Methods of increasing yields of succinate using aerobic culture methods and a multi-mutant E. coli strain are provided. Also provided is a mutant strain of E. coli that produces high amounts of succinic acid.

4 Claims, 11 Drawing Sheets
Escherichia coli.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

FIG. 9
FIG. 10

FIG. 11
FIG. 12
FIG. 13
1

AEROBIC SUCCINATE PRODUCTION IN BACTERIA

PRIOR RELATED APPLICATIONS

This application claims the benefit under 35 USC §119(e) to U.S. Provisional Application Ser. No. 60/599,956 filed Aug. 9, 2004, entitled “Aerobic Succinate Production In Bacteria,” which is incorporated herein in its entirety.

FEDERALLY SPONSORED RESEARCH STATEMENT

The present invention was developed with funds from the National Science Foundation and the U.S. Department of Agriculture. Therefore, the United States Government may have certain rights in the invention.

REFERENCE TO MICROFICHE APPENDIX

Not applicable.

REFERENCE TO A SEQUENCE LISTING

Not applicable.

FIELD OF THE INVENTION

The invention relates to methods of producing succinic acid, malic acid, fumaric acid, and other carboxylic acids in metabolically engineered microorganisms.

BACKGROUND OF THE INVENTION

The valuable specialty chemical succinate and its derivatives have extensive industrial applications. Succinic acid is used as a raw material for food, medicine, plastics, cosmetics, and textiles, as well as in plating and waste-gas scrubbing (66). Succinic acid can serve as a feedstock for such plastic precursors as 1,4-butanediol (BDO), tetrahydrofuran, and gamma-butyrolactone. Further, succinic acid and BDO can be used as monomers for polyesters. If the cost of succinate can be reduced, it will become more useful as an intermediary feedstock for producing other bulk chemicals (51). Along with succinic acid, other 4-carbon dicarboxylic acids such as malic acid and fumaric acid also have feedstock potential.

Currently, succinate is produced through petrochemical processes that are expensive and can damage the environment. A high yield succinate producing bacteria would allow replacement of a petroleum product with a feedstock that uses agricultural waste. The production of succinate, malic acid, and fumaric acid from glucose, xylose, sorbitol and other “green” sources by Escherichia coli provides a low cost sustainable source of chemical feedstocks. Additionally, heterologous genes are often expressed in E. coli to produce valuable compounds such as polyketides, esters, nutritional compounds, and pigments.

Metabolic engineering has the potential to considerably improve process productivity by manipulating the throughput of metabolic pathways. Specifically, manipulating enzyme levels through the amplification, addition, or reduction of a particular pathway can result in high yields of a desired product. Various genetic improvements for succinic acid production under anaerobic conditions have been described that utilize the mixed-acid fermentation pathways of E. coli. Examples include the overexpression of phosphoenolpyruvate carboxylase (pepc) from E. coli (38). The conversion of fumarate to succinate was improved by overexpressing native fumarate reductase (frd) in E. coli (16, 57).

Certain enzymes are not indigenous in E. coli, but can potentially help increase succinate production. By introducing pyruvate carboxylase (pyc) from Rhizobium etli into E. coli, succinate production was enhanced (13, 14, 15). Other metabolic engineering strategies also include inactivating competing pathways of succinate. When malic enzyme was overexpressed in a host with inactivated pyruvate formate lyase (pfl) and lactate dehydrogenase (ldh) genes, succinate became the major fermentation product (45, 21). In cultures of this pfl and ldh mutant strain, there is a large pyruvate accumulation. Overexpression of malic enzyme in this mutant strain increased succinate production driven by the high pyruvate pool toward the direction of malate formation, which subsequently was converted to succinate. An inactive glucose phosphotransferase system (ptsG) in the same mutant strain (ptsG) has also been shown to yield higher succinate production in E. coli and improve growth (8). Unfortunately, anaerobic fermentation is hampered by the limited NADH availability, poor biomass generation, slow carbon throughput, and, therefore, slow product formation.

Because of the disadvantages of anaerobic fermentation, E. coli was genetically engineered to produce succinate under aerobic conditions (29, 34). This work provides metabolically engineered succinate production systems that can operate under aerobic conditions through pathway modeling, optimization, and genetic engineering of the aerobic central metabolism. This is the first platform for enhancing succinate production aerobically in E. coli based on the creation of a new aerobic central metabolic network.

