Search for a narrow, spin-2 resonance decaying to a pair of Z bosons in the $q\bar{q}\ell^+\ell^-$ final state

CMS Collaboration

Abstract

Results are presented from a search for a narrow, spin-2 resonance decaying into a pair of Z bosons, with one Z-boson decaying into leptons (e^+e^- or $\mu^+\mu^-$) and the other into jets. An example of such a resonance is the Kaluza–Klein graviton, G_{KK}, predicted in Randall–Sundrum models. The analysis is based on a 4.9 fb$^{-1}$ sample of proton–proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. Kinematic and topological properties including decay angular distributions are used to discriminate between signal and background. No evidence for a resonance is observed, and upper limits on the production cross sections times branching fractions are set. In two models that predict Z-boson spin correlations in graviton decays, graviton masses are excluded lower than a value which varies between 610 and 945 GeV, depending on the model and the strength of the graviton couplings.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The standard model (SM) of particle physics does not include an explanation of the large difference between the typical scales of gravity and the other fundamental forces (i.e., the “hierarchy problem”). This problem can be overcome by adding one warped spatial dimension to space–time, according to the Randall–Sundrum model [1,2]; in such a scenario, the existence of Kaluza–Klein (KK) excitations of a spin-2 boson, the graviton, is predicted. These models have two fundamental parameters: the mass M_1 of the first graviton mode, referred to as G_{KK} in the following, and the dimensionless coupling strength $\tilde{k} = k/M_{Pl}$, where k is the curvature of the warped space and M_{Pl} the reduced Planck mass ($M_{Pl} \equiv M_{Pl}/\sqrt{8\pi}$).

In the Randall–Sundrum model discussed above (RS1), the production cross section in pp collisions at $\sqrt{s} = 7$ TeV for a KK graviton of mass $M_1 = 700$ GeV and $\tilde{k} = 0.10$ is 22 pb. The branching fraction to ZZ bosons is about 4%, comparable to those of the diphoton and dilepton final states. These channels are therefore the most sensitive, and several searches for such signatures of the RS1 scenario have been performed at the Tevatron [3–5] and at the Large Hadron Collider (LHC) [6–9].

However, different models with warped extra dimensions (ED) allow the SM fields to propagate in the ED [10–12]. In these models, as a consequence of the localization of SM particles near the Planck or the TeV brane, decays to diphotons and dileptons are suppressed by a factor proportional to the volume of the ED [11]. This scenario is more compatible with electroweak precision tests and limits on flavor-changing neutral current processes than the original RS1. The different couplings of the graviton to the SM fields result in two distinctive effects: the branching fraction to SM vector-boson pairs can become dominant for certain values of the model parameters, and a very strong enhancement in the longitudinal polarization of the vector bosons is predicted. Because of the aforementioned suppression of photon and fermion couplings, the total production cross section is also smaller with respect to RS1 gravitons: in the Agashe–Davoudiasl–Perez–Soni (ADPS) model [10] for $M_1 = 700$ GeV and $\tilde{k} = 0.50$, it amounts to 0.31 pb in pp collisions at $\sqrt{s} = 7$ TeV, and the branching fraction to longitudinally polarized ZZ bosons is about 12%.

The CDF and ATLAS experiments have searched for beyond-SM particles decaying to ZZ pairs in the $2\ell 2q$, 4ℓ and $2\ell 2\nu$ final states [13,14], without specific requirements on the spin or the production mechanism of the particle. This Letter presents a search for heavy narrow spin-2 resonances in the ZZ final state and investigates both the original RS1 model and the ADPS model. The distinct angular distributions resulting from different polarizations in the decay are exploited to enhance the signal sensitivity. The process studied, $G_{KK} \to ZZ \to q\bar{q}\ell^+\ell^-$ ($\ell = e, \mu$), combines a high branching fraction with good mass resolution and limited background rates. The dominant background is Z-boson production with associated jets (“Z + jets”). The cross section for this process...
falls rapidly with the invariant mass of the candidate Z-boson pair, \(m_{ZZ} \).

