A New Theoretical Approach to Analyze Complex Processes in Cytoskeleton Proteins

Xin Li and Anatoly B. Kolomeisky*

Rice University, Department of Chemistry and Center for Theoretical Biological Physics,
Houston, TX 77005

E-mail: tolya@rice.edu

Phone: +1 713 3485672. Fax: +1 713 3485155

*To whom correspondence should be addressed
Abstract

Cytoskeleton proteins are filament structures that support a large number of important biological processes. These dynamic biopolymers exist in non-equilibrium conditions stimulated by hydrolysis chemical reactions in their monomers. Current theoretical methods provide a comprehensive picture of biochemical and biophysical processes in cytoskeleton proteins. However, the description is only qualitative at biologically relevant conditions because utilized theoretical mean-field models neglect correlations. We develop a new theoretical method to describe dynamic processes in cytoskeleton proteins that takes into account spatial correlations in the chemical composition of these biopolymers. Our approach is based on analysis of probabilities of different clusters of subunits. It allows us to obtain exact analytical expressions for a variety of dynamic properties of cytoskeleton filaments. By comparing theoretical predictions with Monte Carlo computer simulations it is shown that our method provides a fully quantitative description of complex dynamic phenomena in cytoskeleton proteins at all conditions.
INTRODUCTION

Cytoskeleton proteins such as microtubules and actin filaments are rigid polymer molecules involved in a variety of fundamental biological processes.1–3 They play a central role in supporting biological transport, cell motility and division, cytoplasmic organization, signaling and mechanosensation in cells.4–6 The structural, biochemical and dynamic features of cytoskeleton proteins have been extensively studied in recent years.4,5,7 Advanced experimental methods now allow researchers to look into assembly and dynamics of cytoskeleton filaments with a single-molecule precision and a high temporal resolution.8–10 It was demonstrated that cytoskeleton proteins possess unique biophysical and biochemical properties. However, many of these experimental observations are still not well understood theoretically.

Cytoskeleton proteins can be viewed as complex multi-filament structures.1–3 Actin filaments consist of two polymer chains that are wrapped around each other, producing a right-handed helix. Microtubules typically have 13 parallel protofilaments arranged circumferentially creating a hollow cylindrical structure. Cytoskeleton proteins are highly dynamic polymers and they function at non-equilibrium conditions in cells. These conditions are stimulated by energy dissipation produced by hydrolysis processes that are taking place in specific molecules attached to subunits in cytoskeleton proteins. In actin filaments it is a hydrolysis of adenosine triphosphate (ATP). In microtubules the hydrolysis of related monomer-bound molecule guanosine triphosphate (GTP) drives all dynamic processes. Precise molecular mechanisms of hydrolysis in cytoskeleton proteins remain not fully explained despite significant experimental and theoretical efforts.7,11–13

It is known that in cells concentrations of free actin monomers and tubulins (cytoskeleton filaments are made of them) are close to the so-called critical concentrations when the average rate of the filament growth is equal to zero. At these conditions many dynamic phenomena, including large length fluctuations, treadmilling and dynamic instability, can be observed in cytoskeleton proteins.14,15 However, our understanding of underlying mechanisms of these processes is still limited. In recent years, several theoretical approaches have been proposed and applied to explain these fascinating phenomena,13,16–21 but none of them is able to fully describe them.
Current theoretical methods for investigating dynamic processes in cytoskeleton proteins are based on simplified mean-field models that neglect spatial correlations between different subunits in these filaments.13,17,20 It gives a reasonable description of many features in actin filaments and microtubules, especially at high concentrations of free actin and tubulin monomers in the solution. However, current methods do not work well at biologically relevant conditions which correspond to small and intermediate concentrations near the critical concentration. Apparently, correlations are significant in this regime. Since most biological phenomena supported by cytoskeleton filaments are taking place at these conditions, it is important to have a theoretical picture that correctly captures microscopic details at these conditions. In this paper, we develop a new theoretical framework for studying dynamic processes in cytoskeleton proteins. It utilizes the analysis of temporal evolution of different clusters of subunits in filaments, and it provides exact analytical expressions for all dynamic properties of these biopolymers. The idea of using clusters have been proposed before,22,23 but spatial component of correlations and dependence on the position in the filament were not included. The main advantage of our method is that it accounts for such correlations and provides fully quantitative description of assembly and growth phenomena in actin filaments and microtubules. Our analytical predictions are tested with Monte Carlo computer simulations.