SUMMARY OF THE INVENTION

A mutant bacterial strain with more than three pathway genes inactivated to improve carboxylic acid production under aerobic conditions is described wherein the carboxylic acid produced is succinate, fumarate, malate, oxaloacetate, or glyoxylate. In one embodiment of the invention, the genes sdhAB, (ackA-pta), poxB, ictR, and ptsG are inactivated. In another embodiment of the invention various combinations of genes are inactivated including sdhAB, (ackA-pta), poxB, ictR, and ptsG. These mutant strains can also be combined with the overexpression of PEPC, ACEA, ACEB, or ACEK to further increase succinate yield.

The mutant strains designated HL267k, HL2671k, HL26715k, HL27615k, HL12675k, HL51267k, HL51276k, HL52167k, HL52176k, HL51276k, HL51276k(pKK313), HL512769k(pKK313), HL2765k, HL27659k, HL512769k(pKK313), HL2765k(pKK313), HL27659k(pKK313), HL512769k(pKK313C), HL2765k(pKK313C), HL27659k(pKK313C), HL512769k(pKK313C), HL2765k(pKK313C), HL27659k(pKK313C), HL5122k, HL5127k, HL51276k, HL126k, HL126k, HL5126k, HL521k, HL5216k, and HL5217k provide some embodiments of the invention.

Further, an aerobic method of producing carboxylic acids with a mutant bacterial strain is described, wherein said method comprises inoculating a culture with a mutant bacterial strain described above, culturing said culture under aerobic conditions, and isolating carboxylic acids from the media. Bacteria strains can be cultured in a flask, a bioreactor, a fed-batch bioreactor, or a chemostat bioreactor to obtain carboxylic acids.
BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings which are incorporated in and constitute a part of this specification and together with the description, serve to explain the principles of the invention:

FIG. 1 Genetic Engineering of Glycolysis, TCA cycle, and Glyoxylate Bypass. 1 is a icd knockout; 2 is a sdhAB knockout; 5 is a iclR knockout; 6 is a poxB knockout; 7 is a ackA-pta knockout; and 9 is a ptsG knockout.

FIG. 2 Model network of succinate synthesis pathways. The pyruvate carboxylase (pyc) pathway is not indigenous in E. coli.

FIG. 3 Metabolite Production with Glyoxylate Shunt. a) Succinate production; b) Glucose remaining; c) Pyruvate production; d) Acetate production. Solid square (■) is HL27659k; solid triangle (▲) is HL2765k; open square (□) is HL51276k; open triangle (△) is HL51276k; open square (□) is HL51276k; and open triangle (△) is HL51276k.

FIG. 4 Pentamutant HL51276k with Sorghum PEPC. a) Succinate production; b) Glucose remaining; c) Pyruvate production; d) Acetate production. Solid diamond (●) is HL51276k(pKK313); solid square (■) is HL51276k(pKK313); and open square (□) is HL51276k(pKK313). Cultivation medium is LB with 2 g/L NaHCO3 and approximately 60 mM of glucose.

FIG. 5 Hexamutant HL512769k with Sorghum PEPC. a) Succinate production; b) Glucose remaining; c) Pyruvate production; d) Acetate production. Solid diamond (●) is HL512769k(pKK313); solid square (■) is HL512769k(pKK313); and open square (□) is HL512769k(pKK313). Cultivation medium is LB with 2 g/L NaHCO3 and approximately 60 mM of glucose.

FIG. 6 Quadruplmutant HL27659k with Sorghum PEPC. a) Succinate production; b) Glucose remaining; c) Pyruvate production; d) Acetate production. Solid diamond (●) is HL27659k(pKK313); solid square (■) is HL27659k(pKK313); and open square (□) is HL27659k(pKK313). Cultivation medium is LB with 2 g/L NaHCO3 and approximately 60 mM of glucose.

