud ol & Pana k A gh e
pits deepeFri nmmid ytahtbecti i aek siNiPesfleistuld brS i
strucdnmgiismsg of fr eestoann diihneg SSi .NWi flaggarhrasmsd f &8 C ¢
a schemati c iflalbugdpcract doshe & D n sSibBNeW megnrcfyh e
HF/ F e)¢ N uln thetwastep MACE method, bothlectroless metal deposition
and electroless chemical etching rely on metal reductions to form Ag NPs on a Si wafer
(Ag*to Ag) and SiQ@around the Ag NPs (Feto Fe™), respectively.

In order to further simplify the fabrication process e&ib anonestep MACE
method was first proposed by Branz et®dh fact, the onestep MACE method was based

on the twestep MACE method; however, the electroless metal deposition and the
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(b) (d)

Ag
Si

Figurel.8.Sc h e mettriexsesc t i onal abfSd otrarpa tvi i edne poons fat Ady
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Fabrication of Singl€rystalline Silicon Nanowires by Scratching a Silicon Surface with
Catalytic Metal Particle . Q. Peng, J. J. Hu, Y. J. Yan,
and JAdZ.huFun.ct2Q@wa3@iyright © 2006 WILEYCH Verlag

GmbH & Co. KGaA, Weinheim.

electroless chemical etching occur simultaneously on the Si wafer surface, which allows
the b Si fabrication process to be completed in one batch. In thetepeM/ACE method,
HAuCIls was usedhs aprecursor of AINP catalyss and added to a HFA®,/H20 solution

to form the Setchant. The kD in theetchanteduces A ions to AUNPson the Si wafer
surfaceand oxidize the Si around the Au NPs to SiMeanwhile the HFin the etchant
etches away thasformed SiO, aroundthe Au NPs and produce-8i consisting of
nanopores on the wafer surfadénis onestepMACE methodfabricates a nanoporetype

b-Si structure on th&i wafer surfaceand successfullguppresssthe Si wafersurface
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reflectivity to below 24. Figurel.9 shows a SEM image tihe 8GsecondSi etching in the
Si etchant consisting of HAu@HF/H202/H20 which fabricatechanopores with diameter

of 520 nm andengthup to 200 nm.

Figure 1.9. Crosssectional SEM image of tH& wafersurface etched ithe Si etcharfor

80 seconds. The dashed lines indicattrema of the densigrade depth found by
computerized pixel correlation analysis. Insetdarkfield TEM imageof a nanopore and
Au NP (indicated by arrow) produced lilge HAuCls etchantwith a 100 nm scale bar
Reprinted with permission frond. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To
and P. Strading\ppl. Phys. Letf.2009,94, 231121 Copyright 2009, AIP Publishing LLC.

Sel ective emitt er sinddditerstd bSiAR layes designdchr c e |
selective emittey (SEs) alsohave beerapplied to the #5i solar cellsn order to further
improve efficiency of the Si solar cefis Applying SEs in Si solar cellshavetwo main
advantages: an improved quantum response at short wavelengths and a better contact
resistanc&? Consequently, SEinthe solar cell resulin more electrons transpertto the
metal contacta/hich allowsthe Si solar cells to psess higheshortcircuit currentdensity

(J<), higher opertircuit voltage (\d), and better energy conversion efficieiéyBasic
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structural designs of a conventional Si solar cell and a SE Si solar cell are shoguren

[.10.

(a) (b)

Ag contact Ag contact
ARC ARC
FO———— | ?
n* n
p P
1
Al contact Al contact

Figure 1.10. Structural designs of a convearial Si solar sell (a) and%i solar celiwith

SEs(b).

A conventionalSi solar celusesa ptype Si wafer asabase anénn-type Si layer is
laterformed on the iype Si wafer surfacesa phosphorous diffusion. Thesgo different
types ofSi layersmake up a g junction which allows electrons and holes to be generated
within the junction under illumination. Afteroating amAR layer on the Si wafer surface
Ag metal contacts aré¢hen printed on thewafer surface and annealed under high
temperature to penetrate through tie layer and touch the Si wafer. The generated
electrons from the-p junction interface would transport through thtype Si layer (the
emitter) ancarecollected ly the Ag contacts.