This analysis closely follows a search for the Higgs boson in the same final state [15] regarding lepton and jet selection criteria. However, a new angular likelihood discriminant is introduced, tuned to appropriate graviton models, which is more sensitive to the ED models under consideration. The search is also extended to a higher mass range.

2. Event reconstruction and selection

We search for a fully reconstructed decay chain of the graviton \(G_{KK} \rightarrow ZZ \rightarrow q\bar{q}l^+l^- \), where the charged leptons \(l^\pm \) are either both muons or both electrons, and each quark is associated with a jet in the Compact Muon Solenoid (CMS) detector. This search covers a graviton mass range between 400 and 1200 GeV. At higher masses, the two jets from the hadronic Z-boson decay merge into one, therefore the efficiency of the present search signature is degraded.

A detailed description of the CMS detector can be found in Ref. [16]. In the cylindrical coordinate system of CMS, \(\phi \) is the azimuthal angle and the pseudorapidity \(\eta \) is defined as \(\eta = -\ln(\tan(\theta/2)) \), where \(\theta \) is the polar angle with respect to the counterclockwise-beam direction. The central feature of the CMS detector is a 3.8 T superconducting solenoid of 6 m internal diameter. Within the field volume are the silicon tracker, the crystal electromagnetic calorimeter (ECAL), and the brass-scintillator hadron calorimeter (HCAL). The muon detectors are located outside the solenoid and are installed between the layers of the steel yoke of the flux return. In addition, CMS has extensive forward calorimeters, in particular two steel/quartz-fiber hadron forward (HF) calorimeters, which cover the pseudorapidity range 2.9 < \(|\eta| \) < 5.2.

Although the main sources of background are estimated from data, Monte Carlo (MC) simulations are used to develop and validate the methods used in the analysis. Background samples are generated using either MADGRAPH 5 [17] (Z + jets, \(t\bar{t} \)), SHERPA 1.13 [18] (Z + jets for cross-checks and systematic uncertainties), or PYTHIA 6.4.24 [19] (di-boson backgrounds). Signal events are generated at Leading Order (LO), for both the RS1 and the ADPS model, using a dedicated generator described in Ref. [20] and interfaced to PYTHIA for parton showering and hadronization. Parton distribution functions (PDFs) are modeled using the parameterizations cT10 at next-to-LO [21] and cTEg6 [22] at LO. For both signal and background MC, events are simulated using a GEANT4-based model [23] of the CMS detector and processed using the same reconstruction algorithms as for data.

Muons are measured with the silicon tracker and the muon system [24]. Electrons are identified as tracks in the tracker pointing to energy clusters in the ECAL [25].

Muon events are triggered by segments in the outer muon system matching online reconstructed tracks, in a pseudorapidity range \(|\eta| < 2.4 \). Trigger thresholds on the momentum transverse with respect to the pp beam direction, \(p_T \), range from 7 to 17 GeV for the leading muon and from 7 to 8 GeV for the subleading muon, depending on the instantaneous luminosity. The double-muon trigger is supplemented with a single-muon trigger with a \(p_T \) threshold of 24 GeV and loose isolation requirements. Electron events are triggered by clusters in the ECAL matched to online reconstructed tracks, covering a pseudorapidity range \(|\eta| < 2.5 \) and with \(p_T \) thresholds of 17 (8) GeV for the leading (subleading) electron. Loose cluster shape, as well as calorimetric and track isolation requirements are applied as well, becoming stricter with increasing instantaneous luminosity. After offline requirements, the trigger efficiency is 100% within uncertainties for electrons and >95% for muons.