FIG. 7 Pentamutant HL27659k with Sorghum PEPC. a) Succinate production; b) Glucose remaining; c) Pyruvate production; d) Acetate production. Solid diamond (●) is HL27659k(pKK313); solid square (■) is HL27659k(pKK313); and open square (□) is HL27659k(pKK313). Cultivation medium is LB with 2 g/L NaHCO3 and approximately 60 mM of glucose.

FIG. 8 Succinate Production. a) Succinate production at each incremental step of incorporating mutations into the parental strain. Each number designates a specific knockout in the pathways as shown by FIG. 1; b) Succinate yield as a result of each incremental addition of mutation to the parental strain. Yield is mole of succinate produced per mole of glucose consumed. Mean and standard deviation were calculated based on duplicate experiments.

FIG. 9 Glucose and Acetate Metabolism. a) Glucose consumed after 24 hours of culture; b) Acetate produced after 24 hours of culture. Mean and standard deviation were calculated based on duplicate experiments.

FIG. 10 Growth in Standard Media. a) Growth after 24 hours. OD measured at 600 nm; b) OD yield (OD600/mole glucose) after 24 hours of culture. Mean and standard deviation were calculated based on duplicate experiments.

FIG. 11 Pyruvate Metabolism. a) Pyruvate accumulation after 24 hours of culture; b) Pyruvate yield (mole pyruvate/mole glucose) after 24 hours of culture. Mean and standard deviation were calculated based on duplicate experiments.

FIG. 12 Aerobic Bioreactor with Pentamutant HL27615k.

Solid circle (●) is pyruvate produced. Open square (□) is the succinate yield (mole succinate produced per mole glucose consumed).

FIG. 13 Aerobic Fed-Batch Reactor with HL27659k (pKK313). Glucose (mM) (●), succinate (mM) (■), pyruvate (mM) (●), acetate (mM) (△), and succinate yield (mole/glucose) (□) are shown.

DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Carboxylic acids described herein can be a salt, acid, base, or derivative depending on structure, pH, and ions present. For example, the terms “succinate” and “succinic acid” are used interchangeably herein. Succinic acid is also called butanedioic acid (C₄H₆O₄). Chemicals used herein include formate, glyoxylate, lactate, malate, oxaloacetate (OAA), phosphonopyruvate (PEP), and pyruvate. Bacterial metabolic pathways including the Krebs cycle (also called citric acid, tricarboxylic acid, or TCA cycle) can be found in Principles of Biochemistry, by Lehninger as well as other biochemistry texts.

The terms “operably associated” or “operably linked,” as used herein, refer to functionally coupled nucleic acid sequences.

“Reduced activity” or “inactivation” is defined herein to be at least a 75% reduction in protein activity, as compared with an appropriate control species. Preferably, at least 80, 85, 90, 95% reduction in activity is attained, and in the most preferred embodiment, the activity is eliminated (100%). Proteins can be inactivated with inhibitors, by mutation, or by suppression of expression or translation.

“Overexpression” or “overexpressed” is defined herein to be at least 150% of protein activity as compared with an appropriate control species. Overexpression can be achieved by mutating the protein to produce a more active form or a form that is resistant to inhibition. Overexpression can also be achieved by removing repressors, adding multiple copies of the gene to the cell, or upregulating the endogenous gene.

The terms “disruption” and “disruption strains,” as used herein, refer to cell strains in which the native gene or promoter is mutated, deleted, interrupted, or down regulated in such a way as to decrease the activity of the gene. A gene can be completely (100%) reduced by knockout or removal of the entire genomic DNA sequence. Use of a frame shift mutation, early stop codon, point mutations of critical residues, or deletions or insertions can completely inactivate (100%) gene product by completely preventing transcription and/or translation of active protein.

As used herein “recombinant” is related to, derived from, or containing genetically engineered material.