THEORETICAL METHOD

It has been argued before that a simplified single-filament picture to describe growth dynamics in cytoskeleton proteins can successfully capture most physical-chemical properties of the system.20 For this reason, we consider a model of the cytoskeleton filament as shown in Fig. 1. Instead of multi-filament structure for real microtubules and actin filaments, a single-polymer description is utilized in this model (Fig. 1). However, it allows us to develop a quite realistic dynamic picture of processes in cytoskeleton proteins.20

Microtubules and actin filaments are formed from the self-assembly of heterodimeric tubulin dimer subunits and actin monomers, respectively. In microtubules GTP molecules bound to tubulin
subunits might hydrolyze producing guanosine diphosphate (GDP). Similarly, in actin monomers ATP might hydrolyze to adenosine diphosphate (ADP). The hydrolysis processes in cytoskeleton filaments have several stages, but to simplify calculations it is frequently considered as a two-state process.13,20 We also adopt here the two-state picture, and the unhydrolyzed and hydrolyzed monomers are labeled as T-subunits or D-subunits, respectively: see Fig. 1. However, our method can be easily extended to include intermediate states of the hydrolysis process.

Both microtubules and actin filament are polar polymers with different properties for two ends of the filament. One end which has a faster dynamics is called a “plus” end, while the other end is known as a “minus” end. We focus on physical-chemical properties of the “plus” ends of cytoskeleton biopolymers. Each filament can grow by attaching T-subunits to its end with a rate $U = k_{on}C_T$, where k_{on} is the rate constant and C_T is the concentration of free T-subunits in the surrounding solution, which is also assumed to be a constant value. The detachment of the last subunit shortens the filament, and the rate for this process depends on the chemical state of the dissociating subunit. If the filament tip is occupied by T- or D-subunit then the corresponding dissociation rates are given by W_T or W_D, respectively. The T-subunits in the filament can be hydrolyzed at any time. Currently, the underlying mechanisms for hydrolysis in cytoskeleton filaments are still not well established.16–18,24–31 Here, we assume that all T-subunits within the filament can be hydrolyzed with equal probability and the hydrolysis rate is equal to r, as shown in Fig.1. This is known as a random hydrolysis mechanism.

The main idea of our method is to investigate dynamics of arbitrary clusters of subunits within the cytoskeleton filament. We define a cluster distribution function $S_n(l,t)$ as a probability to find a cluster of l sites (all T-subunits) starting from the site n (counting from the tip of the polymer) at time t independently from the state of all other subunits in the filament. This is different from the probability to have the cluster of exactly l T-subunits starting from the site n where sites $n - 1$ and $n + l$ are definitely hydrolyzed. To explain our approach better, we start the analysis with a special case when dissociation rates for hydrolyzed and unhydrolyzed monomers at the tip are the same, $W_T = W_D = W$. It allows us to obtain exact and explicit analytical solutions for cluster
distributions at stationary state, which leads to a full dynamic description of the system. Based on these calculations, we continue our derivations for more realistic general case when T-subunits and D-subunits detach with different rates, $W_T \neq W_D$.

