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mission rate. It is seen that with only an average power con­
straint a lower outage probability is achievable for the same 
average power under the long-term constraint than under the 
short-term constraint. However, the performance difference 
shrinks greatly when a peak power constraint is also imposed. 
For a fixed PAR, under both the short-term and long-term 
average power scenarios the outage probability is much 
higher with the peak power constraint than without. However, 
it is seen that the short-term average power constraint is 
affected to a lesser degree. This occurs because the variance is 
higher under the long-term power scenario making it more 
susceptible to the peak power constraint. For a fixed PP the 
outage probability curve plateaus asP av increases. The closer 

38 

1 
IE[S] = -:-1_----::-po-ut-:-:(R::-,-y,---:Kcc-) 

(4.2) 

is the expected service time. 
Using the form of the expected service time and the fact 

that throughput is the transmission rate over the expected 
10 service time, it is defined 

MZTDT(Pa" K, Pp) =sup sup{R[1-Pou1(R, y, K)]: y E OK} 
R 

(4.3) 

p avis to p P' the larger the performance degradation. It is Seen 15 

that the long-term average power scenario plateau's for a 
as the maximum zero-outage throughput with scheme DT for 
a system with coding delay K, average transmit power P av and 
peak transmit power PP. MZTnrtPav• K) is denoted as the 

smaller P av than the short-term average power scenario, illus­
trating its sensitivity to the peak-power constraint. 

FIG. 3D plots outage probability as a function of R for a 
fixed P av· Here again it is seen that when an additional peak 
power constraint is imposed, the outage probability increases 
For large values of Rand/or small values of PP the outage 
probability is higher than without a peak power constraint, 
This is most clearly seen for the long-term power scenario 
with a peak power of PP=16 dB. For R<3.5 nats/sec/Hz the 
outage probability is nearly the same as that achieved without 
a peak constraint, since R is relatively small and the power 
required for any channel state is rarely limited by the peak 
power constraint For R>3.5 nats/sec/Hz, the outage probabil­
ity is higher than that achieved without a peak constraint, 
since the power required for any channel state is often limited 
by the peak power constraint. 

FIG. 3F plots results analogous to FIG. 3E except under the 
short-term average and peak power constraints. The outage 
probability under both peak and average power constraints is 
again larger than only under the average power constraint. 
However, as expected, the performance loss is not as pro­
nounced as under the long-term power constraint. 

4. Throughput Maximization with Optimal Rate 
Selection and Power Control 

20 maximum throughput without a peak power constraint or 
whenPP=oo. 

MZT nr is found by minimizing the outage probability for 
a given transmission rate and then taking the supremum over 
all transmission rates. Here the power allocation policy y 

25 belongs to OK which can represent any one of oKs'(P aJ, 
OK1'(P aJ, oKs'(P av• Pp) or OK1'(P av• Pp), For any transmission 
rate R there is an associated minimum outage probability E 
that is achieved by using the appropriate outage minimizing 
power allocation strategy. Then, MZT nrcan be thought of as 

30 selecting the throughput maximizing (R, E) pair. For each 
power constraint, codewords are encoded using the optimal 
transmission rate that is the maximizer of ( 4.3) and power is 
allocated using the appropriate outage minimizing power 
allocation strategy. If the transmission rate is larger than the 

35 instantaneous capacity, then an outage is declared and the 
transmission of the codeword is delayed. 

Communications performance in fading channels has been 
quantified historically byE-capacity. Typically the target out­
age probability is fixed to a small value such as E=O.Ol. In 

40 practice it may be better from a throughput perspective not to 
fix the target outage probability. This is illustrated in Theorem 
4.0.1. 

Theorem 4.0.1. MZTnris always greaterthanorequal to the 
45 throughput achieved by transmitting at E-capacity. 

The scenario in which both the transmitter and receiver 
have CSI is considered. When this occurs the transmitter 
knows prior to transmission if an outage will occur. Scheme 
DT is proposed which delays transmission until the channel 

50 
condition allows successful decoding at the receiver. Also, 
since the transmitter knows the condition of the channel it can 
vary the transmit power accordingly. The average throughput 

Proof. For a fixed outage probability E, theE-capacity 

�C�~�'� := supsup{R: Pout(R, y, K).;: E, r E OK} 
R y 

(4.4) 

is found by optimally selecting Randy with OK E { oKs'(P aJ, 
OK1'(PaJ oKs'(Pav• Pp), OK1'(Pav• Pp)}. For the outage mini-

is now maximized by optimally selecting the transmission 
rate and power control strategy. 

For scheme DT the outage probabilities are independent 
from one transmission attempt to the next, due to the fact that 
the channel states are assumed i.i.d. in the BF -AWGN model. 
As such the service time distribution, the probability that it 
will take s attempts for successful transmission, is 

(4.1) 

55 mizing power allocation strategy, every transmission rate 
R=C!c corresponds to a minimum outage probability E. Con­
versely, this means every outage probability E corresponds to 
a throughput maximizing transmission rate R=c;c. Trans­
mitting at R=c;c results in a throughput 

60 
(4.5) 

for transmission rate R, coding delay K and power allocation 
policy y. This implies that the service time distribution is 65 

geometric on the positive integers with parameter [1-P ou,(R, 

Therefore (4.5) is a single point on the curve 

�T�D�1�{�R�)�~�R�[�1�-�P� out(R, y*, K)] (4.6) 

with Pou,(R, y*, K) the minimum outage probability that 
achievable for transmission rateR and coding delay K. Since y, K)]. Then 
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MZTnr>T 0 

39 

MZTDT = sup{TDT(R)) 
R 

is obtained, completing the proof. D 

(4.7) 

(4.8) 

Corollary 4.0.2. MZT nris always greater than or equal to the 10 

throughput achieved by transmitting at delay-limited capac­
ity. 