In the offline selection, muons and electrons are required to have \(p_T > 20 \) GeV. At least one lepton must have \(p_T > 40 \) GeV. Leptons are measured in the pseudorapidity range \(|\eta| < 2.4 \) for muons, and \(|\eta| < 2.5 \) for electrons. Electrons in the transition range between the barrel and endcap, \(1.44 < |\eta| < 1.57 \), are excluded. Leptons are required to be isolated from hadronic activity in the detector using the quantities \(I_{\text{thr}} \), \(I_{\text{ecal}} \) and \(I_{\text{hcal}} \), which represent respectively the sum of transverse momentum (energy) in the tracker (ECAL and HCAL), within a surrounding cone of \(\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.3 \) excluding the lepton candidate itself, where \(\Delta\eta \) and \(\Delta\phi \) are the differences in pseudorapidity and in azimuthal angle. For muons, the sum \(I_{\text{thr}} + I_{\text{ecal}} + I_{\text{hcal}} \) is required to be less than 15% of the measured \(p_T \) of the muon. For electrons, the same isolation requirement is applied but additional selections on the cluster shape and track-cluster matching are set to ensure proper identification. The details of electron and muon identification criteria are described in Ref. [26].

Jets are reconstructed with the particle flow (PF) [27] algorithm. Reconstructed particle candidates are clustered to form jets with the anti-\(k_T \) algorithm [28] with a distance parameter of 0.5. Jets required to be inside the tracker acceptance \(|\eta| < 2.4 \) and to have \(p_T > 30 \) GeV. Jets that overlap with isolated leptons within \(\Delta R = 0.5 \) are removed. Jet energy corrections are applied to account for the non-linearity due to instrumental effects. These corrections are based on in-situ measurements using dijet, \(\gamma + \text{jet} \) and \(Z + \text{jets} \) data samples [29]. A quality selection, primarily based on the energy balance between charged and neutral hadrons, is applied to remove spurious jets due to detector artifacts. The jet four-momentum is corrected for the contribution of overlapping minimum bias events coming from different proton–proton collisions (pileup) based on the effective jet area, following Ref. [30].

Pairs of oppositely charged leptons and jets passing the above selections are considered as Z-boson candidates. Requirements on the dilepton and dijet invariant masses, \(m_{\ell\ell} \) and \(m_{jj} \), are used to suppress background. The requirement \(75 < m_{jj} < 105 \) GeV is applied in order to reduce the \(Z + \text{jets} \) background, and \(70 < m_{\ell\ell} < 110 \) GeV to reduce background without a genuine Z decaying to leptons, such as it.

The kinematics of the jets is corrected by constraining the invariant mass of the dijet system to the mass of the Z boson. Experimental resolutions, typically lower than 10%, are taken into account in the kinematic fit. The statistical analysis is based on the invariant mass of the graviton candidate, \(m_{ZZ} \), calculated by imposing the kinematic constraint to the dijet system.

2.1. Jet flavor analysis

As the dominant background is \(Z + \text{jets} \) (\(Z \rightarrow \ell^+\ell^- \)) production, we use the flavor content of the jets compared to those from Z-boson decays to discriminate against it. In \(Z + \text{jets} \) events the jets will predominantly be produced by the fragmentation of low-mass quarks and gluons. As a result, we can exploit the fact that, in ZZ events with one Z-bozon decaying into jets, there will be a larger fraction of jets from heavy-quark fragmentation than from \(Z + \text{jets} \), and there will be no jets from gluon hadronization. We take advantage of both features by tagging the b flavor and introducing a likelihood discriminant that separates gluon and light-quark jets on a statistical basis, as described in Ref. [15].

To identify jets originating from the hadronization of bottom quarks, we use the CMS track counting high-efficiency (TCHE) b-tagging algorithm [31,32]. The data are split into three b-tag categories. The 2 b-tag category is required to have one jet with a value of the TCHE discriminant passing the medium working point.
observables related to the multiplicity and distribution of the jet like) to 1 (quark-like). We apply a loose requirement, working point selection (41).

The top panel of Fig. 1 shows the distribution of \(\cos \theta^* \) in the laboratory frame. The graviton mass hypothesis and lead to cut values of 0.35, and 0.21 for the 0 b-tag, 1 b-tag and 2 b-tag categories, respectively. The optimization is performed only on the RS1 signal background. Solid- or dashed-line histograms (overlaid) show the expected distributions for RS1 and ADPS gravitons with mass \(M_G = 700 \text{ GeV} \), scaled up by arbitrary factors for illustration.