RESULTS AND DISCUSSION

Special Case: Equal Detachment Rates for T- and D-Subunits

For the special case of equal detachment rates from the filament tip, $W_T = W_D = W$, the temporal evolution of the cluster distribution function $S_n(l, t)$ can be described by the following master equations,

$$
\frac{dS_n(l, t)}{dt} = US_{n-1}(l, t) + WS_{n+1}(l, t) - (U + W + lr)S_n(l, t)
$$

(1)

for $n > 1$. The physical meaning of this equation is the following. The first and the second terms correspond to a creation of the clusters via shifting the existing segments from the site $n - 1$ or $n + 1$ by adding or removing the subunit at the tip of the polymer, respectively. The third term corresponds to destroying the cluster via addition and removal of the end subunits and also through the hydrolysis process. For the end subunit ($n = 1$), the dynamic rules are different and the corresponding master equations are given by

$$
\frac{dS_1(l, t)}{dt} = US_1(l - 1, t) + WS_2(l, t) - (U + W + lr)S_1(l, t),
$$

(2)

for $l > 1$, and the changes in the probability of the cluster $S_1(1, t)$ with $n = 1$ and $l = 1$ is governed by

$$
\frac{dS_1(1, t)}{dt} = U + WS_2(1, t) - (U + W + r)S_1(1, t).
$$

(3)

Importantly, no mean-field assumptions have been made in these equations. Note also that these expressions are written in the system of coordinates where the tip of the filament is always at the origin. One can immediately see the advantage of utilizing clusters since the spatial correlations
are automatically taken into account. Another advantage of this approach is that it recovers existing mean-field theoretical models when only clusters of size one are considered.

To solve the master equations at large times \(t \to \infty \), we look for a solution \(S_n(l) \) in the following form,

\[
S_n(l) = A_l q_l^n
\]

where \(A_l \) and \(q_l \) are unknown parameters that can be obtained by substituting this ansatz into the master equations. First, we substitute Eq. (4) into Eq. (1), leading to

\[
W q_l^2 - (U + W + lr)q_l + U = 0. \tag{5}
\]

The explicit expression for the parameter \(q_l \) is then simply given by

\[
q_l = \frac{(U + W + lr) - \sqrt{(U + W + lr)^2 - 4UW}}{2W}, \tag{6}
\]

where it can be shown that the other root of Eq. (5) is unphysical. For the special case \(l = 1 \) we have

\[
W q_1^2 - (U + W + r)q_1 + U = 0. \tag{7}
\]

Interestingly, the parameter \(q_1 \) here gives the probability that the end subunit of the filament is unhydrolyzed, and it fully agrees with results obtained in the earlier mean-field approach.\(^{18}\)

Similarly, by substituting Eq. (4) into Eq. (3) at stationary state it can be shown that,

\[
A_1 W q_1^2 - A_1 (U + W + r)q_1 + U = 0. \tag{8}
\]

Then, the solution \(A_1 = 1 \) can be obtained directly by comparing the above equation with Eq. (7). From the ansatz for \(S_n(l) \) the function \(S_1(1) \), which is the probability that the leading subunit is unhydrolyzed, is simply given by \(S_1(1) = A_1 q_1 = q_1 \). It is fully consistent with presented above arguments on the physical meaning of the function \(q_1 \). For parameters \(A_l \) with \(l > 1 \) we use the
same strategy and substitute Eq. (4) into Eq. (2), yielding

\[UA_{l-1}q_{l-1} + A_l W q_l^2 - A_l (U + W + lr) q_l = 0. \]

(9)

Then one can show that

\[A_l = \prod_{k=1}^{l-1} q_k, \]

(10)

where Eq. (5) is employed to derive this result. Finally, the expression for \(S_n(l) \) at stationary state can be written as

\[S_n(l) = A_l q_l^n = q_l^{n-1} \prod_{k=1}^{l-1} q_k, \]

(11)

where \(q_l \) is given explicitly by Eq. (6). This simple result has a simple physical interpretation. \(S_n(l) \) is a product of two terms. The first one, \(q_l^{n-1} \), gives the probability to find the cluster at the site \(n \), while the second, \(\prod_{k=1}^{l-1} q_k \), describes the probability to have \(l \) consecutive T-subunits.

The explicit formulas for cluster distributions \(S_n(l) \) can be used to obtain all relevant dynamic properties of the filament. Specifically, the function \(S_n(1) \) describes a probability density profile of unhydrolyzed T-subunits along the filament. The average number \(< n > \) of unhydrolyzed monomers in the filament can be easily calculated from

\[< n > = \sum_{n=1}^{\infty} S_n(1), \]

(12)

producing

\[< n > = \frac{U - W - r + \sqrt{(U + W + r)^2 - 4UW}}{2r}. \]

(13)

As expected, this result suggests that the number of T-subunits in the filament increases for smaller hydrolysis rates.

