Supplemental Material

Zhentao Wang,1 Yoshitomo Kamiya,2 Andriy H. Nevidomskyy,1 and Cristian D. Batista3
1Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
2iTHES Research Group and Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
3Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

TRANSFORMATION FROM THE SPIN TO THE BOSONIC LANGUAGE

The spin-1/2 Heisenberg model is defined on the bcc and fcc lattices, shown in Fig. 1. By using the Matsubara-Matsuda transformation introduced in the main text, the Hamiltonian is transformed into the bosonic language, up to a constant term:

\[
\hat{H} = \frac{J_1}{2} \sum_{ij} (b_i^+ b_j + b_j^+ b_i) + \frac{J_2}{2} \sum_{\langle ij \rangle} (b_i^+ b_j + b_j^+ b_i) + U \sum_i n_i(n_i - 1) + J_3 \sum_{\langle\langle ij \rangle\rangle} n_in_j + \left(\frac{z_1 J_1 + z_2 J_2 + z_3 J_3}{2} - H\right) \sum_i n_i
\]

where \(U\) is the on-site hard-core repulsion, which is sent to infinity in the calculation, and \(z_1, z_2, z_3\) are the coordination numbers of the 1st, 2nd and 3rd nearest neighbors.

FIG. 1. The Heisenberg interactions \(J_1, J_2, J_3\) are defined on the 1st, 2nd and 3rd nearest neighbors. (a) bcc lattice. (b) fcc lattice.

By Fourier transformation \(b_i^n = \frac{1}{N} \sum_k e^{-i k \cdot r_i} b_k^n\), the Hamiltonian is written down in \(k\)-space:

\[
\hat{H} = \sum_k [\epsilon(k) - \epsilon(0) + H] b_k^+ b_k + \sum_{k,k',q} (U + V_q) b_{k+q}^+ b_{k'}^+ b_{k'} b_k
\]

where

\[
\epsilon(k) = \frac{J_1}{2} \sum_{\eta_1} e^{i k \cdot r_{\eta_1}} + \frac{J_2}{2} \sum_{\eta_2} e^{i k \cdot r_{\eta_2}} + \frac{J_3}{2} \sum_{\eta_3} e^{i k \cdot r_{\eta_3}}
\]

and \(r_{\eta}\) denote the positions of the neighboring sites. And

\[V_q = 2\epsilon(q)\]

To be explicit, for bcc lattice:

\[
\epsilon(k) = 4J_1 \cos k_x \cos k_y \cos k_z + 2J_2 \left(\cos k_x + \cos k_y + \cos k_z\right) + 2J_3 \left(\cos k_x \cos k_y + \cos k_y \cos k_z + \cos k_z \cos k_x\right)
\]

For fcc lattice:

\[
\epsilon(k) = 2J_1 \left(\cos k_x \cos k_y \cos k_z + \cos k_y \cos k_z \cos k_x + \cos k_z \cos k_x \cos k_y\right) + 4J_3 \left(\cos k_x \cos k_y \cos k_z + \cos k_y \cos k_z \cos k_x\right)
\]

We define the minimum value of \(\epsilon(k)\) to be \(\epsilon_{\text{min}}\), in this way \(\omega_k \equiv \epsilon(k) - \epsilon_{\text{min}}\) has minimum value equals to zero. The Hamiltonian is rewritten as:

\[
\hat{H} = \sum_k (\omega_k - \mu) b_k^+ b_k + \frac{1}{2N} \sum_{k,k',q} (U + V_q) b_{k+q}^+ b_{k'}^+ b_{k'} b_k
\]
where the chemical potential:

\[\mu = [\epsilon(0) - \epsilon_{\text{min}}] - H \equiv H_\text{sat} - H \]

Because of the frustration, the single magnon dispersion \(\omega_k \) can have multiple degenerate minima at different \(\mathbf{Q} \)-vectors. In Fig. 2, we compute the number of minima in \(\omega_k \), for both bcc and fcc lattices.

For concreteness, we focus on the regions with 6 degenerate minima, whose positions are denoted by \(\pm \mathbf{Q}_n = \pm \mathbf{Q} \mathbf{e}_n \), where \(n = 1, 2, 3 \). The value of \(\mathbf{Q} \) is given by \(\cos \frac{\mathbf{Q}}{2} = -J_1/(J_2 + 4J_3) \) for the bcc lattice and \(\cos \frac{\mathbf{Q}}{2} = -(J_1 + 2J_2)/(J_2 + 4J_3) \) for the fcc lattice. Correspondingly, the saturation field values are:

\[H_\text{sat}^{\text{bcc}} = \frac{2J_1^2}{J_2 + 4J_3} + 4J_1 + 2J_2 + 8J_3 \]
\[H_\text{sat}^{\text{fcc}} = \frac{2(J_1 + 2J_2)^2}{J_2 + 4J_3} + 4J_1 + 2J_2 + 16J_3 \]

CALCULATION OF EFFECTIVE INTERACTIONS

The effective interactions in the dilute limit for hard-core bosons are calculated by the Bethe-Salpeter equation, which is equivalent to summing over all the ladder diagrams (Fig. 3).

\[\Gamma_q(k, k') = U + V_q - \int d^3q' \frac{\Gamma_q(k, k')(U + V_{q-q'})}{V_{\text{BZ}}} \]

where \(V_{\text{BZ}} \) is the volume of the 1st BZ.