Genes are abbreviated as follows: isocitrate lyase (aceA a.k.a. icl); malate synthase (aceB); glyoxylate shunt operon (aceBAK); isocitrate dehydrogenase kinase/phosphorylase (aceK); acetate kinase-phosphotransacetylase (ackA-pta); alcohol dehydrogenase (adhE); aerobic respiratory control regulator A and B (arcAB); peroxisome sensitivity (arg-la); alcohol acetyltransferases 1 and 2 (atf1 and atf2); putative cadaverine/lysine antporter (cadR); fatty acid degradation regulator (fadR); fumarate reductase (frd); fructose metabolism (fruR); fumarase A, B, or C (fumABC); isocitrate dehydrogenase (icd); isocitrylate lyase (icl); aceBAK operon repressor (iclR); lactate dehydrogenase (idhA); malate dehydrogenase (mdh); phosphoenolpyruvate carboxylase (pepC); pyruvate formate lyase (pfl); pyruvate oxidase (poxB); phosphotransferase system genes F and G (ptsF and ptsG); pyruvate carboxylase (pyc); guanosine 3',5'-bispyro-
phosphate synthetase I (relAI); ribosomal protein S12 (rpsL); and succinate dehydrogenase (sdh). Δlac(arg-lac)205 (U169) is a chromosomal deletion of the arg-lac region that carries a gene or genes that sensitizes cells to H₂O₂ (55). The SSD mutation in Sorghum pepe advantageously relieves malate feedback inhibition of the PEPC protein (56). A one-step inactivation based on tomycin (Sm); tetracycline (Tc); nalidixic acid (Nal); erythromycin resistance (SmR); kanamycin resistance (Em); ampicillin resistance (Ap); oxacillin (Ox); chloramphenicol resistance (ThiR/CmR); macrolide, lincosamide and streptogramin A resistance (MLS); streptomycin resistance (Sm); kanamycin resistance (Km); Gram-negative origin of replication (ColE1); and Gram-positive origin of replication (oriT). Common restriction enzymes and restriction sites can be found at NEB® (New England Biolabs®, www.neb.com) and Invitrogen® (www.invitrogen.com). ATCC®, American Type Culture Collection™ (www.atcc.org).

Plasmids and strains used in certain embodiments of the invention are set forth in Tables 1 and 2. GJT001, a spontaneous cadR mutant of MC4100, Δlac strain (arg-lac) U169 rpsl.150 relAI, is described in Tolentino (46). Pathway deletions were performed using Phage transduction and the one-step inactivation based on λ red recombinase (9). The construction of plasmids and mutant E. coli strains were performed using standard biochemistry techniques referenced herein and described in Sambrook (41) and Ausubel (2).

TABLE 1

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Genotype</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>pTes90A</td>
<td>Cloning vector Ap<sup>+</sup></td>
<td>1</td>
</tr>
<tr>
<td>pDHIC29</td>
<td>Cloning vector Cm<sup>+</sup></td>
<td>40</td>
</tr>
<tr>
<td>pDHK29</td>
<td>Cloning vector Km<sup>+</sup></td>
<td>40</td>
</tr>
<tr>
<td>pUC9</td>
<td>Cloning vector Ap<sup>+</sup></td>
<td>63</td>
</tr>
<tr>
<td>pKK311</td>
<td>Wildtype Sorghum pepe Ap<sup>+</sup></td>
<td>56</td>
</tr>
<tr>
<td>pKK313</td>
<td>SSD mutant Sorghum pepe Ap<sup>+</sup></td>
<td>56</td>
</tr>
<tr>
<td>pKK313C</td>
<td>pKK313 Control vector with inactive Sorghum pepe Ap<sup>+</sup></td>
<td>34</td>
</tr>
<tr>
<td>pMSM1</td>
<td>S. elongatus aceB Km<sup>+</sup></td>
<td>6</td>
</tr>
<tr>
<td>pHL323</td>
<td>Wildtype Sorghum pepe in pDHIC29 Cm<sup>+</sup></td>
<td>29</td>
</tr>
<tr>
<td>pHL333</td>
<td>SSD mutant Sorghum pepe in pDHIC29 Km<sup>+</sup></td>
<td>28</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Ref ATCC#</th>
</tr>
</thead>
<tbody>
<tr>
<td>GJT001</td>
<td>Δlac(arg-lac)U169 rpsl.150 relAI ptsG:: Km<sup>+</sup></td>
<td>46</td>
</tr>
<tr>
<td>HL27k</td>
<td>GJT001(sdhAB:: Km<sup>+</sup>)</td>
<td>29</td>
</tr>
<tr>
<td>HL26k</td>
<td>GJT001(sdhAB, (ackA-pta):: Km<sup>+</sup>)</td>
<td>29</td>
</tr>
<tr>
<td>HL267k</td>
<td>GJT001(sdhAB, (ackA-pta), idc:: Km<sup>+</sup>)</td>
<td>29</td>
</tr>
<tr>
<td>HL26715k</td>
<td>GJT001(sdhAB, (ackA-pta), idc, ide:: Km<sup>+</sup>)</td>
<td>29</td>
</tr>
<tr>
<td>HL2765k</td>
<td>GJT001(sdhAB, (ackA-pta), idc, ideR:: Km<sup>+</sup>)</td>
<td>29</td>
</tr>
<tr>
<td>HL27659k</td>
<td>GJT001(sdhAB, idc, ideR, (ackA-pta)::: Km<sup>+</sup>)</td>
<td>32</td>
</tr>
<tr>
<td>HL5126k</td>
<td>GJT001(iicr, iicd, idc, ideR, (ackA-pta)::: Km<sup>+</sup>)</td>
<td>29</td>
</tr>
</tbody>
</table>