Another important quantity for actin filaments and microtubules is a cap size which is defined as the average number of unhydrolyzed subunits at the end of the filament (see Fig.1). This cap would help the filament to maintain a stable structure and to prevent it from the fast depolymerization of
the exposed hydrolyzed subunits. We can obtain the cap size by introducing a new function P_l from the cluster distributions $S_n(l)$,

$$P_l = S_1(l) - S_1(l + 1).$$

(14)

It has a physical meaning of probability of having exactly l unhydrolyzed subunits at the tip of the filament. It can be shown that

$$P_l = \prod_{k=1}^{l} q_k(1 - q_{l+1}).$$

(15)

This result also has a simple physical interpretation that the cluster has l T-subunits, but the $l + 1$-th monomer is already hydrolyzed. Then the average size $< N_{cap} >$ of the cap can be calculated as follows,

$$< N_{cap} > = \sum_{l=1}^{\infty} lP_l = \sum_{l=1}^{\infty} \prod_{k=1}^{l} q_k.$$

(16)

All other dynamic properties of the filament system can be obtained using the same approach.

Previous theoretical methods were also able to calculate various dynamic properties of cytoskeleton proteins.13,17,20 These models describe quite well dynamics of actin filaments and microtubules at large concentrations of free monomers in the solution, as found by comparing with Monte Carlo computer simulations. However, all mean-field methods failed to describe the assembly processes quantitatively below and close to the critical concentrations where growth velocity of the filament vanishes. It suggests that correlations play important role in controlling dynamic processes in cytoskeleton filaments at these conditions.

To illustrate the method, we test predictions for cluster distribution functions from our analysis and from the simplified mean-field models with Monte Carlo computer simulations. Note that in the mean-field picture the stationary cluster distribution function $S_n(l)$ in our terms can be written as

$$S_n(l) = \prod_{k=n}^{n+l-1} S_k(1) = q_1^{2n+l-1},$$

(17)

while in our model the expression for $S_n(l)$ is given by Eq. (11). More specifically, we analyze the stationary cluster distributions $S_1(l)$ and $S_2(l)$ as a function of the cluster size l for microtubules.
using parameters from the Table 1 with the only exception that the detachment rates are the same, $W_D = W_T = 24 \, s^{-1}$. The results are presented in Fig. 2. These quantities are calculated for two different free tubulin concentrations. In the first case we take large $C_T = 20\mu M$ (Figs. 2A and 2B), while in the second case $C_T = 5\mu M$ close to the critical concentration ($\sim 7.5 \, \mu M$) is used (Figs. 2C and 2D). One can see that for large free monomer concentrations both theoretical approaches show excellent agreement with results from Monte Carlo computer simulations. However, the predictions from the mean-field model start to deviate at low C_T, while our method still shows a perfect agreement with computer simulations at these conditions: see Figs. 2C and 2D.

Different predictions for cluster distribution functions lead to deviations in all dynamic properties of cytoskeleton filaments. For example, in Fig. 3A we compare the results for the cap length at different concentrations of free monomers in the solution. Our approach performs very well at all ranges of concentrations, and the results are indistinguishable from computer simulations. At the same time, the simplified mean-field picture shows the deviations below $10\mu M$, which is the region around the critical concentration, although they are not large.