Due to the tensor nature of the graviton, the angular distribution of its decay products shows a distinct signature. The graviton mass hypothesis and lead to cut values of 0.35, and 0.21 for the 0 b-tag, 1 b-tag and 2 b-tag categories, respectively. The optimization is performed only on the RS1 signal background. Solid- or dashed-line histograms (overlaid) show the expected distributions for RS1 and ADPS gravitons with mass \(M_G = 700 \text{ GeV} \), scaled up by arbitrary factors for illustration.

2.2. Angular analysis

An angular likelihood discriminant (LD) is defined based on the probability ratio of the signal and background hypotheses, as described in Ref. [20]. These probabilities are parameterized as functions of \(m_{Z \ell \ell} \): the full five-dimensional theoretical distributions multiplied by acceptance functions are used for the two signal types, while empirical functions describe the background probabilities. The top panel of Fig. 1 shows the distribution of \(\cos \theta^* \) after the pre-selection requirements, where \(\theta^* \) is the polar angle of one of the Z-boson momentum vectors in the ZZ rest frame, measured with respect to the beam axis. Because the distributions of the signal and background events are so different, \(\cos \theta^* \) is an important part of LD. The bottom panel of Fig. 1 presents the LD distribution after the same pre-selection requirements. The expectation of longitudinal polarization in the ADPS model results in a visible enhancement of the discriminating power of the LD with respect to the Z + jets background.

The figure of merit proposed in Ref. [34] is used to optimize the selection on the angular likelihood discriminant in order to maximize the expected sensitivity to the production of an RS1 graviton. Because of the different background contributions, the optimization is performed independently for the three b-tag categories of events. The results are approximately independent of the graviton mass hypothesis and lead to cut values of \(\Delta \theta > 0.28, 0.35, \) and 0.21 for the 0 b-tag, 1 b-tag and 2 b-tag categories, respectively. The optimization is performed only on the RS1 signal and the same selection criteria are used for both models under scrutiny.

2.3. Summary of selection

The selection requirements are summarized in Table 1. When an event contains multiple GKK candidates passing these selection requirements, the one with the largest number of b-tagged jets is retained, thus giving preference to the purest category. Further ambiguity between multiple candidates is resolved by selecting the candidate with \(m_{jj} \) (before the kinematic fit) and \(m_{\ell \ell} \) values closest to the Z boson mass \(m_{Z} \). Signal selection efficiencies depend on the graviton mass considered and range approximately from 3 to 10% (3 to 21%) for the RS1 (ADPS) model.
3. Event analysis

3.1. Background estimation

In order to minimize systematic uncertainties associated with the background shapes, we estimate the background distribution from the data. The m_{ZZ} distribution of the selected events is split into three samples based on the number of b-tagged jets. The selected events are then examined comparing to 33 equally-spaced hypothetical graviton masses in the range between 400 GeV and 1200 GeV.

A signal window in the m_{ZZ} distribution is defined around the expected position of the signal peak. The signal shape is parameterized using the sum of a double Crystal-Ball function (i.e., a Gaussian distribution with power-law tails on both sides) [35] and an empirical line-shape derived from the observed distribution of events with misassigned jets (a triangular shape convoluted with a Crystal-Ball function). The latter component describes both the expected position of the signal peak. The signal shape is parameterized by a Gaussian distribution with power-law tails on both sides [36–39] recommendation to estimate the uncertainty due to PDF shapes. The uncertainties shown are the sum in quadrature of the systematic and statistical uncertainties.

The uncertainties on the normalization of the background fit (shape) have been used for the background fit, and the descriptions of all the events have been used to isolate the nominal one within the statistical uncertainties of the slope parameter. Hence, no additional systematic uncertainty is considered from this source.

The systematic uncertainties on the background normalization are summarized in Table 2. We consider effects from lepton energy scale, resolution, selection, and trigger; jet efficiency, energy scale and resolution after calibration; pileup; f_T significance requirements; heavy-quark flavor tagging and quark–gluon discrimination; graviton production mechanism; and the luminosity measurement.