For general experiments under aerobic conditions, 250-ml flasks containing 50 ml of LB medium were used (41). The flasks were plugged with foam tube plugs to allow gas exchange with the environment. A seed inoculum of 200 μl from an overnight 5 ml culture was used for each flask. For succinate production under microaerobic conditions, 250-ml capped flasks containing 10 ml of medium were used. A seed inoculum of 40 μl from an overnight 5 ml culture was used for each flask. For bioreactor cultures, 5 ml overnight cultures were washed twice with fresh LB. The washed culture was then used to inoculate the bioreactor containing LB with 2 g/L NaHCO₃. This inoculum constituted less than 1% of the liquid volume in the bioreactor. Cultures were grown in bioreactors at 37°C where the dissolved oxygen was maintained above 80% saturation throughout the experiment. For fed-batch reactors SB medium (2) with 2 g/L NaHCO₃ was used. The cultures were inoculated as described. Oxygen was maintained above 50% saturation throughout the experiment. Glucose was fed exponentially according to the specific growth rate of the strain studied. For chemostat bioreactors, LB medium with 2 g/L NaHCO₃, and 20 g/L glucose was used. The cultures were inoculated...
as described. Chemostat experiments were performed under aerobic conditions at a dilution rate of 0.1 hr\(^{-1}\). Oxygen was maintained above 50% saturation throughout the experiment.

EXAMPLE 1

Developing Aerobic Succinate Production Strains

FIGS. 8 and 9 show succinate production and yield from cultures of each mutant strain and the parental strain. In the mutant strain HL2K, with only sdh inactivated, succinate accumulated during culture. Succinate accumulation was not possible in the wildtype (GJT001) as shown by zero succinate production (FIG. 8a). Inactivation of the two acetate pathways, poxB and ackA-pta, further increased succinate production and yield as shown by mutant strain HL267K. Next, as dictated by the design strategy, icd was inactivated creating mutant strain HL2671K. When the icd was inactivated, succinate production decreased as expected since the cell probably could no longer use the oxidative arm of the TCA cycle to produce succinate. The amount of succinate produced by HL2671K could be due to the glyoxylate bypass being partially active. The molar succinate yield of HL2671K increased significantly but this was accompanied by a much lower glucose consumption (FIG. 9a). Finally, when the glyoxylate bypass was activated by inactivating iclR, succinate production increased substantially to 14.28 mM with a molar yield of 0.344. This is over a 5-fold increase in succinate production compared to HL2671K. The result is shown by the pentamutant strain HL26715K. At this point, a highly functioning glyoxylate cycle is created, which provides a detox to relieve the carbon flux from the TCA cycle bottleneck created in mutant strain HL2671K. Activating the glyoxylate bypass reconstituted the cycling and replenishment of OAA. As a result, HL26715K showed much higher glucose consumption than the previous three strains containing mutations due to a faster and more efficient carbon throughput (FIG. 8a). The cell growth of HL26715K was also healthy again, and was similar to that of the wildtype parental strain GJT001 (FIG. 10a). This aerobic succinate production system serves as a novel platform metabolic engineering improvements on succinate production in _E. coli_.