The main difference between the conventional Si solas aetl Si solar cedlwith
selective emitters (SE Si solar &lis thatin the SE Si solar cellsthe ntype Si surface
under the Ag contacts has a higher doping level cordgarthat not under the contacts.
This situation results in the contact resistance between the wafer surface and the Ag
contactsto be significantly reduced and allsvelectron collection to be more efficient.

Besides, compadgo the conventional Si solaelts, the doping level and doping depth of



14

then-type Si surfacevhich isnot under the Ag contacts is lower and shallower. Since the
shortwavelength light has logr penetration ability and is mainly absorbed on the top of
thewafer surface, the shallower doping deptin-type Si can reduce the combination of
minority carriers generated lifie shortwavelength light This factmakes the minority
carriers easier to arrive thenpjunction interfaceand improves theenergy convesion
efficiencyof solar cell

A typical fabrication process aonventional Si solar cell basically consist wafer
texturization, phosphorus diffusion, phosphosilicate glass removal, coatiig lafyers,
metallization of front andearcontacts, andcefiring of metal contacts?® First, a ptype Si
waferis texturized in alkaline solutions to foren micrepyramid structuren the wafer
surface which can increaaeesas othe Si wafer surface to absorb more incident ligfite
cleaned textured Si wafés thentransported to a furnace and treated with phosphorous
diffusion where POGlIis used as a phosphorus source. The phosphorus diftuss into
the ptype Si waferand formann-type Si layer within the top surface of Si wafehich
generates p-n junction. The depth of-p junction interface can be controlled by diffusion
temperature, diffusion time, concentration of P§@&hd intrinsic dopant concentration of
the Si wafer.

During the phosphorus diffusion, a layer of phosphosilicate dRS€5)is also
formed on the Si wafer surface and can be easily etched by buffer oxide etch (BOE) or
dilute HF solutions after the diffusion. The P&@erneeds to be removed sincevibuld
increase the contact resistance between the Si wafer and the tagtsfatoricatedin the
following step. Next, a thin layer of SiNvith optimized thickness is coated on the wafer
surface asAR coatingby plasmaenhanced chemical vapor deposition. The &dating
provides an intermediate refractive index between tharalrthe Si wafer and generate
destructive interference on the wafer surface to further suppress the refledtienvafer
surface. Sequentiall3g paste and Apastearescreenrprinted on the front side and back

side ofthe Si waferas metal contactsespectively. Finally, the metal contacts ardiced
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in a furnace allowing thpasteto penetrate through the Aédatinglayer on the wafer front
side and the native oxide layer on the wafer back side.

A good SE production process applignl Si solar cells usually need to take
fabrication cost into account. Hence, additional process steps for SE fabrication have to be
minimized and the whole SE fabrication process shouébleetoeasily fit into the original
production lines o8i solar cdk.>®Recently, in order to fill the above requirements, several
techniques of SE fabrication on Si solar cells have been developed incnditarback
emitter>®>” laser doped SE¥® jon implantation proces8'®’ screenrprintable
phosphorous ink%8%and silicon ink!% ”* However, hese methodstill need at least-3
extramainsteps for fabricating SE Si solar cells compdoethe conventional Si solar cell
fabrication processThis fact definitely decreases the feasibility of applying B0 the
currentfabrication process dbi solar cek and also limits the applications of SE i¥5b
solar cells.Figure 1.11shows a process flow comparison of different SE formation
approaches.

My researches focus on improving the current fabricgiiomcess of £5i AR layers
and BbSi solar cells to further decrease their fabrication costs. | systematically studied
utilizing cheaper metal catalysts to substitute Au NP catalysts for fabricating nanopore
type bSi structures. The work of fabricatingd AR layers on Si solar cells via oiséep
MACE with Ag NP catalysts is presented in Chapter 1, where AghN&s used as a
precursor of Ag NP catalysts. In addition to Ag NPs, a more economical fabrication process
of b-Si via onestep MACE with Cu NP catalisis introduced in Chapter 2. The Si etchant
consisting of Cu(N@)2/HF/HsPCGs/H20 was used to generde NP catalysts andverted
pyramidal nanopores on Si wafer surfaces.

