Azimuthal Anisotropy of Charged Particles at High Transverse Momenta in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)

(Received 9 April 2012; published 10 July 2012)

The azimuthal anisotropy of charged particles in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV is measured with the CMS detector at the LHC over an extended transverse momentum (p_T) range up to approximately 60 GeV/c. The data cover both the low-p_T region associated with hydrodynamic flow phenomena and the high-p_T region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v_2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0–60% most-central events, the observed v_2 values are found to first increase with p_T, reaching a maximum around $p_T = 3$ GeV/c, and then to gradually decrease to almost zero, with the decline persisting up to at least $p_T = 40$ GeV/c over the full centrality range measured.

DOI: 10.1103/PhysRevLett.109.022301

PACS numbers: 25.75.Gz, 25.75.Ag, 25.75.Ld

The experiments at the Relativistic Heavy Ion Collider have provided evidence for the formation of a strongly coupled quantum chromodynamics (QCD) state of matter in ultrarelativistic nucleus-nucleus interactions [1–4]. The opaqueness of this matter to high-energy partons leads to a “jet-quenching” phenomenon where the final-state particle yield at high transverse momentum (p_T) is found to be suppressed compared to that expected from the scaling of $p\bar{p}$ collision yields [1–6]. A large energy loss for partons traversing the dense QCD medium is also suggested by the recent observation of a large momentum imbalance of reconstructed back-to-back jets [7–9] in Pb-Pb collisions at the Large Hadron Collider (LHC).

Despite the progress made on the theoretical description of jet quenching in the past decade [10], some of its key properties, such as the detailed path-length dependence of parton energy loss, remain unknown. In addition to measurements of hadron-yield suppression, observables such as the azimuthal anisotropy of high-p_T hadrons are needed to differentiate between the theoretical approaches [11–16]. The anisotropy can be characterized by the second-order Fourier harmonic coefficient (v_2) in the azimuthal angle (ϕ) distribution of the hadron yield, $dN/d\phi \propto 1 + 2v_2 \cos[2(\phi - \Psi_{pp})]$, where Ψ_{pp} is the event-by-event azimuthal angle of the “participant plane.” In a noncentral heavy-ion collision, the overlap region of the two colliding nuclei has a lenticular shape, and the interacting nucleons in this region are known as “participants.” The participant plane is defined by the beam direction and the short direction of the lenticular region. In general, the participant plane will not contain the reaction impact parameter vector because of fluctuations that arise from having a finite number of nucleons. For high-p_T particles, an azimuthal anisotropy can be induced if there is stronger suppression of the hadron yield along the long axis than the short axis of the overlap region. The importance of jet-quenching measurements taken into account the jet orientation relative to the geometry of the interaction region was first demonstrated by the PHENIX experiment [17], where the azimuthal anisotropy of high-p_T neutral pions (π^0) was studied up to $p_T = 18$ GeV/c in AuAu collisions at $\sqrt{s_{NN}} = 200$ GeV.

This Letter presents a study of the azimuthal anisotropy extended to very high p_T (up to $p_T = 60$ GeV/c) for Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at the LHC using the Compact Muon Solenoid (CMS) detector. The v_2 coefficient is determined as a function of charged particle p_T and overlap of the colliding nuclei (centrality) in the pseudorapidity regions of $|\eta| < 1$ and $1 < |\eta| < 2$, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle relative to the counterclockwise beam direction. In the low momentum region (below a few GeV/c), v_2 is generally associated with hydrodynamic flow [18], as distinct from the jet energy-loss mechanism believed to dominate at high p_T (e.g., above 10 GeV/c). By using a single-track high-level trigger, a significantly larger event sample of high-p_T tracks than previously available is obtained, providing the first precise measurement of the v_2 coefficient above 20 GeV/c in heavy-ion collisions. Our results may impose quantitative constraints on models of the in-medium energy loss of high-p_T partons, particularly the influence of the path length and the shape of the interaction region on the energy loss.
The data used in this analysis correspond to an integrated luminosity of 150 \(\mu b^{-1} \) and were recorded during the 2011 LHC heavy-ion running period. A detailed description of the CMS detector can be found in Ref. [19]. Its central feature is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter, and the brass and scintillator hadron calorimeter. In Pb-Pb collisions, trajectories of charged particles with \(p_T > 200 \text{ MeV}/c \) are reconstructed in the silicon tracker covering the pseudorapidity range \(|\eta| < 2.5 \), with a track momentum resolution of about 1% at \(p_T = 100 \text{ GeV}/c \). In addition, CMS has extensive forward calorimetry, in particular, two steel and quartz-fiber Čerenkov hadronic forward (HF) calorimeters, which cover the pseudorapidity range \(2.9 < |\eta| < 5.2 \). The HF calorimeters are segmented into towers, each of which is a two-dimensional cell with a granularity of 0.5 unit in \(\eta \) and 0.349 rad in \(\phi \).