EXAMPLE 2

Succinate Production Through Glyoxylate Shunt

Mutant strains HL51276K and HL2765K were generated which removed acetate production through acetate kinase-phosphotransacetylase (ackA-pta) and pyruvate oxidase (poxB). Succinate dehydrogenase (sdh) was deleted to prevent the formation of downstream Krebs cycle intermediates. Isocitrate lyase (aceA) repression was removed to allow constitutive activation of the aceBAK operon producing excessive amount of isocitrate lyase and malate synthase. Additionally, isocitrate dehydrogenase was removed from HL51276K to prevent the upstream production of 2-ketoglutarate. Results (Table 3) showed that strain HL2765K had a higher succinate production than HL51276K. At approximately 48 hours, the succinate concentration in the HL2765K culture was 40 mM compared to 31 mM succinate produced by the HL51276K culture (FIG. 3a). Succinate molar yields at the highest concentration produced were 0.67 for HL2765K and 0.65 for HL51276K. HL2765K also had 65% higher volumetric succinate productivity and 12% higher specific succinate productivity than HL51276K. Strain HL2765K grew to a higher OD (14.27 OD) than strain HL51276K (9.21 OD). HL2765K also had a faster biomass generation rate (0.60 g/l-hr) than HL51276K (0.24 g/l-hr), because its glucose consumption rate is faster than HL51276K.

TABLE 3

<table>
<thead>
<tr>
<th>Strain</th>
<th>Y-so (mol/mole)</th>
<th>q-s (g/l-hr)</th>
<th>q-G (mg/g-biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL51276K</td>
<td>0.65</td>
<td>0.057</td>
<td>24.04</td>
</tr>
<tr>
<td>HL51276K</td>
<td>0.87</td>
<td>0.086</td>
<td>35.47</td>
</tr>
<tr>
<td>HL2675K</td>
<td>0.67</td>
<td>0.094</td>
<td>26.84</td>
</tr>
<tr>
<td>HL2765K</td>
<td>0.78</td>
<td>0.130</td>
<td>32.82</td>
</tr>
<tr>
<td>HL51276K</td>
<td>0.61</td>
<td>0.048</td>
<td>27.54</td>
</tr>
<tr>
<td>HL51276K</td>
<td>1.09</td>
<td>0.140</td>
<td>44.26</td>
</tr>
<tr>
<td>HL51276K</td>
<td>0.85</td>
<td>0.083</td>
<td>38.99</td>
</tr>
<tr>
<td>HL51276K</td>
<td>0.96</td>
<td>0.094</td>
<td>45.23</td>
</tr>
<tr>
<td>HL51276K</td>
<td>0.71</td>
<td>0.113</td>
<td>28.33</td>
</tr>
<tr>
<td>HL51276K</td>
<td>0.75</td>
<td>0.111</td>
<td>35.54</td>
</tr>
<tr>
<td>HL51276K</td>
<td>0.74</td>
<td>0.106</td>
<td>31.14</td>
</tr>
<tr>
<td>HL2675K</td>
<td>0.95</td>
<td>0.270</td>
<td>73.66</td>
</tr>
</tbody>
</table>

Y-so is molar succinate yield (mole succinate/mole glucose)
q-s is volumetric succinate productivity (concentration of succinate (g/l) per hour)
q-G is specific succinate productivity (mass of succinate (mg) per biomass (g) per hour)

Both strains produced significant amounts of succinate, but HL2765K was more robust than HL51276K. Strain HL2765K with two pathways engineered for succinate production has a more rapid succinate production and glucose consumption rate than HL51276K, which only utilizes the glyoxylate cycle for succinate production.