General Case: Detachment Rates for T- and D-Subunits are not Equal

Now we consider a more realistic general case of unequal detachment rates for hydrolyzed and unhydrolyzed subunits at the tip of the filaments. Again, we analyze the temporal evolution of cluster probability functions $S_n(l, t)$ which are governed by master equations,

$$
\frac{dS_n(l, t)}{dt} = US_{n-1}(l, t) + W_TS_{n+1}(l, t)S_1(1, t) + W_DS_{n+1}(l, t)(1 - S_1(1, t))
- \left[U + lr + W_TS_1(1, t) + W_D(1 - S_1(1, t))\right]S_n(l, t).
$$

for $n > 1$. The important observation here is that these equations, in contrast to Eq. (1), are approximate since we assumed that the chemical state of the end subunit is independent of the state of any cluster of size l beyond the site n. However, by considering clusters it still takes into account some spatial correlations in comparison with the simplified mean-field approach where the chem-
ical states of any two neighboring subunits are assumed always to be independent. For $W_T = W_D$ Eq. (18) reduces, as expected, to Eq. (1) and no assumptions are needed.

Similarly to the special case, the dynamic rules change for the end subunit ($n = 1$), and we have the following master equations,

$$\frac{dS_1(l, t)}{dt} = US_1(l - 1, t) + W_TS_2(l, t)S_1(1, t) + W_DS_2(l, t)(1 - S_1(1, t))$$

$$-(U + W_T + lr)S_1(l, t),$$

for $l > 1$, and for the distribution $S_1(1, t)$ with $n = 1$ and $l = 1$, it can be shown that

$$\frac{dS_1(1, t)}{dt} = U + W_T S_2(1, t)S_1(1, t) + W_DS_2(1, t)(1 - S_1(1, t)) - (U + W + r)S_1(1, t).$$

At stationary state, we use the same ansatz Eq. (4) for the function $S_n(l)$ in Eq. (18), and it leads to the following expression,

$$U + A_1W_Tq_1^2 + W_Dq_1^2(1 - A_1q_1) - [U + lr + W_T A_1q_1 + W_D(1 - A_1q_1)]q_1 = 0.$$

(21)

Note that here the function q_1 depends on parameters q_1 and A_1. This equation reduces to Eq. (5) for the same detachment rates $W_T = W_D$. For the case $l = 1$ from Eq.(21) we obtain,

$$U + A_1W_Tq_1^3 + (1 - A_1q_1)W_Dq_1^2 - [U + r + W_T A_1q_1 + W_D(1 - A_1q_1)]q_1 = 0.$$

(22)

Now, applying the ansatz Eq. (4) in Eq. (20) at large times yields another equation,

$$U + A_1^2W_Tq_1^3 + (1 - A_1q_1)A_1W_Dq_1^2 - (U + r + W_T)A_1q_1 = 0.$$

(23)

Comparing Eqs. (22) and (23), one can find that the simple solution $A_1 = 1$ obtained for the special case of $W_T = W_D$ does not work in the general situation. But these two algebraic equations can be solved together to determine numerically exactly the unknown parameters q_1 and A_1. It will
provide expressions for parameters q_l from Eq. (21). But we also need to determine parameters A_l for $l > 1$. It can be done by substituting Eq. (4) into Eq. (19), leading to the following recursion relation,

$$A_l = \lambda_l A_{l-1} q_{l-1},$$

(24)

where

$$\lambda_l = \frac{1}{1 - q_l (W_D - W_T)(1 - A_1 q_1) / U}.$$

(25)

Therefore, the parameter A_l can be described explicitly as

$$A_l = \frac{A_1}{\lambda_l q_l} \prod_{k=1}^{l} \lambda_k q_k.$$

(26)

Finally, the general solution for $S_n(l)$ at stationary state can be written in terms of already calculated parameters q_1 and A_1,

$$S_n(l) = A_1 q_l^n = \frac{A_1 q_l^{n-1}}{\lambda_l} \prod_{k=1}^{l} \lambda_k q_k.$$

(27)

These results allow us to obtain all dynamic properties of cytoskeleton filaments, as was described in detail for the special case.