Proof. This is trivially shown by setting E=O and applying 
Theorem 4.0.1. D 

Corollary 4.0.2 illustrates the power of the multi-attempt 
approach for delay-limited systems. For the same coding 
delay K a higher throughput is achieved by allowing multiple, 
rather than a single, transmission attempts per codeword. 
That is, MZT nris larger delay-limited capacity (Tc lc~o)· The 
cost of the improved throughput is a queueing delay that is not 
present if the system is restricted to a single transmission 
attempt per codeword. 

15 

4.1 Maximum Zero-Outage Throughput with Scheme DT 25 
(MZT nr) Under Different Power Constraints 

40 
with 

as the solution to 

(4.12) 

Theorem 4.1.3. The maximum zero-outage throughput with 
the delayed transmission scheme under the long-term average 
power constraint is 

sd{R[E+F( ~ ~max(A''(q)- ~· o) < s')} + 

w'E~{~F( ~ ~max(A11 (q)- ~· 0) = s' )}]} 

(4.13) 

MZT nr is now examined under the short-term average and 
long-term average power constraints both with and without 
an additional peak power constraint. For each power con­
straint either oKs'(PaJ, OK1'(PaJ, oKs'(Pav• Pp) or OK1'(Pav• 
PP) is substitutedforO~P av• PP) in ( 4.3). Then using the form 
of the outage minimizing power allocation strategy, ( 4.3) can 
be reduced to an optimization problem of only a single vari­
able, the transmission rate R. 

30 with A.1'(a) as the solution to 

Theorem 4.1.1. The maximum zero-outage throughput with 
the delayed transmission scheme under the short-term aver­
age power constraint is 

(4.9) 

with A5
'( a) as the solution to 

35 

40 

45 

K-1 j 

~ majA"(q)- ;;:-• o) = KP0 ,. 

(4.10) 50 

k=O \_ k 

Theorem 4.1.2. The maximum zero-outage throughput with 55 

the delayed transmission scheme under both the short-term 
average and peak power constraints is 

(4.11) 60 

supR RE~ lp R:;; K 

j K-1 [ j l -~logl+o:, majA11 (q)--,o) =R, 
Kk=O ~ ~ 

(4.14) 

Theorem 4.1.4. The maximum zero-outage throughput with 
the delayed transmission scheme under both the long-term 
average and peak power constraints is 

sup{R[IE~{lp(q $ Gp))][E~{lp(K < S')} + w'E~{lp(K = S')}]} 
y 

with K=1/K2:K~oK-l min[max(A.1'(a)-1/ak, 0), PP] and 5:::1'(a) 
as the solution to 

(4.16) 

For each power constraint, codewords are encoded using 
the optimal transmission rates that are the optimizers to 
(4.1.1), (4.1.2), (4.1.3) and (4.1.4), respectively. Using the 
appropriate outage minimizing power allocation strategy if 
the transmission rate is larger than the instantaneous capacity 
then an outage is declared and transmission of the codeword 
delayed until a more favorable channel state arises. 

4.2 Special cases ofMZTnr l ( { [ 
log(! +o:,t;J]}) 

( { [ 
log(!+ a:, Pp) ]}) 

supRRE~lpR:;; K 
65 Since the form of the outage minimizing power allocation 

policies are complicated functions of the channel state a, the 
expression for MZT nr are even more complex. However, for 
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K=1 and ax/ fading process more explicit expressions for 
three of the four power allocation scenarios have been found. 

For the short-term average power constraint it is possible to 
find the optimal transmission rate and the maximum through­
put. 

Theorem 4.2.1. IfK=1 and the fading process a follows a X2 
2 

distribution, then 

(4.17) 
10 

Proof. Since K=1 and the entire codeword spans a single 15 

block of the BF-AWGN channel, the outage minimizing 
power allocation is to use all the power P av within the code­
word. In this case the solution is the same as constant power 
allocation when K=l. 

If a follows a X2 
2 distribution, then 20 

42 
Finally, in the case of a long-term average power constraint 

it is possible to find sufficient conditions that the optimal 
transmission rate R1

' and optimal power cutoff SRh* satisfY. 

Theorem 4.2.3. If K=1 and the channel gains follow ax/ 
distribution, then 

(4.21) 

(4.22) 

where 

E;(1,x)= ~dit I
oo -xt 

1 t 

are sufficient conditions that R1
' and SRh* satisfy. 

Using this, 

25 
Proof. Condition (4.21) is a sufficient condition for the opti­
mal power cutoffs Rh*. It is obtained by finding the optimal 
short-term cutoffforthe optimal transmission rate Rlt. That is, 
finding the s such that P 1 ( s )=P av· 

(eR-1) 
Condition ( 4.22) is also a sufficient condition that the opti­

mal transmission rate R1
' and power cutoff SRh* satisfy. For 

30 
transmission rateR and cutoff sR, T(R) = Re- -p-;;:;- . 