A new fabrication approach of-8 AR layers called contaetssisted chemical
etching (CACE) method is integrated into the fabrication process of Si solar cells with SEs
and presented in Chapter 3. The working principle of the CACE method is similar to the

MACE method but relies on utilizing the Au contacts on the Si wafer surface¢tidn
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as catalysts for fabricating thed AR layer. The CACE method is successfully integrated
into the fabrication process of3i solar cells with SEs whose step number is comparable
to that of the conventional Si solar cell withouSb In Chapte#, a feasible method of
liquid phase deposition is introduced to coat semiconductor AR coating layers consisting
of SIO, TiO,, and ZrQ on a Si wafer surface. The correlation between the chemical

concentrations, film thickness, and the refractive index of film are studied.

KConventional\/ Etch-back \/Laserdoping\ / - . \/ Ink. \
implantation screen printing

Figure 1.11. Process comparison of differeiormation approaches &E Si solar cells
Columns filled with redepresennew SE steps and columns filled with blepresent

conventional solar cell steps.
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Chapter 1
Nanoporetype black silicon antireflection layers fabricated by

a onestep silverassisted chemical etching

Portions of this Chapter are included inTY..Lu and A. R. BarrorChem. Phy. Phy. Chem.
2013 15, 9862. A reprint can be found in Appendix B. A full publication list can be found
in Appendix A.

I ntroducti on

Solar cells need low surface reflectance to maximize the amount of incident photons
absorbed by the semiconductor to convert incident light into electrical energy. In the solar
cell industry, the use of an améflection (AR)coating is a popular method to suppress the
reflection of solar cell surface by forming destructive interference of incident light. Typical
AR coating for silicon (Si) solar cells are SiNroduced by chemical vapour deposition
have a reflectance of abddf as compared to 40% for a polished Si wafer. However, AR
coating are limited in use because it only reduces the reflection for a narrow range of light
wavelength and incident angle since its functionality is based on a gwaselength
coating** Thus the lowest reflectivity (and hence highest photon to electron efficiency)
of a solar cell will only occur when the incident sunlight is at a particular angle.

A potential replacement for the conventional AR coatinggsol | ed A bl ack
(b-Si), first reported by Jansen et°dlas attracted attention for Si solar c&fis3-Si is a
type of porous Si material whose surface morphology provides a graded refractive index
between the Si surface of the device and air, that results in a low reflechdty a
correspondingly high absorption of visible ligtB-Si has been successfully fabricated by
several different methods including reactive ion etchitfg!laser chemical etchinig;}*

pulsed electrochemical etchifi¢? and fast atom beam etchity.However, these
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techniques need either expensive instruments and high energy consumption or complicated
fabricating processes, making them unfavorable for industrial applications.

Recently, an economical and efficient approach for industrfail imanufactting
called metalssisted chemical etching (MACE) method has been developed to avoid the
above disadvantagé&s’?° The MACE method includes two steps: metal deposition and
electroless chemical etching. In the metal deposition step, a novel metal,ssgolt,a
silver, and platinum is deposited on the Si surface usually as nanoparticle$MPhp
metal NPs attract electrons from the Si surface promoting the oxidation tanSike
presence of an appropriate oxidant. In the electroless chemidalgestép, the akormed
SiO; is etched away by HF (as:6iFs) and a pit is produced under each NP. As these
reactions occur in a continuous process the pits become deeper and ultimately connect with
each other, and remaining Si substrate fora® that cmsists of a Si nanowire (SINW)
structure. Unfortunately, this nanowire structure is very fragile making the incorporation
of b-Si into typical fab processes difficiift.

A proposed mechanism based on the working principle of galvanic cells thoroughly
explans the electroless chemical etching with metal NP deposition on the Si material
surface?® The mechanism consists of two hedfll reactions: a cathode reaction at the
metal NP surface (Eg. 1.1) and an anode reaction occurring at the contact point between
the Si and metal NP (Eq. 1.2 and £%332%° The overall reaction is thus as shown in Eq.
1.4.The potential difference between the cathode sites and the anode sites results a net flux
of electrons through the metal NPs and accumulation of electrotisearathode sites.

Since the cathode sites can provide more electrons for the reductio@nftie overall

reaction (Eg. 1.4) continues resulting in etching of Si under the AGNPs.

HO>+ 24 = 2 HO (1.
Si 0=—1Si06 24H 4e (1.
Si2® 6=HSisfF 2Z0H (1.
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Si O, 2 H6 = H.S igF  40H (1.

Branz et al. developed a eetep Auassisted chemical etching method based on the
two-step MACE to fabricate nanopetgpe bSi?® During theprocess of the orstep
MACE method, thedeposition of Au NPs and the chemical etching of Si occurred
simultaneously on the Si wafer surface within the system consisting of
HAUCIls:HF:H,02:H-0, where Ad* ions were reduced to Au NPs on the Si wafer surface.
The fabricated nanopore structure possdsiiameter of-20 nm and length of 200 nm on
the wafer surface and suppressed the reflectance of the wafer to below 2% across a
wavelength range of 360000 nm.

Unfortunately, some porous Si structures possessing low reflectivity lead to failure
in improving energy conversion efficiency of the Si solar cells because their surface area
is too high resulting in high charge recombination. To overcome this problem Branz and
coworkers demonstrated that a tstep Agassisted chemical etching to fabricate
nanopores could be followed by a third step, which involves etching using
tetramethylammonium hydroxide (TMAH) to shorten the nanopore I€Agtbwever, the
concentration of Ag is relatively high (1 mM) for Ag deposition and the process takes three
distinct steps to accomplish the desired structure. Based on this result we are interested in
two challenges: what is the effect of Ag concentratiath @an the reaction be formed in a
onestep process?

Herein, our research focuses on the-st&p Agassisted chemical etching to
fabricate BSi, since the Ag precursor has lower cost than the Au equivalent and recycling
of the Ag is well understood inéh(now defunct) film industry. In our study, AgN@as
utilized as an Ag NP precursor in a HE®4:H20 solution to compose of a Si etchant. The
H20> not only facilitates the Si etching (Eqg. 1.4) but also reducésigks to Ag NPs on
the Si wafer (Eq. 1.5)
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2 A'lgt B =0+ 2H 2 Ag (1.

We are interested in the effects of the Ag ion concentration and the volume ratio of
HF:H202:H20 on the morphology and reflectivity of theSb surface. Compared to other
methods, the onstep Agassisted chemicaltching simplifies the{5i fabrication process
and may cut down the cost of the facilities and energy expenditures, which is beneficial for
industrial applications. In addition, unlike SINW arrays, the nanepge bSi possesses
no highaspectratio neelle-liked structure and is not as fragile as SiNW arrays and can

thus better endure the stress during the solar cell assembly.

Results and Discussion

Ag i1 on concent rlastiinogh ao fhi5gh0 AgM.i on conc
results in only Ag NPs anshallow pits being formed. However, no nanopores can be
observed on the Si wafer surface. Figure 1.1 shows SEM images of Ag NPs formed on the
Si wafer surfaces with different HF:B2:H>O volume ratios. We propose that no
nanopores appear on the wafer stefadue to the fact that the majority of the surface is
covered by the Ag NPs under the high [Agtching conditions. In the Agssisted
chemical etching method, the HF etches away not only the areas underneath the Ag NPs
but also the areas adjacent te thg NPs, as may be seen by the images of the Ag NP
sitting inside larger pits (Figure 1.1b and c). As the majority of the wafer surface is covered
by Ag NPs, a near isotropic oxidation of Si occurs. This causes different regions of the Si
wafer to be sulgict a similar etching level and no nanopores can be observed on the Si
wafers.

It was also observed that the average diameters of the Ag NPs prepared in solutions
of different HF:HO,:H-20 ratios increase with time even at the earliest stages of the etch
process. After reaching a maximum size at 5 min, the NPs gradually decrease in size. Figure

1.2 shows the average diameters of Ag NPs for different etching time and@®ifH:D
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volume ratiosA reasonable explanation for this effect is that th@xin theSi etchant not
only assists the Ag NP formation but also dissolves tHerased Ag NPs into Ag ions
(Eq. 1.6). As the kD2 has been consumed and its concentration is no longer high enough,
the equilibrium is shifted; resulting in the dissolution of thg NPs dominates and

decreases the average size of Ag NPs.

2AQg 2@+H2=—2Agr Z0H (1.

Figure 1.1. SEM images of the Ag NPs on the Si wafer surfaces synthesized by the Si
etchant c¢ont ajwithlangnut®skeeching and Jaogs HRGb:H2O ratios
as (a) 1:5:2 (b) 1:5:5 (c) 1:5:10 (d) 1:5:20.
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