Minimum bias Pb-Pb events were triggered by coincident signals from both ends of the detector in either the beam scintillator counters at 3.23 < |\(\eta \)| < 4.65 or in the HF calorimeters. Events due to noise, cosmic rays, out-of-time triggers, and beam backgrounds were suppressed by requiring a coincidence of the minimum bias trigger with bunches colliding in the interaction region. The trigger has a granularity of 0.5 unit in \(\eta \) and 0.349 rad in \(\phi \).

Events are further selected offline by requiring energy deposits in at least three towers in each of the HF calorimeters, with at least 3 GeV of energy in each tower, and the presence of a reconstructed primary vertex containing at least two tracks. These criteria further reduce the background from single-beam interactions (e.g., beam-gas and beam-halo), cosmic muons, and large impact parameter, ultraperipheral collisions that lead to the electromagnetic breakup of one or both Pb nuclei [20]. The reconstructed primary vertex is required to be located within \(\pm 15 \text{ cm} \) of the average vertex position along the beam axis and within a radius of 0.02 cm in the transverse plane. The centrality of the Pb-Pb reaction is determined by taking fractions of the total hadronic inelastic cross section, according to percentiles of the distribution of the total energy deposited in the HF calorimeters [8]. The centrality classes used in this analysis are 0–10% (most central), 10%–20%, 20%–30%, 30%–40%, 40%–50%, and 50%–60%, ordered from the highest to the lowest HF energy deposited.

The reconstruction of the primary event vertex and the trajectories of charged particles in Pb-Pb collisions is based on signals in the silicon pixel and strip detectors and described in detail in Ref. [6]. In selecting the charged primary tracks, a set of tight quality selections were imposed to minimize the contamination from misidentified tracks. These include requirements of a relative momentum uncertainty of less than 5%, at least 13 hits on the track, a normalized \(\chi^2 \) for the track fit of less than 0.15 times the number of hits, and transverse and longitudinal track displacements from the primary vertex position less than 3 times the sum in quadrature of the measurement uncertainties. From studies based on Pb-Pb events simulated by using HYDJET [21] (version 1.6), the combined geometrical acceptance and reconstruction efficiency of the primary tracks reaches about 66% (50%) at \(|\eta| < 1.0 \) (1.0 < |\(\eta \)| < 2.0) for the 5% most-central Pb-Pb events, with little dependence on \(p_T \). For the peripheral Pb-Pb events, the efficiency is improved by up to 5%, again largely independent of \(p_T \). The fraction of misidentified tracks is kept at the 1%–2% level at \(p_T > 2 \text{ GeV}/c \) over almost the entire \(\eta \) and centrality ranges. It increases up to 10% for very low \(p_T \) (= 1 GeV/c) particles in the forward (|\(\eta \)| = 2) region for the 5% most-central Pb-Pb events.

