Bose-Einstein condensation of 88Sr through sympathetic cooling with 87Sr

P. G. Mickelson, Y. N. Martinez de Escobar, M. Yan, B. J. DeSalvo, and T. C. Killian
Rice University, Department of Physics and Astronomy, Houston, Texas 77251, USA
(Received 18 March 2010; published 5 May 2010)

We report Bose-Einstein condensation of 88Sr, which has a small, negative s-wave scattering length ($a_{88} = -2a_0$). We overcome the poor evaporative cooling characteristics of this isotope by sympathetic cooling with 87Sr atoms. 87Sr is effective in this role despite the fact that it is a fermion because of the large ground-state degeneracy arising from a nuclear spin of $I = 9/2$, which reduces the impact of Pauli blocking of collisions. We observe a limited number of atoms in the condensate ($N_{\text{max}} \approx 10^4$) that is consistent with the value of a_{88} and the optical dipole trap parameters.

DOI: 10.1103/PhysRevA.81.051601

Bose-Einstein condensation of 88Sr has been pursued for over a decade because of the promise of efficient laser cooling to high phase space density using the $(5s^2)^\dagger S_0$–$(5s5p)^\dagger P_1$ narrow intercombination line [1] and loading of optical dipole traps that operate at the magic wavelength for this transition [2]. Recent interest in 88Sr has focused on long-coherence time interferometers [3], optical frequency standards [4,5], and the existence of low-loss optical Feshbach resonances [6,7]. There has also been great interest generally in quantum degenerate gases of alkaline-earth metal atoms and atoms with similar electronic structures because of potential applications in quantum computing in optical lattices [8–10] and creation of novel quantum fluids [11].

Early attempts to evaporatively cool 88Sr to quantum degeneracy in an optical dipole trap [2,12] were not successful despite initial phase space densities as high as 10^{11}, presumably because of a small elastic scattering cross section. This was confirmed by measurements of the scattering lengths of all strontium isotopes using photoassociative [13,14] and Fourier-transform [15] spectroscopy of Sr$_2$ molecular potentials, which found that $a_{88} = -2a_0$, where $a_0 = 5.29 \times 10^{-11}$ m is the Bohr radius. Magnetic Feshbach resonances, which are typically used to overcome poor evaporator properties, do not exist in 88Sr because of its closed-shell ground state and lack of nuclear spin. Here, we report Bose-Einstein condensation (BEC) of 88Sr through sympathetic cooling with 87Sr.

Divalent atoms such as strontium and ytterbium [16,17] often possess a large number of stable isotopes, which enables mass tuning of the s-wave scattering length. For strontium, the stable isotopes and abundances are 88Sr (82.6%), 87Sr (7.0%), 86Sr (9.9%), and 84Sr (0.6%). In such systems, the likelihood of finding an isotope with a scattering length that enables efficient evaporative cooling is very high, as was recently demonstrated through the condensation of 84Sr ($a_{84} = 123a_0$) [18,19]. For an isotope that has a poor scattering length for evaporative cooling, there are also numerous opportunities to find another isotope that can be used effectively for sympathetic cooling. For 88Sr, the fermionic isotope 87Sr is well suited for this role. It has a large and positive s-wave scattering length of $a_{87} = 96a_0$ [14,15] which leads to efficient thermalization and evaporation as long as the system is not highly polarized. The inter-isotope scattering length is reasonable, $a_{88-87} = 55a_0$ [14,15], so that, in a mixture, collisions with 87Sr will efficiently cool (and evaporate) 88Sr. Dipolar and spin-flip collisional losses are absent because of the closed-shell ground state.

Bosons are normally used to sympathetically cool fermions [20] rather than the other way around, because identical fermions suffer from collisional Pauli blocking, which reduces evaporation efficiency in the quantum degenerate regime [21]. For sympathetic cooling with the bosonic isotopes of strontium, resonant collisions ($a_{86} = 823a_0$, $a_{88-87} = 1790a_0$) [14,15] should lead to large losses due to three-body collisions [12], which make attaining high densities difficult. We do not observe significant limitations due to Pauli blocking in the experiments reported here, and we suspect this is because 87Sr has a large nuclear spin ($I = 9/2$) and ground-state degeneracy. This suppresses the Fermi temperature and allows 88Sr to be cooled to high phase space density before Pauli blocking of 87Sr collisions becomes important.

Details about our apparatus can be found in Refs. [14,19,25]. Formation of ultracold mixtures of strontium isotopes benefits from the ability to magnetically trap atoms in the metastable $(5s5p)^\dagger P_2$ state [12,26–28], which has a 10-min lifetime [29]. One isotope is trapped from a Zeeman slowed beam in a magneto-optical trap (MOT) operating on the $(5s)^2S_0$–$(5s5p)^\dagger P_1$ transition at 461 nm (Fig. 1). This transition is not closed and approximately 1 in 10^5 excitations results in an atom decaying through the $(5s4d)^\dagger D_2$ state to the $(5s5p)^\dagger P_2$ state, where it can be trapped in the quadrupole magnetic field of the MOT. After accumulating a desired number of atoms, limited by the loading rate and observed 3P_2 lifetime of about 25 s, the cooling laser frequency is then changed to cool and accumulate another isotope. In our experiment, we load 88Sr for 3 s and then 87Sr [22] for 30 s. The laser parameters for trapping 88Sr are given in Ref. [26]. For trapping 88Sr [27], the laser is approximately 70 MHz red-detuned from the $^1S_0(F = 9/2)^\dagger P_1(F = 11/2)$ transition (slightly more than 2Γ, where Γ = 30.5 MHz is the natural linewidth of the transition [30]).

3P_2 atoms are returned to the ground state using 60 ms of 3 W/cm2 of excitation on the $(5s5p)^\dagger P_2$–$(5s4d)^\dagger D_2$ transition at 3 µm [25]. The isotope shift $(f_{87} - f_{88} = 110$ MHz) [25] is small compared to the ~500 MHz width of the repumping efficiency curve [31] for 88Sr and the ~3 GHz width of the hyperfine structure in 87Sr [25]. We tune the 3 µm laser 1.6 GHz blue-detuned from the 88Sr resonance,
which optimizes the 87Sr repumping while reducing the 88Sr number by 80%. This is a reasonable compromise given that the number of 87Sr atoms is the limiting factor in the experiment. The 461 nm MOT is left on at the optimal 87Sr detuning to maximize the number of captured 87Sr atoms, but this is only ~ 5 natural linewidths red-detuned of the 88Sr $^1S_0^{-1}P_1$ transition [22,23], so it also serves to aid recapture of this isotope. We typically recapture approximately 1.1×10^7 88Sr and 3×10^7 87Sr at temperatures of a few millikelvin.

The 461 nm light is then extinguished and 689 nm light is applied to drive the $(5s^2)\ ^1S_0-(5s5p)\ ^3P_1$ transitions (Fig. 1) and create intercombination-line MOTs for each isotope. The resonance frequencies in each isotope are well-resolved compared to the 7.4 kHz transition linewidth, so the simultaneous MOTs are compatible with each other. The parameters of the $^1S_0^{-1}P_1$ lasers for 88Sr and 87Sr [31] are similar to the conditions in Ref. [1] and Ref. [32], respectively. As many as 70% of the atoms are initially captured in the intercombination-line MOT. (For experiments with one isotope, the intercombination-line lasers for the other isotope are omitted.)

After 400 ms of $^1S_0^{-1}P_1$ laser cooling, an optical dipole trap (ODT) consisting of two crossed beams is overlapped for 100 ms with the intercombination-line MOT with modest power (3.9 W) per beam. The ODT is formed by a single beam derived from a 20 W multimode, 1.06 μm fiber laser that is recycled through the chamber to produce a trap with equipotentials that are nearly oblate spheroids, with the tight axis close to vertical. Each beam has a waist of approximately $w = 90 \mu m$ in the trapping region.

Immediately after extinction of the 689 nm light, the ODT power is ramped in 30 ms to 7.5 W to obtain a trap depth of 25 μK. Typically the atom number, temperature, and peak density at this point for both 88Sr and 87Sr are 5×10^6, 7 μK, and 2.5×10^{13} cm$^{-3}$. The peak phase space density (PSD) for 88Sr is 10^{-2}.

For diagnostics, we record $^1S_0^{-1}P_1$ resonant absorption images of samples after a time of flight varying from 10 to 40 ms. Because of broadening of the resonance due to hyperfine structure, the 87Sr atoms present would contribute significantly to the absorption when imaging at the 88Sr resonance frequency. To remove 87Sr atoms and obtain clean 88Sr images, light resonant with the $^1S_0(F = 9/2) - ^3P_1(F = 11/2)$ transition in 87Sr is applied during the first 2 ms of the time of flight. 87Sr atoms are imaged with linearly polarized light resonant with the $^1S_0(F = 9/2) - ^3P_1(F = 11/2)$ transition, and the contamination due to 88Sr is small and easily accounted for [31].

To investigate the collisional properties of the different isotopes and the mixture, the evolution of number and temperature was recorded in a fixed potential [Fig. 2(A)]. For 88Sr alone, evaporation is inefficient and a typical ratio of the trap depth to the sample temperature is $\eta \approx 4$, as observed previously [12]. 87Sr, however, approaches $\eta \approx 9$. Modeling [33] of the free-evaporation trajectory for 87Sr alone suggests a moderate degree of polarization [31] that will be investigated in future studies. The temperatures of 87Sr and 88Sr atoms in a mixture with peak densities of 8×10^{12} cm$^{-3}$ track each other closely and approach $\eta \approx 8$, indicating that 87Sr provides efficient sympathetic cooling of 88Sr.

Figure 2 shows the number (B) and temperature (C) for a typical forced evaporation trajectory with a mixture. We decrease the laser power according to $P = P_0/(1 + t/\tau)^\beta + P_{\text{offset}}$, with time denoted by t, $\beta = 1.4$, and $\tau = 1.1$ s. This trajectory without P_{offset} was designed [34] to yield efficient evaporation when gravity can be neglected. Gravity is a significant effect in this trap for Sr, and to avoid decreasing the potential depth too quickly at the end of the evaporation, we set $P_{\text{offset}} = 0.7$ W, which corresponds to the power at which gravity causes the trap depth to be close to zero. The lifetime of atoms in the ODT is 30 s. This allows efficient evaporation and an increase of PSD by a factor of 100 for a loss of one order of magnitude in the number of atoms. The 87Sr and 88Sr remain in equilibrium with each other during
the evaporation. 87Sr atoms are lost at a slightly faster rate, as expected because essentially every collision involves an 87Sr atom.

Figure 3 shows false color two-dimensional renderings of (left) and one-dimensional slices through (right) the time-of-flight absorption images recorded after 16 or 22 ms of expansion for various points along the evaporation trajectory. At 5 s of evaporation, the distribution is fit well by a Maxwell-Boltzmann distribution, but at 6 s, a Boltzmann distribution fits the high-velocity wings clearly underestimates the number of atoms at low velocity. A fit using the Bose-Einstein distribution [35], however, matches the distribution well. The fugacity obtained from this fit is 1.0, indicating this is close to the critical temperature for condensation. With further evaporation (7.5 s), a narrow peak emerges at low velocity. This bimodal distribution is a clear signature of the presence of a Bose-Einstein condensate. A pure condensate is observed near the end of the evaporation trajectory (9 s).

At the transition temperature, 2×10^5 87Sr atoms remain at a temperature of 0.2 μK. This corresponds to $T/T_F = 0.9$ for an unpolarized sample, which is nondegenerate and above the point at which Pauli blocking significantly impedes evaporation efficiency [21].

88Sr has a negative scattering length, so one expects a collapse of the condensate when the system approaches a critical number of condensed atoms given by [36]

$$N_{cr} = \frac{0.575 a_{ho}}{|a_{88}|}.$$

Here $a_{ho} = [\hbar/(m \bar{\omega})]^{1/2}$ is the harmonic oscillator length, where m is the atom mass, \hbar is the reduced Planck constant, and $\bar{\omega} = (\omega_x \omega_y \omega_z)^{1/3}$ is the geometric average of the oscillator frequencies. One should also see large fluctuations in the number of condensed atoms during the evaporation due to repeated collapses and refilling of the condensate. To investigate this, we recorded the condensate number for various points in the evaporation trajectory over many experimental runs. For absorption images with a condensate and thermal pedestal, we fit the wings of the thermal cloud, which are beyond the condensate radii of about 23 μm, to a Bose distribution with fugacity set to 1. The residuals of the fit represent the condensate atoms which are fit with the standard Thomas-Fermi functional form [19,37] to determine their number.

Figure 4 shows the observed condensate number along the evaporation trajectory from 7 to 10 s, as well as the maximum values of N_{cr} predicted by Eq. (1) for a waist of $w = 100 \mu$m and $a_{88} = -1.6 a_o$, which are within the uncertainty ranges for these parameters. Uncertainties in knowledge of the trap become larger at low ODT power because of the increasingly important role of gravity, which weakens the trap. Significant variation in condensate number is seen. A model of the atom kinetics would be required to make a quantitative statement about the agreement between the observed and the expected number distributions.

We have described Bose-Einstein condensation of 88Sr through sympathetic cooling with 87Sr. The observed maximum number of condensed atoms is consistent with the small, negative value of a_{88}. Because of the weak interactions, it should be possible to change the sign of the scattering length with an optical Feshbach resonance [6,7] while keeping induced inelastic losses low. This suggests many possible
future experiments, such as the creation of matter-wave solitons in two dimensions [38] and quantum fluids with random nonlinear interactions [39].

This research was supported by the Welch Foundation (C-1579), the National Science Foundation (PHY-0855642), and the Keck Foundation.