EXAMPLE 3

Removing Glucose Transport

Inactivation glucose phosphotransferase system (PtsG) was studied in HL2765K and HL51276K by knocking out ptsG to form HL2765K and HL51276K (hexamutant strain of _E. coli_). Strains HL2765K and HL51276K were grown aerobically under batch reactor conditions previously described. At approximately 48 hours, HL2765K produced 49 mM succinate over 40 mM produced by HL2765K and HL51276K produced 44 mM succinate over 31 mM produced by HL51276K (FIG. 4a). PtsG inactivation increased molar yield from 0.67 for HL2765K to 0.78 for HL2765K and from 0.65 for HL51276K to 0.87 for HL51276K. Volumetric succinate productivity was increased 38% and specific productivity 22% for HL2765K over HL2765K. HL51276K had 51% higher succinate volumetric productivity and 48% higher specific productivity than HL51276K. Inactivation of PtsG caused a decrease in cell growth due to slower glucose consumption. The biomass generation rate of strain HL2765K was 0.60 g/l-hr compared to strain HL2765K, which was 0.27 g/l-hr. For strain HL51276K, the biomass generation rate at the end of the exponential phase was 0.24 g/l-hr compared to strain HL2765K, which has 0.13 g/l-hr. The effects of ptsG inactivation improve succinate production more in HL51276K than in HL2765K; this is because there are more bottlenecks in the TCA pathways of HL51276K than in HL2765K.
fermentation. In conclusion, inactivation of the glucose phosphotransferase system did improve succinate yield and productivity in HL2765k and HL51276k. Because of the ptsG inactivation, glucose consumption was slowed, pyruvate and acetate accumulation was reduced, a more balanced metabolism was obtained and increased succinate production was achieved.

EXAMPLE 4

Overexpression of PEPC

Although PTSG inactivation in strains HL27659k and HL512769k increased succinate production, it may still be theoretically possible to obtain greater succinate production and better yield per mole glucose. To further optimize succinate production, PEPC was used to convert PEP to OAA which can be converted to succinate as a TCA intermediate and source of citrate for the glyoxylate shunt (FIGS. 1 and 2). The S8D mutant PEPC from *Sorghum* was overexpressed on plasmid pKK313 in the four strains HL51276k, HL512769k, HL2765k, and HL27659k. The S8D mutant is feedback inhibition resistant to malate (56). The mutant strains carrying the plasmids were grown aerobically in bioreactors as previously described. Mutant strains harboring pKK313 were compared to the same mutant strains harboring the pKK313C control vector.

Overexpression of the mutant *Sorghum* PEPC in strains HL51276k, HL512769k, HL2765k, and HL27659k was effective in increasing succinate production (FIG. 4-7). The succinate production in bacterial strains HL2765k (pKK313), HL51276k (pKK313), HL512769k (pKK313), and HL512769k (pKK313) was continuously higher than control strains HL27659k (pKK313C), HL512769k (pKK313C), HL27659k (pKK313C), and HL512769k (pKK313C) throughout the production phase (FIGS. 6a and 7a). In strains with high levels of PEPC, the molar succinate yields for strains HL51276 (pKK313), HL12769k (pKK313), HL512769k (pKK313) and HL27659k (pKK313) all reached the maximum theoretical value of 1 mole of succinate produced per mole of glucose consumed (Table 3). The molar succinate yield for HL2765 (pKK313) was 0.75 succinate/glucose. HL27659k (pKK313) produced 60 mM succinate for a yield of 1 mole succinate per mole glucose.

These results demonstrated that high expression of mutant *Sorghum* PEPC was very effective in improving succinate yield in the mutant *E. coli* host strains and optimized the aerobic production systems to produce the maximum theoretical succinate yield of 1 mole per 1 mole glucose consumed. HL27659k (pKK313) was the most efficient with little acetate or pyruvate produced. None of the PEPC expressing cultures produced any detectable levels of lactate or ethanol. These results further demonstrate that aerobic bacterial fermentation provides a robust and efficient aerobic succinate production system for large-scale carboxylic acid production. Further, these results demonstrate that overexpression of pepc coupled with ptsG inactivation was very effective in reducing pyruvate and acetate accumulation, thus providing efficient carbon throughput for succinate production.

EXAMPLE 5

Batch Reactor Growth

In FIG. 12, an aerobic batch reactor was used to control oxygen and substrate concentration. The pentamutant strain, HL276515k, was characterized under controlled conditions in an aerobic batch reactor. This demonstrates the use of aerobic succinate production system in an industrial setting. In the bioreactor, 68 mM of glucose was added and 1% inoculum from an overnight culture grown from a single colony was used. Temperature and pH were maintained at 37°C and 7.0, respectively. The DO was maintained above 80% saturation.