The analysis follows closely the event-plane method described in Ref. [22]. The observed \(v_2 \) value for a given centrality and \(p_T \) range is defined by \(v_2^{obs} = \langle \cos(2(\phi - \Psi_2)) \rangle \), where the average is taken over all particles in all events within a centrality and \(p_T \) bin. The second-order “event-plane” angle \(\Psi_2 \) corresponds to the event-by-event azimuthal angle of maximum particle density in Pb-Pb collisions. It is an approximation of the participant-plane angle \(\Psi_{pp} \), which is not directly observable.

The determination of \(\Psi_2 \) uses the energy deposited in the HF calorimeters with \(\Psi_2 = \frac{1}{2} \tan^{-1} \left(\sum_{i} w_i \sin(2\phi_i) / \sum_{i} w_i \cos(2\phi_i) \right) \), where the weight factor \(w_i \) for the \(i \)th tower at azimuthal angle \(\phi_i \) is taken as the corresponding transverse energy. The sums are taken over all the towers within a slightly truncated \(\eta \) range of each HF calorimeter coverage. For the \(v_2 \) study in...
this analysis, charged particles detected in the tracker with $\eta > 0 (-0)$ are correlated with an event plane found by using energy deposited in a region of the HF spanning $-5 < \eta < -3$ ($3 < \eta < 5$). In this manner, a minimum η gap of 3 units is guaranteed between particles used in the event-plane determination and those for which the v_2 value is being measured, thereby significantly reducing the effect of other correlations that might exist, such as that from dijets. This η gap is particularly important for the high-p_T particle studies.

The resolution of the event plane depends on the centrality and is limited by the finite number of particles used in its determination. The final v_2 coefficient in the event-plane method is evaluated by dividing the observed value v_2^{obs} by a “resolution-correct” factor R, with $v_2 = v_2^{\text{obs}} / R$ and where R can range from 0 to 1 [23], with a better resolution corresponding to a larger value of R. An event-averaged resolution-correction factor can be found experimentally by extracting separate event-plane angles using particles emitted into three nonoverlapping η regions. In this “three-subevent” technique, which is described in more detail in Ref. [23], the resolution-correction factor for a given η region (denoted A, with B and C used for the other two η ranges) is found by using

$$R_A = \sqrt{\frac{\langle \cos(2(\Psi_2^A - \Psi_2^B)) \rangle}{\langle \cos(2(\Psi_2^A - \Psi_2^C)) \rangle}},$$

where particle production is unambiguously dominated by parton modification, particularly by dynamical modeling of parton modification, particularly by incorporating the proper initial parton energy dependence, is required in order to further examine the path-length dependence of energy loss (i.e., α parameter).
results appear to be independent of Pb-Pb collisions at pseudorapidity ranges: $|\eta| < 1$ for six centrality ranges in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, measured by the CMS experiment (solid markers). Error bars denote the statistical uncertainties, while the gray bands correspond to the small systematic uncertainties. Comparison to results from the ATLAS (open squares) and CMS (open circles) experiments using data collected in 2010 is also shown.

Figure 2 shows the v_2 dependences on the number of participant nucleons (N_{part}) associated with each centrality bin through a Glauber model calculation. The corresponding participant eccentricities of the overlap region vary from 0.46 to 0.093. Different p_T bins are shown for two pseudorapidity ranges: $|\eta| < 1$ and $1 < |\eta| < 2$. The results appear to be independent of η in all p_T bins within the statistical uncertainties. Also, the v_2 values tend to decrease with increasing collision centrality (i.e., larger N_{part}) over a wide p_T range (although this trend appears to be reversed for $3.2 < p_T < 4.0$ GeV/c toward very peripheral events). This behavior is expected for low-p_T (below a few GeV/c) particles in the context of the relationship between hydrodynamic flow phenomena and the eccentricity of the initial-state collision geometry. The similar trend observed for very high-p_T particles, at least up to $p_T = 48$ GeV/c, reflects how the v_2 results at high p_T are also sensitive to the initial geometry. This indicates that the initial conditions of the hot QCD medium can be further constrained by simultaneously comparing data with theoretical calculations from both hydrodynamics at low p_T and in-medium parton energy loss at high p_T.