Taking the derivative with respect to R and equating with 
zero, it is seen that transmission corresponding to the critical 35 

point is the solution to ReR=P av· The solution to this is the 
optimal transmission rateR *=W(P aJ· Substituting this back 
into T(R) (4.17) is obtained. From Theorem 2.1.1 and Propo­
sition 2.1.2 it is known that this solution corresponds to a 
unique maximum. From Theorem2.1.1 andProposition2.1.2 40 

it is known that this solution corresponds to a unique maxi-
mum.D 

When a peak power constraint is imposed in addition to the 

is used which permits defining 

(eR-1) 
T(R) = Re- -Pa, . 

short-term average power constraint a similar result is Taking the derivative 
obtained. 45 

Theorem 4.2 .2. If K = 1 and the channel fading a follows a X2 
2 

distribution, then 

(4.18) 

with 

(4.19) 

50 

55 

Proof. IfK=1 and the entire codeword spans a single block of 
the fading channel and is affected by only a single channel 

60 
fade. The situation is then the same as constant power allo­
cation. The instantaneous capacity is maximized by allocat­
ing the maximum allowable power to the codeword, which is 

(4.20) 

Then, by the procedure of Theorem 4.2.1, the optimal trans­
mission rate is R *=W(y) and (4.18) is obtained. D 

65 

di[T(R)] 

diR 

and setting to 0, it is seen that 

sR+R -- ---Re =0. 
(
eR-1)di(sR) R 

s diR 

(4.23) 

By letting g(s, R)=P 1 (s )-P av and performing implicit differ­
entiation 

dis 

disR diR 
diR dis 

disR 
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it is determined that 

where 

disR -eR[£;(1, x) -xE;(O, x)] 

d!R x2E;(O, x) 

eR -1 
x = -- and E;(O, x) = e-xtdit, 

SR 

(424) 

Substituting this back into ( 4,23) and setting sR=sRz,*, it is 
determined that ( 4,22), D 

4,3 Examples and Discussion 

MZT nr quantifies the maximum throughput achievable with 
scheme DT As is the case for constant power transmission, 
the benefit of allowing multiple (rather than a single) trans­
mission attempts per codeword, with rate selection and power 
control, is an increased throughput for the same coding delay, 
In this section, this concept is illustrated for the X2 

2 fading 
process, 

4,3,1 Increased Throughput with the Multi-Attempt 
Approach 

Within the single-attempt paradigm the need for a measure of 
zero-outage (error-free) communication performance for 
delay-limited systems led to the notion of delay-limited 
capacity, or E-capacity with E=O, When only a single trans­
mission attempt is allowed, the transmission rate R must be 
supported on all possible a, Thus, delay-limited capacity 
quantifies the error-free data rate that can be supported over 
all a in the support of the fading process, 

44 
that power control is more important than large coding delays 
for maximizing throughput, For example, a target throughput 
of 1 nat/sec/Hz is achieved with K=1 under the long-term 
average power constraint, but is not achievable even with 
K=100 for constant power transmission, It is also worth not­
ing that the more relaxed the power constraint the higher the 
throughput, Le,, MZT n/onst~MZT n/'~MZT D}', This 
relation holds for any coding delay K since the constant 
power allocation is a special case of the short-term power 

10 allocation which in tum is a special case of the long-term 
power allocation strategy, 

To reemphasize the importance of power control FIG, 4B is 
examined, For K=1 and a throughput of 1 nat/sec/Hz, MZT­
ni' is only about 0,5 dB away from ergodic capacity with 

15 power control, Ce>g-pc for which K =oo, More surprisingly, for 
low SNR it is even greater than the ergodic capacity without 
constant power, Ce>g-const' In this SNR region, a better average 
throughput is achieved, MZTn}' for K=1 with the delayed 
transmission scheme and power control than for K=oo with 

20 constant power allocation and the single-attempt approach, 
Ce>g-pc' This implies that optimal power control is more 
important than the number of fading states affecting each 
codeword ( ergodicity), 

25 

4,3,3 Importance of Rate Selection 

As is the case for constant power transmission, the simulation 
results for variable power transmission show that the trans­
mission rate may be selected carefully in order to maximize 
throughput Selecting a suboptimal transmission rate can 

30 result in a throughput much smaller than MZT DT' This can be 
seen in FIG, 4D which plots the average throughput achieved 
with scheme DT as a function of transmission rate for the 
constant, short-term and long-term average power allocation 
strategies, 

35 The peak of each curve corresponds to MZT DT' It is also 

With CSI-RT, delay-limited capacity is always 0 for x/ 
fading when K=L However, when K>1 non-zero delay-lim­
ited capacity is possible, FIG, 4A illustrates MZT ni' and 
delay-limited capacity as a function of P av forK 32 2, the 
smallest coding delay with non-zero delay-limited capacity, 40 

For the same coding delay, MZT ni' is higher than delay­
limited capacity for all P av' The performance benefits of the 
multi-attempt approach over the single-attempt approach is 

seen that the larger the coding delay K the larger the drop in 
throughput is if the optimal transmission rate is overshot, 
Therefore case must be taken to solve (4,3) and select the 
appropriate transmission rate for the power allocation policy 
at hand, 

FIG, 4E plots the optimal transmission rate, corresponding 
to MZT un as a function of coding delay K, The optimal 
transmission rate, especially for small K, can fluctuate a great 
deaL In fact a very non-intuitive phenomenon is observed-in an increased throughput for the same coding delay, 