Since our method for the general case of unequal detachment rates is also approximate, it is important to test its predictions. In Fig. 4 the stationary cluster distribution functions $S_1(l)$ and $S_2(l)$ as a function of the cluster size l are presented for two different concentrations of free monomers in the solution. Cluster distributions at $C_T = 20 \mu \text{M}$ are shown in Figs. 4A and 4B. This concentration is larger than the critical concentration for this case which is equal to 8.1 μM. The cluster distributions at $C_T = 5 \mu \text{M}$ are plotted in Figs. 4C and 4D. One can see that both the simplified mean-field and our model give excellent predictions for large concentrations (see
Figs. 4A and 4B). But it should be noted that there are small deviations from simulations for the simplified mean-field for $S_2(l)$ for clusters larger than $l = 25$, while our method is still very good at all cluster sizes. The picture is very different at small concentrations where the simplified mean-field method fails to properly describe cluster distribution functions, and the performance for $S_2(l)$ is worse than for $S_1(l)$: see Figs. 4C and 4D. Comparing Figs. 2 and 4 we might conclude that for more realistic biological conditions the role of correlations is even stronger than for the special case. This conclusion can be illustrated by considering the calculated cap sizes for cytoskeleton filaments, as presented in Fig. 3. For realistic microtubule parameters (Fig. 3B) deviations of the simplified mean-field model near the critical concentrations become significant. At the same time, our method fully accounts for all dynamic behavior at all conditions, suggesting that spatial correlations cannot be ignored.

To analyze the role of correlations in dynamic processes in cytoskeleton proteins we consider a new function $\tau_{1,2}$ defined as

$$\tau_{1,2} = \frac{S_1(2)}{S_1(1)S_2(1)}.$$ \hspace{1cm} (28)

It gives a quantitative measure of correlations for the last two subunits in the polymer. The value of $\tau_{1,2}$ should be equal to 1 if there are no correlations between the chemical states of the last two subunits. Deviations from unity will show the degree of correlations in this case. This quantity is presented in Fig. 5 for realistic microtubule parameters from the Table 1. One can see that correlations disappear above the critical concentration (8.1 μM), while below the critical concentration they are significant and increase with lowering C_T. It explains the success of our method in describing dynamic properties of cytoskeleton proteins because it accounts for spatial correlations between subunits in the polymer.

We can give the following simple arguments why correlations play an important role at conditions near or below the critical concentration. At large concentrations, the chemical process of attachment of monomers to the filament dominates the process leading to large cap of unhy-
hydrolyzed T-subunits. It means that most monomers are not hydrolyzed, and its position relative to the tip of the polymer and the chemical state of their neighbors do not affect their fates. This effectively corresponds to the absence of correlations. The situation changes dramatically at the critical concentration and below. Here detachments and hydrolysis are becoming more relevant in comparison to attachments. In this case, the relative position of the subunit and the chemical states of its neighbors are more important, which is a signature of correlations.

SUMMARY AND CONCLUSIONS

In this work, we developed a new theoretical framework for investigating dynamic processes in cytoskeleton proteins. Our approach is based on analysis of probability distribution functions for clusters of subunits, which leads to a full description of all biophysical and biochemical processes in filaments. The main advantage of the method is the fact that it accounts for spatial correlations between chemical states of different monomers, while still allowing to obtain analytical expressions for all relevant physical-chemical properties of cytoskeleton filaments.

First, the method was developed for the special case of equal detachment rates for hydrolyzed and unhydrolyzed subunits. In this case, dynamics at stationary state is solved exactly for all range parameters. The predictions fully agree with Monte Carlo computer simulations. The method is extended then to more realistic general cases of unequal detachments rates where an approximate scheme, that still takes into account some correlations, is presented. It is found that this approach again provides a fully quantitative view of all dynamic processes in cytoskeleton filaments, as supported by Monte Carlo computer simulations. In contrast, the widely used simplified mean-field models that neglect correlations cannot properly capture dynamics of cytoskeleton filaments at conditions near and below the critical concentration, where the average filament growth velocity vanishes, and they can only be used reliably at large concentrations of free monomers in the solution. Finally, it was observed that the correlations influence dynamics of cytoskeleton filaments at conditions near and below the critical concentrations. We presented physical arguments to ex-
plain this, suggesting that at these conditions detachments and hydrolysis processes become more prominent, while at large concentrations they do not play any role.