A bioreactor generates higher productivity due to a more controlled environment. The results show that at 24 hours, succinate production is 22 mM with a molar yield of 0.5 (FIG. 12). This is better than the results from flask studies at 24 hours, which were 14 mM of succinate with a yield of 0.34. Cells reached maximum OD of 9.12 after 12 hours with a specific growth rate of approximately 0.45 hr⁻¹. At 24 hours, pyruvate accumulation reached a maximum of 48 mM and glucose consumed was 44 mM. After 24 hours, the cells started consuming the excreted pyruvate along with the remaining glucose. All the glucose was consumed by about 49 hours at which point the pyruvate was still being consumed. By 83 hours, the pyruvate was not completely consumed, but succinate production reached 43 mM with a yield of 0.7. There was also accumulation of TCA cycle C6 intermediates, which had not been consumed by the cells (data not shown). The results of the batch reactor study show that the pentamutant strain HL27615k has the potential to produce a large quantity of succinate under aerobic conditions, and that there is potential to achieve the maximum succinate theoretical yield of 1.0.

EXAMPLE 6

Chemostat Reactor Growth

To further control culture conditions and improve succinate productivity, a chemostat reactor was used to culture the mutant strains under aerobic conditions (data not shown). The production of succinate, pyruvate, and acetate under aerobic conditions was compared between the five mutant strains HL27659k, HL2765k, HL2769k, and HL51276k in chemostat cultures at 0.1 hr⁻¹ dilution rate. The biomass concentrations of the five mutant strains were HL27659k (3.4 g/L), HL2765k (3.6 g/L), HL2769k (3.4 g/L), HL2769k (2.4 g/L) and HL51276k (2.6 g/L). Succinate production reached substantial levels that were similar in strains HL27659k, HL2765k, and HL2769k. Strain HL27659k produced 57 mM of succinate, strain HL2765k produced 61 mM, and strain HL2769k produced 58 mM. Succinate production was significantly lower for strains HL2761k and HL51276k than the other three strains. Strain HL2761k only produced 2 mM of succinate and strain HL51276k produced only 3 mM of succinate. Strain HL27659k achieved the highest succinate yield among all the strains. It obtained 0.91 mole succinate per mole glucose. This is 91% of the maximum theoretical succinate yield, which is 1.0 mol/mol glucose under aerobic conditions. Controlling reactor conditions to maintain a constant chemical and aerobic environment can be used to further increase carboxylic acid yield from these cultures.

REFERENCES

All of the references cited herein are expressly incorporated by reference. References are listed again here for convenience:
US 7,262,046 B2

30. Lin, H. “Metabolic Network Design and Engineering in
38. Lin, H. “Metabolic Network Design and Engineering in

The invention claimed is:
1. A method of aerobically producing succinate comprising:
a) generating a genetically engineered E. coli strain comprising:
i) reduced activity of succinate dehydrogenase (sdhAB), acetate kinase (ackA), phosphotransacytase- loase (pta) or both ackA-pta, and
ii) reduced activity of pyruvate oxidase (poxB); and
iii) reduced activity of aceBAK operon repressor (iclR); and
iv) reduced activity of phosphotransferase system gene (ptsG), and
v) increased activity of phosphoenolpyruvate carboxylase (pepE); and
b) culturing said bacteria in a fed-batch reactor so that said bacteria produce at least 500 mM succinate.
2. The method of claim 1, wherein said bacterial strain comprises a deletion of one or more genes selected from the group consisting of sdh, ackA, pta, poxB, iclR and ptsG.
3. The method of claim 1, wherein said bacterial strain comprises a knockout of one or more genes selected from the group consisting of sdh, ackA, pta, poxB, iclR and ptsG.
4. The method of claim 1, wherein said bacterial strain further comprises an expression vector encoding pepE.

* * * * *
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,262,046 B2
APPLICATION NO. : 11/200385
DATED : August 28, 2007
INVENTOR(S) : Ka-Yiu San, George N. Bennett and Henry Lin

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Pg, replace the Item (75) Inventor, “San Ka-Yiu” with --Ka-Yiu San--.

Signed and Sealed this

Thirtieth Day of June, 2009

John Doll
Acting Director of the United States Patent and Trademark Office