4,3,2 Importance of Power Control 

The conventional view about optimal power control is that it 
yields "a negligible [ergodic] capacity gain" over constant 
power transmission, This is quite evident when comparing 
C"'" and Cerg-pc as a function ofP av in FIG, lC However, in 
FIG, 4B MZTnris plotted as a function ofPav with K=1 for 
the constant, short-term (equivalent to constant power allo­
cation for K=1) and long-term power allocation strategies, 
Comparing MZT n/onst and MZT n/, it is seen that the dif­
ference between the curves is large for all P av; power control 
is important for delay-limited systems, Therefore the original 
statement about optimal power control should be qualified: 
Power control provides negligible performance gains for 
delay-unconstrained systems, but for delay-limited systems 
the gains can be significant 

The importance of power control is again shown in FIG, 4C 
which plots MZT DT with p av = 10 dB By observing MZT ni' 
as a function ofK, it is seen that the throughput, under scheme 
DT, with optimal rate and power control converges very 
quickly to ergodic capacity, In fact, MZT n/=2,00 nats/sec/ 
Hz when K=10, is just slightly lower than Ce>g-pc=2,07 nats/ 
sec/Hz, achievable only when K=oo, Again, this illustrates 

45 some cases, the optimal transmission rate can actually be 
higher than ergodic capacity, For example, when K=1 the 
optimal transmission rate under the long-term average power 
constraint, R1'=2,51 nats/sec/Hz, is more than 21% higher 
than the ergodic capacity of the channel, cerg-pc =2,07 nats/ 

50 sec/Hz, This is counter to common practice, where a trans­
mission rate lower than capacity is normally used, This is not 
a violation of the ergodic capacity theorem, since the result­
ing throughput is virtually always less than ergodic capacity, 

For a given power allocation policy, either the transmission 
55 rate of the outage probability, but not both, can be freely 

selected since they depend on one another, FIG, 4F plots the 
outage probability associated with the optimal transmission 
rate, It is seen that the optimal outage probability can be 
substantially high as was shown for constant power transmis-

60 sian, In fact, for Pav=10 dB the optimal outage probability 
when K=1 is, 0,37 and 0,27 for the short-term and long-term 
average power constraints, This is interesting because it is 
counter to conventional practice; in most communication lit­
erature E-capacity is normally measured for a small outage 

65 probability such as E=O,OL However, it is seen that in order to 
maximize throughput the outage probability should be much 
higher, 
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4.3.4 Effect of a Peak Power Constraint 

As discussed above, a peak power constraint can reduce the 
ability of a delay-limited communication system to prevent 
outage events, resulting in higher outage probabilities for the 
same transmission rate and average power. This will affect the 
MZT nr of the system as well. Here the effect of the peak 
power constraint on the long-term average power scenario is 
illustrated. Similar results, though to a lesser degree, can be 

10 
observed for the short-term power scenario. 

A peak power constraint limits the maximum throughput. 

46 
a peak power constraint, decreases. FIG. 4N and FIG. 4P 
illustrate the analogous results under the short-term average 
power constraint. 

5. Throughput Maximization with Queueing Delay 
Constraints 

The throughput maximization analysis described previ­
ously measured communication performance under the 
multi-attempt paradigm. The average throughput for schemes 
RT, ID and DT are maximized. By allowing multiple trans­
mission attempts per codeword, zero-outage communication 
is possible for finite coding delay K. This is often not the case 
for the single-attempt approach, which often results in zero 

FIG. 4G show MZTn/'when K=5 as a function ofPav both 
with and without a peak power constraint. Also plotted for 
reference is ergodic capacity (without a peak power con­
straint). MZTn/'cPav• K, PP) is nearly identical to MZTn/ 

15 throughput for finite K. The improved throughput achieved 
with the multi-attempt approach does not come without any 
cost. The cost is a queueing delay due to the random nature of 
the fading channel that is not present with the single trans-

(P av• K) when P av <<P r However, for larger P av the outage 
probability, and therefore MZT n/(P av• K, Pp), becomes lim­
ited by the peak power constraint. Further increasing the 
average power does not increase MZT n/(P av• K, P P) as the 20 

peak power constraint will not allow improvements in the 
minimum outage probability. FIG. 4G also illustrates 
MZT ni' for a fixed PAR. Here, MZT ni' continues to 
increase with P av• but the effect of the PAR restriction is 
obvious-MZTn/' is less than that obtained without a peak 25 

power constraint. FIG. 4H illustrates the analogous results for 
the short-term power constraint. The same effects are present 
but are not as pronounced due to the fact that the short-term 
amperage power constraint is less affected by an additional 30 
peak power constraint than the long-term average power con­
straint. 

MZT n/(P av• K, P p), is plotted against coding delay K for 
P av=10 dB and various values ofPP in FIG. 4I(b). The smaller 
the p P' the further MZT Dilt(p av• p P' K) is from MZT ni'CP av• 35 

K). An interesting phenomenon is observed asK increases; it 

mission attempt approach. 
5.1 Mathematical Formulation 

In the following queueing analysis a slotted transmission 
system in which "time" is measured in multiples of the chan­
nel coherence time, or blocks ofN transmitted symbols in the 
BF-A WGN channel model is assumed. A codeword transmis­
sion attempt that requires 1 slot which corresponds to K 
blocks if the coding delay is K is assumed. A simple Bernoulli 
arrival process in which either zero or one codeword arrives 
into the queue in any slot is also assumed. The arrival process 
has the distribution 

{ 

a n= 1 
fa(n) = Prob(n arrivals)= ' 

1- a, n = 0, 

(5.1) 

with average arrival rate, E[n]=a , the average number of 
codewords arriving in any particular slot. The average service 
rate, 

40 

is seen that the peak power constraint affects the maximum 
throughput, and hence the outage probability, to a lesser 
degree. This is explained by the fact that the likelihood of a 
substantially poor channel a decreases for large K. Hence, the 
likelihood of a power allocation vector which hits the peak 
power in several blocks also decreases and the effect of the 
peak power constraint diminishes. The same phenomenon 
can be seen with the short-term power constraint in FIG. 41, 

45 
though to a lesser degree. 