Despite the success of the presented method, it should be noted that it gives an oversimplified picture of complex dynamic processes taking place in cytoskeleton filaments. Our approach obviously omits many important phenomena that should be taken into account. Real actin filaments and microtubules have multi-filament structures, and taking this into account significantly complicates calculations for all dynamic properties. We expect that the role of correlations in multi-filament proteins could be even more important in comparison with a single-filament polymer because of lateral interactions between subunits from the neighboring protofilaments. In this work, we assumed a random hydrolysis mechanism when the hydrolysis can take place with equal probability at any subunit. There are several proposals arguing that cooperativity might play a stronger role in the hydrolysis in cytoskeleton proteins, and our method can be extended to analyze these possibilities. It will be important also to test our theoretical predictions in more detailed theoretical treatments as well as in experimental studies.

Acknowledgement

The work was supported by a grant from the Welch Foundation (C-1559).

References

Figure Captions:

Fig. 1. A schematic view of a single-filament model for cytoskeleton proteins. The unhydrolyzed subunits bound with GTP(AMP) molecules are indicated by red symbols, while hydrolyzed subunits are shown by blue symbols. U and W_T correspond to the attachment and detachment rates of the T-subunits, respectively. W_D is the detachment rate of the hydrolyzed subunits at the tip of the filament. All T-subunits in the filament can be hydrolyzed with equal probability and with a rate r.

Fig. 2. The cluster distributions $S_1(l)$ and $S_2(l)$ as a function of the cluster size l for the special case with rates $W_T = W_D = 24 \, \text{s}^{-1}$. (A) and (C) correspond to the cluster distribution $S_1(l)$. (B) and (D) give the cluster distribution $S_2(l)$. The free monomer concentration is 20 μM for (A) and (B), and 5 μM for (C) and (D). The red solid lines correspond to the method developed in this work, the blue solid lines are calculated from the previously used mean-field theory, and the open purple circles are from Monte Carlo computer simulations.

Fig. 3. The cap size of the filament as a function of T-subunit concentration, (A) for the special case when hydrolyzed and unhydrolyzed subunits detach from the tip of the filament with the same rate $W_T = W_D = 24 \, \text{s}^{-1}$; (B) for the general case with the detachment rates for hydrolyzed and unhydrolyzed monomers taken from the Table 1. The red solid lines are given by the theory developed in this article, the blue solid lines are obtained from the mean-field theory, and the purple dots are from the Monte Carlo computer simulations.

Fig. 4. The cluster distributions $S_1(l)$ and $S_2(l)$ as a function of the cluster size l for the general case with rates $W_T \neq W_D$ as given in the Table 1. (A) and (C) correspond to the cluster distribution $S_1(l)$. (B) and (D) give the cluster distribution $S_2(l)$. The free T-subunit concentration is equal to 20 μM for (A) and (B), and it is equal to 5 μM for (C) and (D). The red solid lines are obtained from the theoretical approach developed in this work, the blue solid lines correspond to the previ-
ously utilized mean-field theory, and the open purple circles are calculated from the Monte Carlo computer simulations.

Fig. 5. The correlation parameter $\tau_{1,2} = \frac{S_1(2)}{(S_1(1)S_2(1))}$ as a function of the free monomer concentration. The red solid line is given by the theory developed in this work, and the open purple circles are obtained from the Monte Carlo computer simulations. The dotted line corresponds to unity.

Table 1. Parameters utilized in calculations and the corresponding references.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rate</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{on}, on-rate of T-tubulin dimers (plus end)</td>
<td>$3.2 , \mu M^{-1} s^{-1}$</td>
<td>2</td>
</tr>
<tr>
<td>W_T, off-rate of T-tubulin dimers (plus end)</td>
<td>$24 , s^{-1}$</td>
<td>32</td>
</tr>
<tr>
<td>W_D, off-rate of D-tubulin dimers (plus end)</td>
<td>$290 , s^{-1}$</td>
<td>2</td>
</tr>
<tr>
<td>r, hydrolysis rate</td>
<td>$0.2 , s^{-1}$</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 0: TOC