Reconstruction efficiencies for leptons and their uncertainties are evaluated from control samples in data [26]. The systematic uncertainties on jet reconstruction are evaluated by variation of the jet energy scale and resolution within calibration uncertainties. Uncertainties due to pileup are taken as the difference between re-construction and selection efficiencies with the number of pileup vertices shifted by one unit up and down with respect to the average value measured in data. The requirement on the discriminant $\lambda(\tilde{f}_T)$ translates into 1–2% reduction in signal and the resulting uncertainty is taken as the full inefficiency value. Uncertainties on the quark–gluon selection efficiency are evaluated using a selected $\gamma +$ jet sample in data, which predominantly contains quark jets.

The uncertainty on the b tagging has several sources, such as pileup effects and dependence on the fraction of b production from gluon splitting, and has been evaluated on a sample of dijet events enriched in heavy-flavor by requiring a muon to be associated with one jet [32].

Table 2

<table>
<thead>
<tr>
<th>m_{ZZ} (GeV)</th>
<th>0 b-tag</th>
<th>1 b-tag</th>
<th>2 b-tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 GeV</td>
<td>268 ± 24</td>
<td>212 ± 16</td>
<td>100 ± 12</td>
</tr>
<tr>
<td>700 GeV</td>
<td>50 ± 5</td>
<td>39 ± 4</td>
<td>12.4 ± 1.6</td>
</tr>
<tr>
<td>900 GeV</td>
<td>8.4 ± 1.2</td>
<td>7.2 ± 0.8</td>
<td>1.36 ± 0.24</td>
</tr>
</tbody>
</table>

Signal expectation (RS1 graviton, $\lambda = 0.10$)

<table>
<thead>
<tr>
<th>m_{ZZ} (GeV)</th>
<th>0 b-tag</th>
<th>1 b-tag</th>
<th>2 b-tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 GeV</td>
<td>30.4 ± 2.5</td>
<td>25.8 ± 1.5</td>
<td>10.6 ± 1.3</td>
</tr>
<tr>
<td>700 GeV</td>
<td>2.9 ± 0.3</td>
<td>2.8 ± 0.2</td>
<td>0.81 ± 0.10</td>
</tr>
<tr>
<td>900 GeV</td>
<td>0.20 ± 0.03</td>
<td>0.18 ± 0.01</td>
<td>0.025 ± 0.003</td>
</tr>
</tbody>
</table>

Signal expectation (ADPS graviton, $\lambda = 0.50$)

<table>
<thead>
<tr>
<th>Source</th>
<th>0 b-tag</th>
<th>1 b-tag</th>
<th>2 b-tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ reconst. & trig.</td>
<td>2.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e reconst. & trig.</td>
<td>4.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet reconst.</td>
<td>1–2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pileup</td>
<td>1–4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_T significance</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b tagging</td>
<td>2–7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QC-discrimination</td>
<td>3–5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptance (PDF)</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

Summary of sources of systematic uncertainties on signal normalization. All are expressed as relative uncertainties on the cross section.

3.2. Systematic uncertainties

The uncertainties on the normalization of the background fit are statistical and depend on how many events populate the sidebands (uncertainties reported in Table 2). The shape uncertainty is determined by propagating the uncertainty on the slope parameter of the exponential into the background estimation. Because of the steep fall of the m_{ZZ} spectrum, these uncertainties are larger for low values of the graviton masses. In the case of the search for a 400 GeV (700 GeV) resonance, the uncertainties on the shape of the background are 10% (4%) for the 0 b-tag, 10% (5%) for the 1 b-tag, and 30% (15%) for the 2 b-tag category. Alternative functions (inverse power law and exponential with modified tail

shape) have been used for the background fit, and the descriptions obtained agree with the nominal one within the statistical uncertainties of the slope parameter. Hence, no additional systematic uncertainty is considered from this source.

The systematic uncertainties on the signal normalization are summarized in Table 3. We consider effects from lepton energy scale, resolution, selection, and trigger; jet efficiency, energy scale and resolution after calibration; pileup; f_T significance requirements; heavy-quark flavor tagging and quark–gluon discrimination; graviton production mechanism; and the luminosity measurement.