When the magnetic field \(H \) is close to the saturation value \(H_\text{sat} \), the system is unstable towards BEC at the dispersion minima. In this case we can take the long wave length limit \(k \rightarrow \pm \mathbf{Q}_i \), and calculate the corresponding vertex functions (schematically shown in Fig. 4):

\[\Gamma_1 = \Gamma_0(\mathbf{Q}_n, \mathbf{Q}_n) \]
\[\Gamma_2 = \Gamma_0(\mathbf{Q}_m, -\mathbf{Q}_n) + \Gamma_2(\mathbf{Q}_n, -\mathbf{Q}_n) \]
\[\Gamma_3 = \Gamma_0(\mathbf{Q}_m, \mathbf{Q}_m) + \Gamma_3(\mathbf{Q}_m, \mathbf{Q}_m) \]
\[\Gamma_4 = \Gamma_0(\mathbf{Q}_n, -\mathbf{Q}_n) + \Gamma_4(\mathbf{Q}_n, -\mathbf{Q}_n) \]

To solve the Bethe-Salpeter equation, we start from the following ansatz:

\[\Gamma_q = \langle \Gamma \rangle + \sum_\eta A_\eta V(r_\eta) e^{i \mathbf{q} \cdot r_\eta} \]

where \(r_\eta \) denotes the positions of the 1st, 2nd, and 3rd neighboring sites. The \(k, k' \) index in \(\Gamma_q(k, k') \) are omitted for simplicity, and \(\langle \Gamma \rangle = \int d^3q V(q) = 0 \)

By substituting the ansatz into the Bethe-Salpeter equation and taking the hard-core limit, we get the following form of linear equations:

\[\sum_\eta V(r_\eta)(\tau_\eta^T)^* \eta \eta + \tau_0(\Gamma) = 1 \]
\[\sum_\nu (\tau_\nu^T V(r_\nu) + \delta_\nu) \eta \eta + \tau_0(\Gamma) = 1 \]

where the integrals are defined as:

\[\tau_0 = \int d^3q \frac{1}{V_{\text{BZ}}} \]
\[\tau_1 = \int d^3q \frac{e^{-i \mathbf{q} \cdot \mathbf{r}_\eta}}{V_{\text{BZ}}} \]
\[\tau_2 = \int d^3q \frac{e^{-i \mathbf{q} \cdot \mathbf{r}_\eta}}{V_{\text{BZ}}} \]

Denote:

\[B_\eta = \tau_2^{\eta^*} V(r_\eta) + \delta_\eta \]
\[C_\eta = V(r_\eta)(\tau_1^T)^* \]

The above equations are now organized into a matrix form:

\[\begin{pmatrix} B_{11} & \cdots & B_{1z} & \tau_1^1 \\ \vdots & \ddots & \vdots \\ C_{11} & \cdots & C_{1z} & \tau_0 \end{pmatrix} \begin{pmatrix} A_1 \\ \vdots \\ A_z \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \]

By solving the linear equations Eq. (17), we obtain all the unknown coefficients in the ansatz Eq. (12). Then we can substitute the values of \(\Gamma_1, \ldots, \Gamma_4 \) into the expression of effective energy, and determine which multi-\(\mathbf{Q} \) state will be stabilized.
EFFECT OF SYMMETRIC EXCHANGE ANISOTROPY

We consider short-range symmetric exchange anisotropy (cutoff at 2nd nearest neighbor):

\[\hat{H}_A \propto \sum_{\langle ij \rangle} -3(\mathbf{S}_i \cdot \mathbf{r}_{ij})(\mathbf{S}_j \cdot \mathbf{r}_{ij}) \] (18)

such terms can arise directly from dipole-dipole interactions, or perturbatively from spin-orbit coupling[1].

Similar to the treatment of the Heisenberg exchange interactions, we choose the quantization axis along [111] direction, and represent the spin-\(\frac{1}{2} \) operators with hard-core bosons. In the long-wavelength limit, for both bcc and fcc lattices:

\[\hat{H}_A \propto \left[\left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right) b_{Q_1}^\dagger b_{Q_1}^\dagger - \left(-\frac{\sqrt{3}}{2} + i \frac{1}{2} \right) b_{Q_2}^\dagger b_{Q_2}^\dagger \right] + h.c \] (19)

Then we condense the bosons by \(\langle b_{\sigma Q_n} \rangle / \sqrt{N} = \sqrt{\rho_{Q_n}} \exp\left(i \phi_{Q_n} \right) \), which gives the energy correction of symmetric exchange anisotropy:

\[E_A \propto J_A \sum_n \sqrt{\rho_{Q_n} \rho_{-Q_n}} \cos(\Phi_n + 2n\pi/3 - \pi/2). \] (20)

where \(\Phi_n = \phi_{Q_n} + \phi_{-Q_n} \).