Properly selecting the transmission rate remains important 
when a peak power constraint is imposed. FIG. 4K plots the 
throughput against transmission rate with a long-term aver­
age power constraint for different values ofPr It is critical to 50 

select the transmission rate that corresponds to MZT n/(P av• 

1 
E[S]' 

is the average number of codewords serviced by the server in 
any particular slot. Then the queue utilization factor 

average arrival rate 
p := . = a!E[S] 

average service rate 

(5.2) 

K, P P), since a suboptimal selection can yield a large through­
put drop. The effect of the peak power constraint is clearly 
seen on the throughput-small values ofPP and/or for large 
values ofR the transmitted signal is peak limited. That is, the 
throughput is less that that if there is no peak power con­
straint. This same phenomenon is observed under the short­
term power constraint in FIG. 4L though not seen to the same 
degree as under the long-term power constraint. 

55 represents the proportion of time that the server is busy. 

60 
FIG. 4M and FIG. 40 show the optimal transmission rate 

and the associated outage probability as a function of K for 
various P P under the long-term average power constraint. The 
optimal transmission rate can be higher than ergodic capacity 
and the optimal outage probability can be high. Both obser- 65 

vations run counter to conventional practice. As K grows, the 
difference in the optimal transmission rates, with and without 

Factoring the queue utilization yields 

LT R 
T (R, Pa" K, a)= p(a, R)IE[S] 

(5.3) 

as the long-term average throughput for a particular transmis­
sion rateR. The formulation is similar to (1.2) except for the 
scaling factor p(a, R) that accounts for the proportion of time 
the server in the queue is busy For example, if the codeword 
arrival rate and transmission rate are such that the throughput 
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is 2 nats/sec/Hz but p=1h, implying that the server is busy only 
half of the time, then the long-term average throughput is 1 
nat/sec/Hz. 

The communications throughput without a constraint on 
the queueing delay was previously maximized. As such, the 
queue utilization factor was p= 1, and the server was always 
busy either transmitting or retransmitting codewords This 
implies that average arrival rate of codewords into the queue 

48 
The queue utilization for scheme RT can be written as 

a 
p= . 

[1- Pout(R, Pa" K)] 
(5.7) 

is equal to the average service rate of the codewords. This 
10 

approach limits the coding delay to K blocks and provides the 
maximum throughput for a particular retransmission scheme 
without a constraint on the queueing delay. In many applica­
tions, such as video or voice, excessive queueing delays can­
not be tolerated. For these systems operating at the maximum 15 

throughput T max(P av' K) (1.2) is not feasible as it would lead 

Without a queueing delay constraint p= 1 and the optimal 
transmission rate as RMzrR/· From (5.7) when p(a, R)=1 the 
resulting optimal codeword arrival rate is 

(5.8) 

Using (5.4)-(5.6) the maximum zero-outage throughput 
for coding delay K and power P av with a constraint D on the 
amperage waiting time can be written as 

to excessive delay. For such applications the arrival rate and 
coding rate may be adjusted to ensure that the queueing delay 
is not excessive. 

D { K(1- a) } 
MZTRr(Pa" K) =sup aR: 

1 
,;; D . 

a,R -a- Pour(R, Pav• K) 

(5.9) 

The expected waiting-time, or delay, is the amount of time 20 

that a codeword spends in the system (either in the queue or 
under service). One way to constrain the queue length is to 
constrain the expected waiting-time of codewords that arrive 
into the system. Illustrate are constant power transmission 

25 
and schemes RT since it is the most analytically tractable; 
however, similar results can be derived for other multi-at­
tempt schemes both with and without power control. The 
problem of throughput maximization with a waiting-time 

Throughput is maximized by optimally selecting the code­
word arrival rate a and the coding rate R with the constraint 
that the expected waiting-time (delay) is less than D blocks. 
This problem can easily be converted to constrain the number 
of codewords in the communication system by applying Lit­
tle's theorem 

(5.10) 

constraint can be stated as 

T~"'(Pa" K) = sup{p(a, R)_!__: IE[W],;; n} 
a,R IE[S] 

(5.4) 

where E[W] is the expected waiting time for each codeword 
entering the system and the supremum is taken over all valid 
arrival rates, a, and transmission rates, R. (5.4) is examined in 
detail for scheme RT. 

5.2 Optimal Throughput Maximization with Queuing 
Delay Constraints 

Since the arrival process is Bernoulli, the interarrival time 
distribution, the distribution of the number of slots between 
consecutive codeword arrivals, is geometric with parameter a. 
From Section 2.1, it is known that the service time distribu­
tion for scheme RT is also geometric with parameter [1-P out 

(R, P av' K)]. Since both the interarrival and service times are 
geometrically distributed, the communications system can be 
modeled as a discrete-time Geo/Geo/1 queue. 

The expected waiting time for a Geo/Geo/ 1 queue, in terms 
of blocks in the BF-AWGN model, is 

where 

K 
IE [ W] = y-::--x 

A·= 1- average service rate Pour(R, P, K) 

· 1 -average arrival rate 1 -a 

(5.5) 

(5.6) 

30 
with M representing the number of codewords in the system, 
either in the queue or being served. In general the transmitter 
does not have control of the codeword arrival rate since data 
is generated by applications not under the control of the 

35 communication system. However, it is possible to optimize 
over the arrival rate a in order to determine the optimal rate 
that applications should generate data. Though the objective 
function in (5.9) is convex, the set of feasible points for the 
optimization problem is not and therefore (5.9) is not a con-

40 vex optimization problem. Thus, a unique solution to (5.9) 
may not exist. 

FIG. SA plots the optimal MZT RrD(P av' K) as a function of 
the maximum average waiting timeD, for K=1 and Pav=10. 
MZT RrD(P av' K) was found by exhaustive search over the 

45 variables R and a. It is seen that the maximum through-put 
approaches MZT Rr(K, P aJ as the constraint on the waiting 
time is relaxed, i.e. D---;.oo. Though it cannot be shown explic­
itly, since no closed form for (5.9) exists, the convergence of 
MZT RrD(P av' K) to MZT Rr(K, P aJ appears monotonic. This 

50 figure is particularly useful as it allows the prediction of the 
best case performance of a communication system using 
retransmission scheme RT with both a finite coding delay K 
and a finite waiting-time D. It is also interesting to note that 
for small D"" 1 0 the maximum throughput with a waiting-time 

55 constraint approaches that obtained without a waiting-time 
constraint. 

For K=1 and Pav=10 dB, the optimal transmission rate 
RMzrRl* and codeword arrival rate aMzrRl* that maximize 
(5.9) are shown in FIGS. SB and 5C, respectively. It is seen 

60 that RMzrRl*---;.RMzrRr* and aMzrRl*---;.aMzrRr* as D---;.oo. 
However, the convergence is not monotonic and the optimal 
values ofRMzrRl* and aMzrRl* can fluctuate as a function of 
D. This is due to the non-convexity of the original problem 
(5.9). For small D that RMzrRl* is quite far from the optimal 

65 RMzrRr *while aMzrRl* is not far from aMzrRr *.Thus, in order 
to maximize the throughput while constraining the average 
waiting-time, the coding rate rather than the codeword arrival 
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This is a convex optimization problem since both the objec­
tive function and set of feasible points are convex. Therefore, 
a globally optimal solution to (5.11) exists. The existence of 
a near-optimal convex optimization problem is also useful 
since both (5.9) and (5.11) must be solved numerically; if an 
optimization algorithm converges to a local maxima in both 
cases, then it is the globally optimal solution to (5.11) while it 
may not be for (5-9). 

rate should be reduced; the frequency of codeword arrivals 
should be left unchanged while the amount of information in 
each codeword should be reduced. A reduction in the code­
word arrival rate reduces the throughput to a greater extent 
than a reduction in the coding rate. This is non-intuitive as 
conventional flow-control algorithms, such as TCP, reduce 
the frequency of packet generation when large queues build in 
communication networks. The difference is reconciled by the 
fact that the underlying cause for the buildup of queues is 
different. The action that TCP takes is motivated by the 
assumption that queues build due to congestion in the net­
work-that packets are being generated faster than the net­
work can handle them. However, queues in fading charmels 
grow due to the frequency of codeword generation and the 
fact that the medium itself is unreliable. For example, if the 15 

channel condition remains poor for 10 consecutive slots (re­
sulting in outages for 10 consecutive transmission attempts) 
and zero new codewords arrive into the queue, then the queue 
size remains unchanged. However, if the link is assumed 
reliable and if zero codewords arrive into the queue for 10 20 

consecutive slots, then the queue size shrinks by 10. This 
concept allows for a novel method for waiting-time/delay (or 
queue-length) management in fading channels: If the average 
waiting-time is large then it can be reduced by using a smaller 
coding rate ( codewords with a smaller amount of data) at the 25 

transmitter. Conversely, a larger coding rate (more informa­
tion per codeword) can be used at the transmitter to increase 
communications throughput at the expense of a larger wait­
ing-time. 

When K=1 and the channel fading is x/ a closed form 
10 

solution to the near-optimal (5.11) can be found. 

Theorem 5.3 .1. IfK = 1 and the channel fading process follows 
ax/ fading distribution then 

(5.12) 

Proof. To begin 

(5.13) 

For the optimal coding rate and codeword arrival rate the 
corresponding queue utilization p(a, R) is plotted in FIG. SD 

30 For K=1 and X2 
2 fading 

as a function of D. It is seen that in order to satisfy a smaller 
waiting-time constraint D the queue utilization is lowered 
until the delay constraint is met. From FIGS. SB and SC it is 
seen that this is accomplished by reducing the transmission 35 

rate rather than the arrival rate. This is preferable to the 
opposite situation (reducing the arrival rate while keeping the 
transmission rate constant) since it yields a larger throughput 
for the same waiting-time. 

5.3 Near-Optimal Throughput Maximization with Queu- 40 

ing Delay Constraints 

Substituting this into the waiting-time constraint 

(5.14) 

(5.15) 

Since (5.9) is not a convex optimization problem it may have 
many local maxima. As such, numerical techniques to solve 
(5.9) may not converge to the globally optimal solution. In 
this situation a near-optimal optimization problem that is 
amenable to a numerical solution is desirable. 

45 which after some algebraic manipulation yields 

The optimal arrival rate aMzrRl* in (5.9) does not deviate 
greatly from a MzrR/ as a function ofD. This phenomenon can 

(5.16) 

be seen in FIG. SC. Similarly, it is seen from FIG. SB that the 50 

optimal transmission rate drops significantly for small D. 
Clearly adjusting R rather than a is more important for con­
trolling the waiting-timeD while maximizing the throughput. 
Therefore, it makes sense for the arrival rate to be fixed 
a=aMzrRr * and the optimization to only be performed over the 55 

transmission rate R. 

Clearly the linear objective function in (5.13) is maximized 
by satisfying (5.16) with equality, resulting in (5.12). D 

In FIG. SA it is seen that the near-optimal nMZT RrD(P av' 

K) achieved by only varying the coding rate performs nearly 
as well as MZT RrD(P av' K) achieved by optimizing the trans­
mission rate and codeword arrival rate. A reduction in either 
a and R reduces both the expected waiting-time and maxi-

For a fixed arrival rate a=aMzrR/ near-optimal nMZTRrD 
for coding delay K and power P av with average waiting time 
D is defined as 

(5.11) 

60 mum throughput. However, the maximum throughput suffers 
a great deal more if a rather than R is reduced, explaining the 
fact that aMZTRT *""aMZTRl*. 

FIG. SB compares the optimal RMzrRl* and near-optimal 
RnMzrRl* transmission rates as a function of the waiting-time 

65 D. As with RMzrRl*, RnMzrRl* converges to RMzrR/ as 
D---;.oo. For K=1 this can be analytically seen by the fact that 
the throughput maximizing transmission rate 
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(5.17) 

52 
channel. The technique may be implemented by first charac­
terizing the channel (block 502). Characterizing the channel 
includes identifying a coherence time for the channel, iden­
tifYing a noise power, and modeling a channel gain probabil­
ity density function. Constraints on retransmissions, power, 
and delay then are determined (block 504) to establish the 
parameters within which subsequent optimization calcula­
tions are to be performed. Expected service time is subse­
quently formulated in terms of data rate, power and coding 

The near-optimal queue utilization is compared with the 
optimal queue utilization in FIG. SD forK= 1 and P av = 1 0 dB. 
Both are similar although the near-optimal one is obtained by 
varying only the transmission rate and not the codeword 
arrival rate. 

10 delay (block 506). The expected service time is used in cal­
culations to determine a data rate, power allocation, and cod­
ing delay that optimize throughput (block 508). Results of 
these calculations are used to transmit data at the optimal rate, 
coding delay and power allocation (block 510), thus optimiz-

5.4 The Queueing Delay vs. Coding Delay Tradeoff 15 ing throughput. 

Above, the waiting-time is constrained to be less than D for a 
fixed coding delay ofK. However, some applications using a 
communication system are affected by the total delay and it 
does notmatterwhetherthe delay is spent in coding or queue- 20 
ing. For small K retransmissions are less costly in terms of 
delay but the instantaneous capacity, but the amount of infor­
mation that can be reliably transmitted with each codeword, is 
small. For large K the opposite is true, the instantaneous 
capacity is larger but retransmission is more costly in terms of 25 
delay. By optimizing over the coding delay K, an optimal 
balance can be struck. 

Using this idea, it is possible to define 

and 

MZT~r('P0,) = sup{nMZT~r('Pa" K)) 
K 

nMZT~r('P0,) = sup{nMZT~r('Pa" K)) 
K 

(5.18) 

(5.19) 

as the highest optimal and near-optimal throughput for P av 

and average waiting-time D. These quantities are achieved by 
solving (5.9) and (5.11) for each value ofKE{1, 2, ... , D} and 
then taking the supremum, over K, of these values. 

The tradeoff between coding delay and queueing delay is 
illustrated in FIG. SE, which plots MZTRrDCPav' K) and 
nMZTRrn(P av' K) as a functionofKfor D=20andP av=10dB. 

30 

35 

40 

45 

To the end-user the average waiting time is D=20 for each 
coding delay K, however, the throughput is not. By optimiz- 50 

ing over K, the throughput can be maximized without any 
effect on the average waiting-time of end users. In this case it 
is seen that there is a unique coding delay, K=16, that corre­
sponds to MZT RrD(P aJ and nMZT RrD(P aJ, respectively. 
This indicates that for a total waiting-time of D=20 that the 55 

coding delay should be set to K = 16 and the codeword arrival 
and transmission rates found by solving (5.9) and (5.11), 
respectively. Also note that only zero throughput is achiev­
able with K=20 for both the optimal and near-optimal tech­
niques. This is due to the factthattheminimum delay is D=20 60 

since K=20 and a retransmission of any codeword would 
violate the average waiting-time constraint. Since retransmis­
sions are not permitted in this case and zero-outage commu­
nication is not possible with a single-transmission attempt 
(delay-limited capacity is zero), the throughput is zero. 65 

FIG. SF shows a flow diagram of a technique used to 
optimize throughput during data transmission over a wireless 

What is claimed is: 

1. A communication method comprising: 
characterizing a commutations channel using a transmitter; 

determining a data rate that maximizes channel throughput 
using said transmitter; and 

configuring said transmitter to send a transmit signal with 
said data rate; 

wherein characterizing the communications channel com­
prises modeling a channel gain probabilty density func­
tion; 

wherein the power allocation strategy sets yk, a transmit 
gain for a kth interval, to 

wherein 2: is a vector of the channel attenuation ak for the 
last K intervals, P Pis a peak power constraint, and A-(2:) 
is the solution to 

2. The method of claim 1, wherein said determining further 
includes determining a power allocation strategy that jointly 
maximizes the channel throughput with said data rate. 

3. The method of claim 2, wherein said power allocation 
strategy provides for adjustment of the transmit power to 
compensate for channel gain variation. 