In summary, the azimuthal anisotropy of charged particles with respect to the event plane has been studied in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV using the CMS detector. The v_2 coefficient was determined over a wide range in p_T up to approximately 60 GeV/c, as a function of collision centrality. The results reported in this Letter significantly improve the statistical precision of previous v_2 measurements for $12 < p_T < 20$ GeV/c and explore for the first time the very high-p_T region beyond 20 GeV/c. The $v_2(p_T)$ behavior shows a trend of rapid rise to a maximum at $p_T = 3$ GeV/c and a subsequent fall for all centrality and $|\eta|$ ranges. Beyond $p_T = 10$ GeV/c, the observed v_2 values still show a clear p_T dependence but with a more moderate decrease with p_T, remaining finite up to at least $p_T \approx 40$ GeV/c. A common trend in the centrality dependence of v_2 is observed for particles over a wide range of p_T up to approximately 48 GeV/c, suggesting a potential connection to the initial-state geometry. The precision data over a wide kinematic range presented here will provide important constraints on models of parton energy loss.
particularly in terms of its dependence on the initial conditions, parton energy, and path length through the medium.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

15 Institute of High Energy Physics, Beijing, China
16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17 Universidad de Los Andes, Bogota, Colombia
18 Technical University of Split, Split, Croatia
19 University of Split, Split, Croatia
20 Institute Rudjer Boskovic, Zagreb, Croatia
21 University of Cyprus, Nicosia, Cyprus
22 Charles University, Prague, Czech Republic
23 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25 Department of Physics, University of Helsinki, Helsinki, Finland
26 Helsinki Institute of Physics, Helsinki, Finland
27 Lappeenranta University of Technology, Lappeenranta, Finland
28 DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29 Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute-Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31 Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
32 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
34 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
36 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
37 Deutsches Elektronen-Synchrotron, Hamburg, Germany
38 University of Hamburg, Hamburg, Germany
39 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40 Institute of Nuclear Physics “Demokritos,” Aghia Paraskevi, Greece
41 University of Athens, Athens, Greece
42 University of Ioánnina, Ioánnina, Greece
43 KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
44 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45 University of Debrecen, Debrecen, Hungary
46 Panjab University, Chandigarh, India
47 University of Delhi, Delhi, India
48 Saha Institute of Nuclear Physics, Kolkata, India
49 Bhabha Atomic Research Centre, Mumbai, India
50 Tata Institute of Fundamental Research—EHEP, Mumbai, India
51 Tata Institute of Fundamental Research—HECR, Mumbai, India
52 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
53a INFN Sezione di Bari, Bari, Italy
53b Università di Bari, Bari, Italy
53c Politecnico di Bari, Bari, Italy
54a INFN Sezione di Bologna, Bologna, Italy
54b Università di Bologna, Bologna, Italy
55a INFN Sezione di Catania, Catania, Italy
55b Università di Catania, Catania, Italy
56a INFN Sezione di Firenze, Firenze, Italy
56b Università di Firenze, Firenze, Italy
57a INFN Laboratori Nazionali di Frascati, Frascati, Italy
58a INFN Sezione di Genova, Genova, Italy
59a INFN Sezione di Milano-Bicocca, Milano, Italy
59b Università di Milano-Bicocca, Milano, Italy
60a INFN Sezione di Napoli, Napoli, Italy
60b Università di Napoli “Federico II,” Napoli, Italy
61a INFN Sezione di Padova, Padova, Italy
61b Università di Padova, Padova, Italy
61c INFN Sezione di Trento (Trento), Padova, Italy
62a INFN Sezione di Pavia, Pavia, Italy
62b Università di Pavia, Pavia, Italy
63a INFN Sezione di Perugia, Perugia, Italy
aDeceased.
bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
dAlso at Universidade Federal do ABC, Santo Andre, Brazil.
eAlso at California Institute of Technology, Pasadena, CA, USA.
fAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
gAlso at Suez Canal University, Suez, Egypt.
hAlso at Cairo University, Cairo, Egypt.
iAlso at British University, Cairo, Egypt.

022301-14