Reconstruction efficiencies for leptons and their uncertainties are evaluated from control samples in data [24]. The systematic uncertainties on jet reconstruction are evaluated by variation of the jet energy scale and resolution within calibration uncertainties. Uncertainties due to pileup are taken as the difference between re-construction and selection efficiencies with the number of pileup vertices shifted by one unit up and down with respect to the average value measured in data. The requirement on the discriminant $\lambda(\tilde{f}_T)$ translates into 1–2% reduction in signal and the resulting uncertainty is taken as the full inefficiency value. Uncertainties on the quark–gluon selection efficiency are evaluated using a selected $\gamma +$ jet sample in data, which predominantly contains quark jets. The uncertainty on the b tagging has several sources, such as pileup effects and dependence on the fraction of b production from gluon splitting, and has been evaluated on a sample of dijet events enriched in heavy-flavor by requiring a muon to be associated with one jet [32].

For a given production model, there is an additional uncertainty in the production mechanism coming from the choice of PDFs. PDFs affect the distribution of the longitudinal momentum of the graviton, hence the signal acceptance. We follow the PDF4LHC [21, 36–39] recommendation to estimate the uncertainty due to PDF knowledge and to calculate the uncertainty on signal acceptance.
The relative uncertainty on the integrated luminosity [40] is also applied to the signal normalization.

4. Results

Since no significant excess is observed in the data distributions, we set exclusion limits at the 95% confidence level (CL) on the product of the graviton cross section and the branching fraction of $G_{KK} \rightarrow ZZ$. The upper limits are calculated using the CL$_s$ [41,42] method.

Based on the normalization and shape of the m_{ZZ} distribution for signal and background, obtained as described in Section 3.1, we perform an unbinned statistical analysis of the results using the same formalism as in [15,43]. The six data categories are combined in an unbinned maximum likelihood fit for each mass hypothesis with a background-only and a signal-plus-background model,
and the likelihood ratio of the two fits serves as test statistic for the CLs procedure. Systematic uncertainties are incorporated as nuisance parameters and are treated according to the frequentist paradigm.

The resulting upper limits are compared to the theoretical cross sections times branching fraction for $G_{KK} \rightarrow ZZ$, obtained with the CLs technique. The graviton signal was generated according to the model in [1] (RS1, top) and [10] (ADPS, bottom). The 68% and 95% ranges of expectation for the background-only model are also shown with green (darker) and yellow (lighter) bands surrounding the expected upper limit line, respectively. The predicted production cross sections times branching fraction of GKK are also shown with green (darker) and yellow (lighter) color in this figure legend, the reader is referred to the web version of this Letter.)

![Graph](image)

5. Summary

Results have been presented of a search for a KK graviton decaying into ZZ, with one Z-boson decaying leptonically, the other hadronically. CMS data at $\sqrt{s} = 7$ TeV have been used, corresponding to a total integrated luminosity of 4.9 fb$^{-1}$. As a novel feature of this study, the analysis targets specific graviton models, by exploiting information on angular distributions of the decay products to build likelihood-ratio discriminants that enhance the signal sensitivity.

No excesses in the m_{ZZ} distributions over the expected SM backgrounds are found, for the range 400–1200 GeV. Upper limits on the production cross section times branching fraction as a function of graviton mass are set at 95% confidence level. Exclusion ranges for the RS1 model are $M_{s} < 945$ GeV for $k = 0.10$, and $M_{s} < 720$ GeV and $760 < M_{s} < 850$ GeV for $k = 0.05$.

For the first time, upper limits are obtained specifically for the ADPS model, which is more compatible with current indirect experimental limits than the original RS model. We place an exclusion range of $M_{s} < 610$ GeV for $k = 0.50$.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); DST (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Austrian Science Fund (FWF); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Z. Tsamalaidze

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Bontenackels, V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Nowack, L. Perchalla, O. Pooth, P. Sauerland, A. Stahl

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou
P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad Autónoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti