
High-Throughput Contention-Free Concurrent Interleaver Architecture
for Multi-Standard Turbo Decoder

Guohui Wang∗, Yang Sun∗, Joseph R. Cavallaro∗ and Yuanbin Guo†
∗Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005

†Wireless R&D, US Research Center, Futurewei Technologies, 5340 Lebacy Dr., Plano, Texas 75024
Email: {wgh, ysun, cavallar}@rice.edu, yuanbinguo@huawei.com

Abstract—To meet the higher data rate requirement of
emerging wireless communication technology, numerous paral-
lel turbo decoder architectures have been developed. However,
the interleaver has become a major bottleneck that limits
the achievable throughput in the parallel decoders due to
the massive memory conflicts. In this paper, we propose a
flexible Double-Buffer based Contention-Free (DBCF) inter-
leaver architecture that can efficiently solve the memory conflict
problem for parallel turbo decoders with very high parallelism.
The proposed DBCF architecture enables high throughput
concurrent interleaving for multi-standard turbo decoders that
support UMTS/HSPA+, LTE and WiMAX, with small data-
path delays and low hardware cost. We implemented the DBCF
interleaver with a 65nm CMOS technology. The implementa-
tion of this highly efficient DBCF interleaver architecture shows
significant improvement in terms of the maximum throughput
and occupied chip area compared to the previous work.

Keywords-Parallel turbo decoder, interleaver, contention-free,
UMTS, HSPA+, LTE, WiMAX, multi-standard

I. INTRODUCTION

Turbo codes are a class of important error correction codes

due to their outstanding error correcting performance [1].

Turbo codes have been widely adopted in many wireless

communication standards including 3GPP HSPA Evolution

(HSPA+), 3GPP Long Term Evolution (LTE) and WiMAX.

High throughput is one of the most important requirements

for emerging wireless communication standards. For ex-

ample, HSPA+ extends the 3G communication standards

and can provide data rates up to 84 Mbps [2]. The future

version of HSPA+ supporting up to 672Mbps is proposed

for 3GPP Release 11 using advanced multiple antenna tech-

niques [3][4]. As a 4G candidate, the 3GPP LTE-Advance

sets its long-term goal to 1Gbps date rate.

As is shown in Figure 1, a turbo decoder contains two

key components: soft-input soft-output (SISO) decoders and

interleavers. Maximum a posteriori (MAP) decoder is nor-

mally used as the component SISO decoder [1]. During the

decoding process, the log-likelihood ratio (LLR) soft values

are exchanged between component SISO decoders in an

iterative way. The interleaver is a critical component for the

turbo decoder to achieve good error correcting performance,

by permuting the LLRs randomly between iterations and

maximizing the effective free distance of turbo codes.

De-
interleaving

Interleaving

Interleaving

SISO
Decoder 2

SISO
Decoder 1Lc(yP1)

Lc(yS)

Lc(yP2)

Le(u)

Le(u)

Le(u)La(u)

La(u)

Figure 1. The diagram of a turbo decoder.

To meet the high throughput requirements, parallel turbo

decoding is necessary. One of the challenges of implement-

ing a parallel turbo decoder is the interleaver design. Due

to the randomness of interleaver, parallel turbo decoders

suffer from severe memory conflict problems that restrict

the maximum achievable throughput.

In this paper, we propose a flexible Double-Buffer based

Contention-Free (DBCF) interleaver architecture which effi-

ciently solves the memory conflict problem for parallel turbo

decoders supporting multiple standards. The contribution

of this paper is twofold: firstly, this paper analyzes the

statistical properties of the memory conflict problem that can

be used as a guidance to design contention-free interleavers;

secondly, the proposed DBCF interleaver architecture has

the following features: (1) supports different parallel turbo

decoding algorithms with very high parallelism such as 32 or

64; (2) supports multi-standard turbo decoders; (3) supports

radix-2, radix-4 and higher radix schemes; and (4) has very

low latency and hardware complexity.

The paper is organized as follows. Section II introduces

the background, challenges and related work. Section III

analyzes the statistical properties of the memory conflicts.

Section IV proposes the DBCF interleaver architecture and

provides simulation results. Section V shows the hardware

implementation and the synthesis results for the proposed

architecture. Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Parallel Turbo Decoding Algorithm

Parallel turbo decoding algorithms have been extensively

investigated in the literature [5][6][7][8]. Most of these

parallel decoding algorithms exploited SISO-decoder level

parallelism, where the codeword (with block size K) is

partitioned into P sub-blocks with the size of K/P . Multiple

978-1-4577-1292-0/11/$26.00 c© 2011 IEEE 113 ASAP 2011

Interleaver address generator
& Crossbar

Input
Memory

Input
LLRs

Module 1

Module 2

Module P

...

C
ro
ss
ba
rS
w
itc
h SISO 1

SISO 2

SISO P

...

C
ro
ss
ba
rS
w
itc
h Module 1

Module 2

Module P

...

Extrinsic
Memory

Interleaver Address Generator

Lc Le

(a)

SISO
Decoder 1

Memory
Module 3

(b)

Memory
Module 4

SISO
Decoder 2

SISO
Decoder 3

SISO
Decoder 4

Memory
Module 1

Memory
Module 2ul
conflict

Figure 2. (a) The diagram of parallel turbo decoding architecture; (b)
memory conflict problem caused by the interleaver.

SISO decoders are employed and each of them operates on

one of the sub-blocks, as is shown in Figure 2(a).

Recently, the radix-4 SISO decoder has become more and

more popular due to its high error correcting performance,

low hardware complexity and its capability to support multi-

ple standards (radix-4 decoder can decode duo-binary turbo

codes used in WiMAX) [6][8][9]. Radix-4 decoders apply

the one-level look-ahead concept to the trellis structure

and utilize the trellis parallelism. They outperform radix-2

decoders because they can double the decoding throughput

with almost the same hardware cost.

In addition to SISO level parallelism and trellis level

parallelism, recursion-unit level parallelism is another way

to increase decoding throughput. For example, cross MAP

(XMAP) SISO decoder [10][11] doubles the throughput,

in which the forward recursion and backward recursion

are performed simultaneously in a cross manner instead of

serially executed as in the serial MAP (SMAP) algorithm.

B. Challenges

In a parallel turbo decoder, P SISO decoders produce

multiple extrinsic log-likelihood ratio (LLR) values per clock

cycle, which will access the LLR memory simultaneously af-

ter being permuted by the interleaver. Due to the randomness

of the turbo interleaver, several LLR values may try to access

the same memory module and cause a memory collision,

as depicted in Figure 2(b). Because memory collisions can

significantly degrade the decoding throughput, the memory

conflict problem makes the interleaver a major bottleneck

for high performance parallel turbo decoders.

To solve the memory conflict problem in parallel turbo

decoding systems, several dedicated contention-free inter-

leavers have been proposed. For example, the Quadratic

Permutation Polynomial (QPP) interleaver in LTE and the

Almost Regular Permutation (ARP) interleaver in WiMAX

are two contention-free interleavers. However, for higher

radix schemes such as radix-8, radix-16 or in systems with

an odd number of SISO decoders, QPP and ARP interleavers

are not contention-free and need a router architecture to

solve memory conflicts.

In addition, the interleaving algorithms in some existing

standards such as UMTS/HSPA+ suffer from this severe

memory conflict problem, which cannot be efficiently solved

by the new dedicated interleavers [2]. In fact, the contention-

free interleaver has become the most challenging part for a

high throughput multi-standard turbo decoder.

Because there will be different types of networks, such

as GSM, UMTS/HSPA+, LTE, and WiMAX, coexisting

together for most of the decade to come, the demand for

hand-held devices to support multiple standards is increas-

ing. Therefore, building multi-standard turbo decoders is

of great interest [5][12][13][14]. A flexible contention-free

interleaver with low hardware complexity is an essential

block for such multi-standard systems.

C. Related Work

Many interleaver architectures have been proposed to

solve the memory conflict problem in parallel turbo de-

coders. These various memory conflict resolutions can be

classified into three categories [14][15][16]: design-time

conflict resolutions, compilation-stage conflict resolutions

and run-time conflict resolutions.

(1) Design-time conflict resolutions usually jointly design

the interleaving algorithm and the contention-free architec-

tures [7][9][16][17][18]. These conflict resolutions employ

dedicated interleaver architectures which can resolve the

memory conflict problem for certain interleaving algorithms,

which, however, lack flexibility to support other interleaving

algorithms or existing systems such as HSPA+ and so on.

(2) Compilation-stage conflict resolutions employ certain

memory mapping rules to guide the memory accesses and to

avoid memory collisions [19][20][21]. For example, Tarable

et al. [19] showed that for any given parallel turbo decoder

and interleaving algorithm, there is always a memory map-

ping scheme allowing contention-free memory accessing

without stalling. However, the compilation-stage solutions

require many memory resources to store the memory map-

pings, which can significantly increase the hardware com-

plexity. Moreover, in practical implementations, the decoders

are required to support variable codeword sizes or multiple

standards, however, it is impractical to find and store so

many memory mappings for all the cases. Similarly, the

authors of [14] proposed a solution to reduce memory

conflicts using compressed permutation vectors. Although a

hybrid compression approach is used, the permutation tables

still require large memory area.

114 ASAP 2011

(3) Run-time conflict resolutions use extra flexible hard-

ware or on-chip networks to solve the memory conflicts.

We prefer the run-time solutions since the design-time and

compilation-stage solutions lack the flexibility to support

multiple standards and the ability to evolve with the emerg-

ing interleaving algorithms. Most importantly, the run-time

solutions avoid storing the memory mapping patterns or

interleaving look-up tables (LUTs) and can deliver the most

efficient hardware implementations. Some related run-time

solutions are briefly described below.

In [22] and [23], the authors introduced a tree-based

concurrent interleaving architecture (named TIBB) and an

improved solution based on local buffer cells interconnected

via a ring network (named RIBB), respectively. The draw-

backs of these solutions lie in the high connectivity of an

LLR distributor and the complex buffer structures. As the

parallelism increases, the hardware complexity of the LLR

distributor and buffer structures become prohibitive.

In [24], the authors presented an improved architecture

based on [22] and [23]. They introduced an interleaver

architecture with a stalling mechanism. The main drawback

of this solution is that the stalling mechanism requires

the modification of the control logic of the MAP decoder

which increases the design complexity and hardware cost.

Moreover, the delay penalty for this stalling scheme is unac-

ceptable for radix-4 or XMAP SISO decoder architectures.

In [12] and [13], the authors introduced misalignment

among memory access paths using delay line buffers. They

also use FIFOs to buffer LLRs when memory conflicts occur.

However, these schemes only solve the memory conflict

problem for low parallelism degrees. Another drawback is

that the delay penalty and hardware cost are very high.

In [25] and [26], the authors proposed packet-switched

network-on-chip (NoC) approaches. However, these NoC

methods suffer from large delay penalty which in turn

degrades the maximum throughput. Furthermore, the NoC

methods require complex buffer structures to temporarily

store the network packets to avoid network contention.

All the solutions mentioned above have certain limita-

tions to efficiently solve the memory conflict problems in

multi-standard turbo decoders, which restrict the achievable

throughput. In this paper, we propose a flexible and efficient

run-time contention-free interleaver architecture based on

the statistical analysis of the memory conflict problem.

III. MEMORY CONFLICT ANALYSIS

Because the most challenging part of implementing a

multi-standard turbo decoder is concurrent interleaver for

HSPA+, we first analyze the statistical properties of the

HSPA+ interleaving algorithm by simulation. The simula-

tion results can provide us with the theoretical basis to

design contention-free interleavers. The HSPA+ interleav-

ing algorithm based on the column-row pseudo-random

algorithm [2] was implemented. P SISO decoders and P

0 1,000 2,000 3,000 4,000 5,000
0

20%

40%

60%

80%

100%

Block size (bits)

M
em

o
ry

co
n
fl

ic
t

ra
ti

o

P = 32

P = 16

P = 8

P = 2

Figure 3. Memory conflict ratio analysis for HSPA+ turbo code interleaver.
P represents parallelism. The vertical axis represents the ratio of the number
of clock cycles in which memory collision occurs to the total clock cycles
needed to process a block of codeword.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5%

10%

15%

20%

25%

Naccess

M
em

o
ry

ac
ce

ss
p
ro

b
ab

il
it

y

P = 16

P = 32

Figure 4. Probability of having Naccess simultaneous memory accesses to
a memory module. Block size K=5114. Parallelism P=16 and 32. Number
of memory modules M is the same as parallelism.

corresponding LLR memory modules are assumed. The

block size K is set to the typical UMTS/HSPA+ block sizes

(40 ∼ 5114 bits).

During the parallel turbo decoding process, P MAP

decoders produce P LLRs in one clock cycle which should

be consumed in a timely manner by the memory to keep

full the high throughput pipeline of the decoding system.

Otherwise, the delay caused by frequent memory conflicts

will significantly degrade the throughput. Therefore, at first,

we want to know how often the memory conflicts occur.

Figure 3 reveals that the HSPA+ interleaving algorithm

causes severe memory conflict problems that become worse

as the parallelism goes higher. P = 2 results in around 50%
memory conflicts, however, when P is higher than 8, the

memory conflict ratio is close to 100%. Therefore, as the

parallelism goes higher, the difficulty to resolve the memory

conflicts increases drastically.

Although the memory conflict problem happens with

such a high frequency, our simulation results show that the

average number of memory accesses in one cycle is close

to 1, even with high parallelism such as P = 16 or P = 32.

This implies that it is possible to use buffers to smooth the

memory accesses and mitigate the memory conflict problem.

However, directly using a large buffer is very inefficient and

the latency is unacceptable. Therefore, we further studied the

memory access pattern of the HSPA+ interleaver algorithm.

115 ASAP 2011

Double-Buffer based Contention-free (DBCF) Interleaver

Interleaving
Address Generator

..
.

..
. ..
.

..
.

..
.

In
te
r-
co
nn
ec
tio
n

N
et
w
or
k

Radix-4
XMAP
Decoder 1

Circular BufferM

Memory
ModuleMBypass

Unit

Buffer Router 1

Conflict
Detector
Priority
Selector B

uf
fe
r

C
on
tro
l

PRN-Gen

Radix-4
XMAP
Decoder P

Radix-4
XMAP
Decoder 2

Buffer Router M

Conflict
Detector
Priority
Selector B

uf
fe
r

C
on
tro
l

PRN-Gen

Circular Buffer 1

Memory
Module 1Bypass

Unit
FIFO 5
FIFO 6
FIFO 7
FIFO 8

FIFO PP-3
FIFO PP-2
FIFO PP-1
FIFO PP

FIFO 1
FIFO 2
FIFO 3
FIFO 4

Buffer Router

Conflict
Detector Circular buffer

Control signal

To Circular
BufferPriority

Selector

Pseudo-random
Number
Generator

Buffer
Control

LLR
Memory
Address

To bypass
unit

LLR
Values

Figure 5. Overview architecture of the DBCF interleaver. The right part of the figure shows the detail of the buffer router.

Figure 4 shows the probability of having Naccess simulta-

neous memory accesses to a memory module. If Naccess =
1, there is no memory conflict. While Naccess > 1 means

that multiple LLRs try to access the same memory module

simultaneously hence causing an Naccess-way memory con-

flict. Figure 4 shows that most of the memory conflicts are

2-way and 3-way memory conflicts. Although in the worst

case, there might be more than 4 LLRs accessing the same

memory module simultaneously, these cases are very rare

(Prob(NCand ≥ 4) < 7%) so that on average they will

not affect the system throughput. Based on this observation,

a Double-Buffer based Contention-Free (DBCF) interleaver

architecture is designed to resolve the memory conflict

problem and enable concurrent memory accesses. Further

simulation shows that the random interleaver algorithms

have the similar statistical property as is shown in Figure 4,

therefore, the DBCF interleaver can also be used in other

random interleaving algorithms.

IV. PROPOSED DBCF ARCHITECTURE

A. System Model

Figure 5 shows the overview architecture of the double-

buffer based contention-free (DBCF) interleaver. Radix-4

XMAP decoders can achieve high throughput with relatively

low hardware cost, however, they cause very severe memory

conflict problems in parallel turbo decoders. Therefore, in

this paper, we take the turbo decoder consisting of multiple

radix-4 XMAP SISO decoders as an example to show

the effectiveness of the DBCF architecture, however, this

interleaver architecture can support any kind of parallel turbo

decoder to meet throughput and area requirements.

Figure 5 shows a parallel turbo decoder which contains

P SISO decoders. We define the total number of the output

LLRs as the parallelism parameter of the turbo decoder,

denoted as PP . PP determines the extent of the memory

conflict problem. The hardware implementation of the radix-

4 XMAP SISO decoder is fully pipelined. In each clock

cycle, a radix-4 XMAP SISO decoder reads four extrinsic

LLR values from LLR memory and then outputs four new

LLR values, which should be written into the LLR memory

using the interleaving addresses. Assuming four such SISO

decoders are employed to achieve a preset throughput goal,

we can easily determine PP = P × 4 = 16. To avoid the

usage of multi-port memory, the LLR memory is partitioned

into PP separated memory modules.
The key components of the DBCF interleaver architecture

are double buffers, which include FIFOs and circular buffers.

The FIFOs are used to store the LLR values produced by

the SISO decoders temporarily. Each LLR output port owns

a corresponding FIFO. Each memory module is connected

to a circular buffer. The circular buffers are used to store

the concurrently written data values and smooth the bursty

memory accesses.

B. DBCF Interleaver Architecture
The DBCF interleaver architecture is designed based on

the statistical property of the memory conflict shown in

Figure 4. As described above, it is very rare to have more

than a 4-way memory conflict (< 7%). Therefore, as long

as we can efficiently handle 2-way and 3-way memory

conflicts, most of the memory collisions are resolved. Based

on this observation, this architecture focuses on solving the

most frequent 2-way and 3-way memory conflict problems.

We denote the number of concurrent memory access can-

didates to a specific memory module per clock cycle as

NCand. We define a selection parameter S which stands

for the maximum number of LLR values which are chosen

from NCand incoming LLR values and written into the

buffer. If NCand < S, all NCand LLRs are written into

the circular buffer; otherwise, if NCand > S, then only S
LLRs are written into the circular buffer and the remaining

(NCand − S) LLR values are rejected and put into the

FIFO. In order to handle the most frequent memory conflict

116 ASAP 2011

problem, S can be set to 3 since NCand ≥ 4 rarely happens

even for the worst case.

The double-buffer architecture effectively guarantees the

non-stop processing, which is crucial for turbo decoders that

consist of multiple SISO decoders with high parallelism

(such as the radix-4 XMAP SISO decoder). On the other

hand, the usage of selection parameter S significantly re-

duces the complexity of interconnection in the decoding

system. For instance, assuming the parallelism PP = 16,

the original turbo decoding system requires a 16 × 16 full

interconnection network for each memory module, however,

DBCF architecture with S = 3 reduces this to a 16 × 3
interconnection network.

Another important technique used in the DBCF interleaver

architecture to reduce the memory conflict is sub-bank

partitioning. The idea is to further partition each memory

module into Nsub sub-banks which result in a total of

M = PP ×Nsub memory banks. More memory banks can

effectively alleviate the memory conflict problem.

C. Micro Architecture of DBCF Interleaver

As is shown above in Figure 5, the DBCF interleaver

consists of the following key components: PP FIFOs, M
circular buffers, an interconnection network (ICN), an inter-

leaving address generator (IAG), M buffer routers and M
buffer bypass units.

1) Double Buffers: Double buffers includes the FIFOs

and circular buffers. Each SISO decoder is connected to four

FIFOs. The LLR values output from the SISO decoder are

directly put into the FIFOs and wait to be read by the buffer

router. Every memory module is connected to a circular

buffer. Two pointers are used in the circular buffer to indicate

the current reading and writing position, respectively. The

sizes of FIFOs and circular buffers can be determined by

simulating the corresponding interleaving algorithms and

the parameters should guarantee that the FIFOs and buffers

do not overflow even for the worst cases. Based on our

simulation results, the required depth of the circular buffer

and FIFO are very small, therefore, they can be implemented

using registers so that multiple data can be written into the

circular buffer simultaneously.

2) Interleaving Address Generator (IAG) and Intercon-
nection Network (ICN): The IAG is used to generate the

interleaved memory address on the fly for each output LLR

value according to the interleaving law. In each clock cycle,

the IAG should generate PP addresses for PP LLR values.

The ICN connects all the FIFOs to the buffer routers. The

interleaved memory addresses and the LLR values will be

delivered to the buffer router together.

3) Buffer Router: The buffer router is the core control

module for this DBCF interleaver architecture. The design

goal of the buffer router is to reduce the interconnection

complexity and the latency of the buffer system. The buffer

router detects the memory collisions, determines which

FIFOs to read from and controls the data access to the cir-

cular buffers. The scheduling algorithm of the buffer router

can affect performance of the memory conflict resolver,

therefore, it should be carefully designed.

4) Bypass Unit: The bypass unit is one of the most

important contributions of the DBCF architecture. The by-

pass unit can bypass the circular buffer and directly write

the data into the corresponding memory module without

extra latency if the following conditions are met: (1) the

corresponding circular buffer is empty; (2) at least one LLR

value attempts to access the corresponding memory module.

Simulation results show that the bypass unit helps the DBCF

architecture significantly reduce the latency as well as the

memory requirements.

D. Design Trade-offs and Simulation Results

In the DBCF architecture, there are several design trade-

offs between the latency and hardware cost. First of all,

larger S results in smaller latency, however, this will use

more multiplexing hardware and increase the complexity

of the interconnection network. Therefore, choosing an

appropriate S value is important for the whole system to

achieve high throughput while maintaining low hardware

cost. On the other hand, sub-bank partitioning can reduce

memory conflicts, however, this will introduce extra cost of

the memory controller. Both of these two design trade-offs

will also affect the requirements for the sizes of FIFOs and

circular buffer.

Table I and II show the simulation results of the pro-

posed architecture with the parallelism of 16 and 32 (4

radix-4 XMAP SISO decoders and 8 radix-4 XMAP SISO

decoders), respectively. In the tables, K is block size; PP

is parallelism parameter which represents the number of

LLR values produced in each time step; M is the number of

memory banks; S is the maximum number of selected LLRs;

C0 denotes the ideal clock cycles to decode a codeword

(C0 = K/PP); C1 denotes the actual clock cycles including

buffer latency; (C1-C0) represents the penalty of the memory

conflicts. Due to the limited space, only the results for the

largest block size in the HSPA+ standard (K = 5114) are

shown. However, this architecture works well for other block

sizes.

To provide a baseline reference to compare with, we

measured a basic LLR router system with only a large

buffer per memory bank. In every clock cycle, all the LLRs

are written into the buffer if memory conflict occurs. The

required buffer size is measured as well as the penalty cycles.

In Table I, the first row shows that with only simple

buffers, the required buffer size is 128 and the penalty caused

by the memory conflict is 175 clock cycles. Since both

the LLR values and the corresponding destination memory

address should be stored, the area cost for the memory is

very expensive. In addition, the time needed to decode a

codeword is increased by 54% which significantly reduces

117 ASAP 2011

Table I
SIMULATION RESULTS FOR DBCF INTERLEAVER. K=5114,

PARALLELISM=16.
Simulation parameters Results

PP M S FIFO Buffer C0 C1 Penalty
Depth Depth (C1-C0)

16 16 1 0 128 320 495 175

16 16 3 4 12 320 332 12

16 32 3 3 4 320 323 3

16 64 3 2 5 320 322 2

Table II
SIMULATION RESULTS FOR DBCF INTERLEAVER. K=5114,

PARALLELISM=32.
Simulation parameters Results

PP M S FIFO Buffer C0 C1 Penalty
Depth Depth (C1-C0)

32 32 1 0 120 160 268 108

32 32 3 8 12 160 170 10

32 64 3 4 7 160 164 4

the throughput. After applying the DBCF architecture, the

latency is reduced to 11 by using only a few small FIFOs and

buffers. We save 87.5% of memory and reduce the penalty

to 6.2%. After using the sub-bank partitioning technique,

the size requirements of FIFO/buffer are further reduced.

The latency penalty is reduced to less than 1%. Comparing

M = 32 (each memory module is partitioned into 2 sub-

banks, Nsub = 2) and M = 64 (each memory module is

partitioned into 4 sub-banks, Nsub = 4), we can see M = 32
is a better solution since it achieves comparable latency as

for M = 64, but has lower hardware cost. With the sub-

bank partitioning technique, we use 10.8% of original buffer

resources and reduce the penalty of memory conflicts to

only 3 clock cycles, which are negligible for the decoding

throughput.

In Table II, similar results can be observed. When M = 64
is used, the DBCF architecture can reduce the penalty to 4

clock cycles with only 5 FIFO slots and 6 buffer slots per

memory module.

Due to the space limitation, the simulation results for

different S parameters are not shown. The simulation results

match the statistical property of the memory conflicts we

observed in Section III. When S = 2, the hardware cost

is lower than S = 3 but with a little higher penalty

(around 20 clock cycles) as we have expected. On the

other hand, further increasing S to 4 or 5 does not provide

much performance improvement, because the latency and

the memory requirements are already reduced to very low

levels for S = 3.

E. Architecture Comparison with Related Work

As is mentioned in Section II-C, we prefer the run-

time conflict resolutions due to their greater flexibility and

lower hardware complexity. Therefore, in Table III, we

compare the DBCF interleaver with other run-time conflict

resolutions. In this table, PP is the parallelism parameter,

which is defined as the number of LLRs produced by the

turbo decoder per clock cycle. As PP goes higher, a turbo

decoder has higher parallelism, thus, it is harder to efficiently

solve the memory conflict problem. M denotes the number

of memory banks. Given the clock frequency, the paral-

lelism PP is the major parameter to determine the decoding

throughput, therefore, to fairly compare different parallel

interleaver architectures, we compare the architectures under

the same PP .

Table III demonstrates the buffer sizes used by different

interleaver architectures. Moreover, the penalty cycles for

each scheme are shown. Since different block sizes of code-

word are used in different papers, we use penalty percentage

as a normalized measurement to compare the performance

of each solution. Penalty percentage is computed by dividing

the penalty cycles by the ideal cycles needed to decode a

codeword without memory collisions. Therefore, for a spe-

cific parallelism PP , smaller buffer size and smaller penalty

percentage lead to a better and more efficient architecture.

Compared to the related work, the DBCF interleaver has

the following advantages. First, the DBCF interleaver is flex-

ible to support both a higher radix decoder algorithm (radix-

4 and above) and higher parallelism (16, 32 or higher).

No other work has shown the comparable flexibility and

scalability. For instance, the architecture in [24] does not

support the radix-4 decoder. The solution in [23] uses large

amounts of buffers. The authors in [12] and [13] only show

the results for parallelism of 4. In addition, the interleaver

in [12] uses a large number of memory banks (24 sub-banks)

which is quite inefficient. Furthermore, since each memory

bank has the same buffer structure in the DBCF interleaver,

it is very easy to scale the interleaver up to support higher

parallelism. In contrast, the interleavers in [12][13] and

[23] have poor scalability: to support different parallelism,

their interconnection network should be redesigned and the

parameters should be readjusted.

Second, the DBCF interleaver architecture outperforms

the related work with much smaller penalty percentage

by using comparable buffer sizes. For example, to resolve

the memory conflicts for parallelism 4/8/16, [24] employs

buffer sizes of 40/80/160 and the penalty percentages are

1.1%/4%/13.6%. In contrast, this work uses buffer sizes

36/104/256 and reduces the penalty to 0.39%/0.94%/3.4%.

With sub-bank partitioning, buffer sizes 40/112/224 result

in even lower penalty percentages of 0.15%/0.31%/0.94%

in this work. We can also notice that when using 8 memory

banks to resolve to memory conflict problem for parallelism

of 4, [13] has a buffer size of 367 and the penalty percentage

is 5.1%. While this work uses 40 buffer slots, the penalty is

as low as 0.15%.

Table III also compares the maximum achievable through-

put of our interleaver with the previous work. It shows

that we can achieve much higher clock frequency and

throughput, since our interleaver architecture simplifies the

interconnection network while using less buffer resources.

118 ASAP 2011

Table III
INTERLEAVER ARCHITECTURE COMPARISON WITH RELATED WORK.

Work Techniques Radix-4 SISO decoder SISO PP M Total Ideal Penalty Penalty Maximum
support type number buffers cycles cycles percentage Throughputb @6 iter.

[23] RIBB Yes Radix-2, SMAP 4 4 4 200 1279 174c 13.6%c 39 Mbps @133 MHz
LLR distributor (1 LLR/cycle) 8 8 8 552 640 309c 48.3%c 59 Mbps @133 MHz

16 16 16 3552 320 N/A N/A N/A

[24] Buffering, No Radix-2, 4 4 4 40 1091 12 1.1% 53 Mbpsd @200 MHz

Stalling SISOs (1 LLR/cycle) 8 8 8 80 352 14 4% 88 Mbpsd @200 MHz

16 16 16 160 250 34 13.6% 133 Mbpsd @200 MHz

[12] Misalignment factor(MF) No Radix-2, SMAP 2 2 24 21 2557 26c 1.0%c 33 Mbps @200 MHz
sub-banking(SB), FIFOs (1 LLR/cycle)

[13] MF, SB, FIFOs Yes Radix-4, SMAP 2 4 8 367 1279 65 5.1% 49.4 Mbps @285 MHz
(2 LLRs/cycle)

This DBCF interleaver: Yes Radix-4, XMAP 1 4 4 36 1279 5 0.39% 116 Mbps @700 MHz
work double buffer, (4 LLRs/cycle) 8 40 2 0.15% 117 Mbps @700 MHz

selection parameter, 2 8 8 104 640 6 0.94% 230 Mbps @700 MHz
sub-banking 16 112 2 0.31% 232 Mbps @700 MHz

4 16 16 256 320 11 3.4% 453 Mbps @700 MHz
32 224 3 0.94% 458 Mbps @700 MHz

8 32 32 640 160 10 6.2% 694 Mbps @550 MHz
64 704 4 2.5% 706 Mbps @550 MHz

a PP: parallelism parameter. M: number of memory banks. Ideal cycle = block length/PP.
b Here we list the maximum achievable throughput and the maximum achievable clock frequency reported by the previous work.
c The authors did not report the penalty cycles, so the penalty cycles are estimated using the reported maximum throughput and the ideal throughput.
d Throughput is linearly scaled to 6 iterations.

PRN
Gen

Conflict
Indicators

Buffer
Info

Rand 1

Rand S

...Rand 2

...

LLR
Values

... ...

...

. . .

Sel 1 Sel 2 Sel S

... Selected S
LLR values

Priority Selector

M
U
X
1

M
U
X
2

M
U
X
S

Comb
.

Logic

Figure 6. Hardware diagram of the priority selector.

V. HARDWARE IMPLEMENTATION

A. Hardware Implementation of DBCF Interleaver

This section presents the hardware implementation of

the buffer router which is the key module in the DBCF

interleaver. All the modules are fully pipelined. The buffer

router consists of a parallel conflict detector, a priority

selector, a random selection signal generator and a buffer

control module (BCM).

1) Conflict Detector: The parallel conflict detector can

be implemented by using a few compare-select units. The

conflict detector can detect the memory conflict in one clock

cycle and send the conflict indicators to the priority selector.

2) Priority Selector: Figure 6 shows the diagram of the

priority selector. The priority selector first gets the number

of empty slots in the circular buffer, which is denoted

as Nbuf and then chooses up to min(S,Nbuf) LLR data

from Ncand LLR candidates. Ncand can be computed from

conflict indicators.

In order to maximize the overall throughput and minimize

the buffer requirements, we need to keep the workloads in

different buffers relatively balanced; otherwise, the circular

Counter
1

Counter
2

Counter
S

...

Initial
Value 1

Initial
Value 2

Initial
Value S

CLK

Rand 1 Rand 2 Rand S

MOD MOD MOD...

...

Figure 7. Diagram of the efficient pseudo-random number generator.

buffer with the heaviest workload will slow down the whole

decoder. An effective solution is a random selection scheme,

that is, min(S,Nbuf) winners are randomly chosen out of

NCand candidates in each cycle. The combinational logic

in the priority selector uses the conflict indicators and

random numbers to generate the selection signals for the

multiplexers.

3) Efficient Random Selection Scheme: The random se-

lection scheme can balance the workloads among the buffers,

however, the efficient hardware implementation is chal-

lenging. First, the memory access candidates cannot be

predicted in advance, which means that the inputs to the

multiplexers are random. Second, the selection signals for

the multiplexers should be randomly generated on the fly.

Third, the random numbers generated can not repeat.

As is shown in Figure 7, a customized pseudo-random

number generator (PRN-Gen) is designed. Because we do

not need a highly random sequence, a very simple structure

of PRN-Gen is designed which consists of S counters and

S modular units. Although this structure is simple, when

combined with the selection scheme described below, it can

efficiently balance the workloads in the buffers.

Let us take PP = 16, S = 3 as an example. We use three

3-bit counters counting from 1 to 7 (except 0). The initial

119 ASAP 2011

Table IV
SYNTHESIS RESULTS OF DBCF INTERLEAVER.

SISO type Radix-4 XMAP decoder

Interleaver DBCF interleaver

iterations 6

Technology TSMC 65nm

Voltage 0.9 V

SISO Cores 4 4 8 8

LLRs per cycle 16 16 32 32

Memory banks 16 32 32 64

Clock frequency [MHz] 700 700 550 550

Area [mm2] 0.089 0.138 0.204 0.215

Throughput [Mbps] 453 458 694 706

values for the counters are 1, 2 and 3, respectively. Assuming

the output of the i-th counter is Oi, the i-th random number

RNi can be computed by RNi = Oi%NCand. These

random numbers are used as the indices to select LLR

values from NCand candidates. The fact that the outputs of

the counters are consecutive guarantees that the generated

random numbers do not repeat. Moreover, because the

number NCand and the memory access candidates vary from

time to time, the selected LLR values are close to random.

For example, we assume that the current memory accesses

come from the 3rd, 9th, 10th and 14th SISO decoders. Since

there are four memory access candidates (NCand = 4), we

index them like this: Cand[0, 1, 2, 3] = {3, 9, 10, 14}. S = 3
winners will be selected from these four data. Without loss

of generality, we assume the current outputs of the counters

are 3, 4 and 5. After mod by NCand = 4, we get the

indices of the winners: 3, 0, and 1, and locate the winners:

Cand[3] = 14, Cand[0] = 3, and Cand[1] = 9. Therefore,

LLRs from the 14th, 3rd and 9th SISO decoders are selected

for the current memory module.

Simulation shows that this random selection scheme can

effectively keep the workloads of the buffers balanced. In

addition, it saves hardware resources due to the following

reasons. First, in the example shown above, only three 3-bit

counters are used which have lower hardware complexity

than the linear feedback shift register (LFSR)-based random

sequence generator. Second, the repetition checking and

random number regenerating units are not needed, therefore,

the complexity of the control logic is reduced.

4) Buffer Control Module: The buffer control module

(BCM) is a finite state machine (FSM) which maintains

the circular buffer. The BCM checks the availability of the

circular buffer and notifies the priority selector. Then BCM

gets selected data from the priority selector and writes these

data in the buffer slots indicated by the write pointer. If the

circular buffer is not empty, BCM pops up one data indicated

by the read pointer out of the circular buffer, and writes it

into the LLR memory. Meanwhile, if the bypass conditions

are met, the BCM will directly deliver one data to the bypass

unit, and writes other data into the circular buffer.

Table V
IMPLEMENTATION RESULT COMPARISON WITH RELATED WORKa .

Work Methods Technology Area [mm2] Max. fclk

[22] TIBB 200 nm 6.14 (2.82b) 150 MHz

[23] RIBB 200 nm 14.1 (6.47b) 190 MHz

[24] Buffer+Stalling 130 nm 1.06 200 MHz

[25] 2D Mesh NoC 180 nm 1.2 (0.61b) 200 MHz

[26] Butterfly NoC 180 nm 2.5 (1.28b) 302 MHz

Benes 2N-N NoC 180 nm 1.34 (0.68b) 416 MHz

[14] Permutation table 40 nm 0.14 (1.29b) 350 MHz
compression

This Work DBCF 65 nm 0.089 (0.35b) 700 MHz

a Parallelism PP = 16 for all cases; all the data are for the interleavers
and do not include MAP decoders.

b Technology scaling to 130 nm CMOS assuming: A ∼ 1/s2. [8]

B. Synthesis Results and Comparison

We implemented the DBCF interleaver for a multi-

standard turbo decoder, in which parallel radix-4 XMAP

SISO decoders are employed. We synthesized the design

using Synopsys Design Compiler with TSMC 65nm technol-

ogy. The synthesis results are shown in Table IV, where we

compare the DBCF interleaver architectures under four dif-

ferent configurations. We show results for 4 SISO decoders

(parallelism=16) and 8 SISO decoders (parallelism=32), as

well as the comparison between implementations with and

without the memory sub-bank partitioning technique.

Table IV shows that the DBCF interleaver architecture

solves the memory conflict problem and achieves up to

458Mbps data throughput when 4 SISO decoders are run-

ning at 700MHz. For the turbo decoder with 8 radix-

4 XMAP SISO decoders, with the help of our DBCF

interleaver, the turbo decoder can achieve up to 706Mbps

data rate, which satisfies the throughput requirements of the

future extension of HSPA+ standards (672Mbps).

In Table V the implementation results of other published

interleaver architectures that can support multiple standards

including HSPA+ are shown. Because high throughput turbo

decoders require high parallelism and interleavers are harder

to design for such decoders, the chip area and the maximum

clock frequency for parallelism of 16 are shown. Papers [12]

and [13] in Table III report implementation results for the

parallelism of 2 and 4 only and these two papers are not

listed in this table. In Table V, the interleavers proposed

by [22] and [23] require a full interconnection network and

therefore have larger chip area. The solution in [24] does

not support radix-4 or XMAP decoders and lacks flexibility

for multiple standards. The NoC approaches in [25] and [26]

require complex network structures as well as many buffers.

The permutation tables in [14] occupy large memory area on

chip. In contrast, the proposed DBCF interleaver shows not

only flexibility, but also high performance and low hardware

complexity. The maximum clock frequency obtained with

the DBCF interleaver is higher than other designs. Mean-

while, the DBCF interleaver occupies the smallest die area

of all designs, even when normalized for technology scaling.

120 ASAP 2011

VI. CONCLUSION

In this paper, we present a Double-Buffer based

Contention-Free (DBCF) interleaver architecture for multi-

standard turbo decoders. The proposed DBCF interleaver

efficiently solves the memory conflict problem for parallel

turbo decoders at the execution stage and enables high

throughput concurrent interleaving with low hardware com-

plexity. Synthesis results show that the DBCF architecture

can achieve better performance in terms of occupied area

and the maximum frequency than the previous work. That

is because the DBCF interleaver reduces the complexity of

the interconnection network by fully exploiting the statistical

properties of the random interleaving algorithms. Another

reason is that the double-buffer architecture, combined with

other efficient design aspects such as bypass unit, random

selection scheme, and so on, significantly reduces the mem-

ory requirements and the complexity of the control logic.

ACKNOWLEDGMENTS

This work was supported in part by Huawei and by the US

National Science Foundation under grants CNS-0619767,

EECS-0925942 and CNS-0923479.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
limit error-correcting coding and decoding: Turbo-codes.” in
Proc. IEEE International Conference on Communications
(ICC), vol. 2, May 1993, pp. 1064 –1070 vol.2.

[2] 3GPP, “Technical specification group radio access network;
multiplexing and channel coding (FDD), Tech. Spec. 25.212
v9.4.0 Release 9,” 2010.

[3] K. Johansson, J. Bergman, D. Gerstenberger, M. Blomgren,
and A. Wallen, “Multi-carrier HSPA evolution,” in Proc. IEEE
69th Vehicular Technology Conference (VTC), 2009, pp. 1 –5.

[4] Nokia Siemens Networks, “Long term HSPA evolution.
mobile broadband evolution beyond 3GPP release 10,” 2010.
[Online]. Available: http://www.nokiasiemensnetworks.com/
sites/default/files/document/HSPA evolution white paper
low res 141220.pdf

[5] Y. Sun, Y. Zhu, M. Goel, and J. R. Cavallaro, “Configurable
and scalable high throughput turbo decoder architecture for
multiple 4G wireless standards,” in Proc. IEEE International
Conference on Application-Specific Systems, Architectures
and Processors (ASAP), 2008, pp. 209 –214.

[6] Y. Sun and J. R. Cavallaro, “Efficient hardware implemen-
tation of a highly-parallel 3GPP LTE, LTE-Advance turbo
decoder,” Integration VLSI Journal, 2010.

[7] C.-C. Wong, M.-W. Lai, C.-C. Lin, H.-C. Chang, and C.-
Y. Lee, “Turbo decoder using contention-free interleaver and
parallel architecture,” IEEE Journal of Solid-State Circuits,
vol. 45, no. 2, pp. 422 –432, 2010.

[8] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design
and implementation of a parallel turbo-decoder ASIC for
3GPP-LTE,” IEEE Journal of Solid-State Circuits, vol. 46,
no. 1, pp. 8 –17, 2011.

[9] J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo
decoder for mobile WiMAX and 3GPP-LTE,” in Proc. IEEE
Custom Integrated Circuits Conference (CISS), 2009, pp. 487
–490.

[10] A. Giulietti, B. Bougard, V. Derudder, S. Dupont, J.-W.
Weijers, and L. Van der Perre, “A 80 Mb/s low-power scalable
turbo codec core,” in Proc. IEEE Custom Integrated Circuits
Conference (CICC), 2002.

[11] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s
3GPP LTE turbo code decoder,” in Design, Automation Test
in Europe Conference Exhibition, 2010, pp. 1420 –1425.

[12] R. Asghar, D. Wu, J. Eilert, and D. Liu, “Memory conflict
analysis and implementation of a re-configurable interleaver
architecture supporting unified parallel turbo decoding,” Jour-
nal of Signal Processing Systems, vol. 60, pp. 15–29, 2010.

[13] R. Asghar and D. Liu, “Towards radix-4, parallel interleaver
design to support high-throughput turbo decoding for re-
configurability,” in IEEE Sarnoff Symposium, 2010, pp. 1 –5.

[14] T. Ilnseher, M. May, and N. Wehn, “A multi-mode 3GPP-
LTE/HSDPA turbo decoder,” in IEEE International Confer-
ence on Communication Systems (ICCS), 2010, pp. 336 –340.

[15] E. Boutillon, C. Douillard, and G. Montorsi, “Iterative de-
coding of concatenated convolutional codes: Implementation
issues,” Proceedings of the IEEE, vol. 95, no. 6, pp. 1201
–1227, June 2007.

[16] A. Nimbalker, T. Blankenship, B. Classon, T. Fuja, and
D. Costello, “Contention-free interleavers for high-throughput
turbo decoding,” IEEE Transactions on Communications,
vol. 56, no. 8, pp. 1258 –1267, August 2008.

[17] O. Gazi and A. Yilmaz, “Collision free row column S-random
interleaver,” IEEE Communications Letters, vol. 13, no. 4, pp.
257 –259, April 2009.

[18] M. Mansour and N. Shanbhag, “High-throughput LDPC de-
coders,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 11, no. 6, pp. 976 –996, dec. 2003.

[19] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping inter-
leaving laws to parallel turbo and LDPC decoder architec-
tures,” IEEE Transactions on Information Theory, vol. 50,
no. 9, pp. 2002 – 2009, Sept. 2004.

[20] A. Giulietti, L. van der Perre, and A. Strum, “Parallel turbo
coding interleavers: avoiding collisions in accesses to storage
elements,” Electronics Letters, vol. 38, no. 5, pp. 232 –234,
Feb. 2002.

[21] C. Chavet and P. Coussy, “A memory mapping approach
for parallel interleaver design with multiples read and write
accesses,” in Proc. IEEE International Symposium on Circuits
and Systems (ISCAS), 2010, pp. 3168 –3171.

[22] M. Thul, N. Wehn, and L. Rao, “Enabling high-speed turbo-
decoding through concurrent interleaving,” in Proc. IEEE
International Symposium on Circuits and Systems (ISCAS),
vol. 1, 2002, pp. 897–900.

[23] M. Thul, F. Gilbert, and N. Wehn, “Concurrent interleaving
architectures for high-throughput channel coding,” in Proc.
IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2003, pp. 613–16 vol.2.

[24] F. Speziali and J. Zory, “Scalable and area efficient concurrent
interleaver for high throughput turbo-decoders,” in Proc. Eu-
romicro Symposium on Digital System Design (DSD), 2004,
pp. 334 – 341.

[25] C. Neeb, M. Thul, and N. Wehn, “Network-on-chip-centric
approach to interleaving in high throughput channel de-
coders,” in Proc. IEEE International Symposium on Circuits
and Systems (ISCAS), May 2005, pp. 1766 – 1769 Vol. 2.

[26] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “But-
terfly and Benes-based on-chip communication networks for
multiprocessor turbo decoding,” in Design, Automation Test
in Europe Conference Exhibition (DATE), 2007, pp. 1 –6.

121 ASAP 2011