4. The method of claim 3, wherein said power allocation 
strategy minimizes outage probability subject to peak power 
and average power constraints. 

5. The method of claim 1, wherein the power allocation 
strategy stochastically sets yk, a transmit gain for a kth inter­
val, to 

wherein 2: is a vector of the channel attenuation ak for the 
last K intervals, P pis a peak power constraint, and A-(2:) 
is the solution to 
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wherein R is the data rate, and wherein the stochastic 
probability is based on a current channel gain and a 
history of transmit gains. 

6. The method of claim 1, wherein the communications 
channel is a wireless channel. 

7. The method of claim 6, wherein said characterizing 
includes: 

identifYing a coherence time for the channel; and 
identifYing a noise power. 
8. The method of claim 1, wherein said determining 

includes: 

54 

wherein P is the average transmit power, and P ou,(R,P av' 
K) is th~vprobability of a channel outage. . 

20. The method of claim 18, wherein the expected serv1ce 
time is expressible as: 

10 

15 

wherein P is the average transmit power. 

maximizing a throughput function that accounts an 
expected service time for transmitting a codeword to a 
receiver and an average amount of data carried by each 20 

codeword. 

21. The m~thod of claim 18, wherein the expected service 
time is expressible as: 

9. The method of claim 8, wherein the expected service 
time is expressible as a function of data rate. . 

10. The method of claim 8, wherein the expected serv1ce 
time is expressible as a function of coding delay. . 

11. The method of claim 8, wherein the expected serv1ce 
time accounts for a power allocation strategy. 

12. The method of claim 8, wherein the expected service 
time accounts for delay constraints. 

25 
wherein P is the average transmit power, P outCR,P av,K) is 

the prob~bility of a channel outage, and Lis the maxi­
mum number of transmission attempts per codeword. 

22. A transceiver that comprises: 

13. The method of claim 8, wherein the expected service 30 

time accounts for retransmission constraints. 

a receiver configured to receive information characterizing 
a communications charmel; and 

a transmitter configured to process said information to 
determine a data rate that maximizes a throughput for 
the communications channel, and further configured to 
provide a transmit signal to the communications channel 

14. The method of claim 8, wherein the expected service 
time accounts for outage probability. 

15. The method of claim 8, wherein the expected service 
time accounts for receiver decoding strategy. 

16. The method of claim 15, wherein the receiver decoding 
strategy includes: 

discarding incorrectly received codewords; and 
requesting re-transmission of the incorrectly received 

35 
using said data rate 

wherein, as part of determining a data rate, the transceiver 
maximizes a channel throughput function that accounts 
for an expected service time for transmitting a codeword 
to a remote receiver; 

codewords. 40 
wherein said throughput function is expressible as a func­

tion of the data rate and an expected service time, said 
expected service time being a function of the data rate, 
transmit power and coding delay. 

17. The method of claim 15, wherein the receiver decoding 
strategy includes: 

requesting re-transmission of incorrectly decoded code­
words; and 

combining re-transmitted codewords with incorrectly 45 

decoded codewords to decode the re-transmitted code-

23. The transceiver of claim 22, wherein as part of deter­
mining a data rate that maximizes a throughput for the com­
munications channel, the transmitter is configured to jointly 
determine a power allocation strategy that maximizes the 
throughput subject to a power constraint. words. 

18. A communication method comprising: 
characterizing a communications charmel; 
determining a data rate that maximizes charmel through­

put; and 
configuring a transmitter to send a transmit signal with said 

data rate; 
wherein characterizing the communications charmel com­
prises modeling a channel gain probability density function, 
wherein the throughput function is expressible as: 

R 
T(R, y, K) = E[S(R, y, K)]' 

wherein R is the data rate, y is the transmit power, K is the 
coding delay, and E[S(R,y,K)] is the expected service 
time. 

19. The method of claim 18, wherein the expected service 
time is expressible as: 

24. The transceiver of claim 23, wherein the power alloca­
tion strategy minimizes a channel outage probability. 

50 
25. The transceiver of claim 22, wherein the communica­

tions channel is a fading channel. 
26. The transceiver of claim 25, wherein the information 

characterizing the charmel includes a coherence time for the 

55 channel, a noise power, and model for a channel gain prob­
ability density function. 

27. The transceiver of claim 22, wherein the expected 
service time accounts for data rate and coding delay. 

28. The transceiver of claim 27, wherein the expected 
60 service time further accounts for constraints on power and 

retransmission attempts. 

65 

29. The transceiver of claim 27, wherein the expected 
service time further accounts for outage probability and 
receiver decoding strategy. 

30. A transceiver that comprises: 
a receiver configured to receive information characterizing 

a communications charmel; and 
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a transmitter configured to process said information to 
determine a data rate that maximizes a throughput for 
the communications channel, and further configured to 
provide a transmit signal to the communications channel 
using said data rate; 

wherein, as part of determining a data rate, the transceiver 
maximizes a channel throughput function that accounts 
for an expected service time for transmitting a codeword 
to a remote receiver; 

wherein the throughput function is expressible as: 10 

R 
T(R, y, K) = E[S(R, y, K)]' 

56 
wherein R is the data rate, y is the transmit power, K is the 

coding delay, and E[S(R,y,K)] is the expected service 
time. 

31. The transceiver of claim 30, wherein the expected 
service time is expressible as: 

wherein P avis the average transmit power, P ou,(R,P av,K) is 
the probability of a channel outage, and Lis the maxi­
mum number of transmission attempts per codeword. 

* * * * * 


