Differential Operators on Curves

by Thomas Bloom

The formalism given by Grothendieck [2, Ch. 16] for differential operators on schemes can be immediately applied to analytic spaces [1, 5]. The object of this note is to describe the germs of differential operators at a singular point on a complex curve at which the curve is irreducible.

§1. Let X be a complex curve irreducible at a singular point $p \in X$. Near p, the normalization of X is a 1-1 analytic map $f: \Delta \to X$ of the form $t \mapsto (f_1(t), \ldots, f_r(t))$. Here Δ is the unit disc in the plane and we assume $f(0) = p$, X is locally embedded in \mathbb{C}^r and p is the origin of \mathbb{C}^r. The functions $(f_i(t))_{i=1, \ldots, r}$ each vanish at $0 \in \Delta$, say to order n_i.

Furthermore, the subring R of germs at $0 \in \Delta$ of analytic functions which are induced by functions from X is of finite codimension (as a \mathbb{C}-vector space) in the ring of germs of analytic functions at $0 \in \Delta$.

We will denote by N the minimal integer with the property that if g vanishes at 0 to order $\geq N$, then $g \in R$.

Differential operators on X lift to differential operators on Δ with meromorphic coefficients.

There is, in fact a natural 1-1 correspondence between germs at $p \in X$ of analytic differential operators on X and germs at $0 \in \Delta$ of differential operators with meromorphic coefficients which preserve R.

Now, let D be the germ at $0 \in \Delta$ of a differential operator with meromorphic coefficients (henceforth abbreviated m.d.o) and write D in the form

$$D = \sum a_{ij} t^i \frac{d^j}{dt^j} \text{ with } a_{ij} \in \mathbb{C}.$$

1.1 Definition [3]. The strength of D is defined as $\sup_{a_{ij} \neq 0} (i - j)$ and will be denoted by $\text{str}(D)$. Thus $\text{str}(D)$ is an integer, $\text{str}(D_1 \circ D_2) = \text{str}(D_1) + \text{str}(D_2)$ and $\text{str}(D_1 + D_2) \leq \max(\text{str}(D_1), \text{str}(D_2))$.

1.2 Remarks. If $\text{str}(D) \leq -N$ then D preserves R.

We will say that D is of homogeneous strength if $i - j$ has a fixed value for all non-zero terms in the above expansion for D.

§2. To study differential operators at $p \in \mathbb{X}$ we will study the equivalent problem of m.d.o.'s which preserve R. We will first consider the case where $f_1(t), \ldots, f_i(t)$ are monomials in t. \mathbb{X} is thus weighted homogeneous at p.

We let $S = \{m \in \mathbb{Z} \mid m = \Sigma_{i=1}^{n} n_im_i \text{ where } n_i \text{ is as above and the } m_i \text{ are integers } \geq 0\}$. The ring R thus consists of all convergent power series of the form $\Sigma_{s \in S} a_s t^s$ where $a_s \in \mathbb{C}$.

2.1. Remarks. Let D be a m.d.o which preserves R. Since $g \in R$ if and only if each monomial in the Taylor series for $g \in R$, each term in the expansion of D as a sum of operators of homogeneous strength preserves R.

For μ an integer we let $Z(\mu, R) = \{\alpha \mid \alpha \text{ is an integer } > 0, t^\alpha \in R, \text{ but } t^{\alpha - \mu} \notin R\}$.

2.2. Lemma. If $\mu \in S$ then $\text{card}(Z(\mu, R)) = \mu - 1$.

If $\mu \notin S$, $\mu > 0$ then $\text{card}(Z(\mu, R)) \geq \mu$.

Proof. Consider the congruence classes of integers mod μ. In each such congruence class $\equiv 0$ there is at least one $\alpha \in Z(\mu, R)$. If $\mu \in S$ there is, by the semi-group property of S, precisely one such α in each non-zero congruence class and none in the zero congruence class. Thus if $\mu \in S$, $\text{card}(Z(\mu, R)) = \mu - 1$. If $\mu \notin S$ there is at least one $\alpha \in Z(\mu, R)$ with α in the zero congruence class. Thus if $\mu \notin S$, $\text{card}(Z(\mu, R)) \geq \mu$.

2.3. Lemma. The minimal order of a m.d.o of homogeneous strength μ and no terms of order zero which preserves R is $\text{card}(Z(\mu, R)) + 1$. Such an operator is unique up to a scalar multiple.

Proof. An m.d.o of order k, homogeneous strength μ and no term of order zero can be written uniquely in the form

$$D = \sum_{i=1}^{k} a_i t^{i-\mu} \frac{d^i}{dt^i} \text{ with } a_i \in \mathbb{C}. $$

Now if D is to preserve R we must have $D(t^\alpha) = 0$ for all monomials $t^\alpha \in R$ for which $t^{\alpha - \mu} \notin R$, that is, for all $\alpha \in Z(\mu, R)$. These conditions impose certain linear relations on the coefficients a_i of the form

$$a_1 \alpha + a_2 \alpha (\alpha - 1) + \cdots + a_k \alpha (\alpha - 1) \cdots (\alpha - (k-1)) = 0.$$

If $k = \text{card}(Z(\mu, R))$, the square matrix with rows
Thus, the minimal value of \(k \) which ensures a non-zero solution to the above linear homogeneous equations is \(k = \text{card}(Z(\mu, R)) + 1 \).

2.4 Corollary. No m.d.o preserving \(R \) has a meromorphic leading coefficient when written as a sum of operators of decreasing order.

Proof. If \(D \) is an m.d.o of homogeneous strength \(\mu > 0 \) and has a meromorphic leading coefficient, then the order of \(D \) must be \(< \mu \). This contradicts Lemmas 2.3 and 2.4. If \(\mu \leq 0 \), then clearly no coefficient is meromorphic.

§3. We now turn to the case where \(f_1(t), \ldots, f_k(t) \) are not necessarily monomials. We denote by \(\bar{R} \) the ring formed by the initial terms in the Taylor expansion of elements in \(R \). We denote by \(\bar{S} \) the corresponding semi-group.

3.1. Lemma. Let \(D \) be a m.d.o of strength \(\mu \) which preserves \(R \). Then \(D_\mu \), the terms in \(D \) of homogeneous strength \(\mu \), preserves \(\bar{R} \).

Proof. For \(g \in R \) with initial term \(\bar{g} \), the initial term of \(D(g) \) is \(D_\mu(\bar{g}) \).

3.2 Theorem. Let \(D \) be a m.d.o which preserves \(R \) and denote its order by \(\text{ord}(D) \). Then \(\text{ord}(D) \geq \text{str}(D) \).

Proof. This follows from lemmas 2.2, 2.3, and 3.1.

3.3 Theorem. Let \(P_\mu \) be a m.d.o of homogeneous strength \(\mu \) which preserves \(\bar{R} \). A sufficient condition that there exists a m.d.o \(P' \) of strength \(< \mu \) and order \(\leq m \) such that \(P_\mu + P' \) preserves \(R \) is that \(\text{card}(Z(j, \bar{R})) < m \) for \(j = \mu - 1, \mu - 2, \ldots, -N + 1 \).

Proof. As a preliminary step choose a \(C \)-basis for \(R \bmod t^N \) as follows: The basis consists of polynomials \(v_1, \ldots, v_i \) with initial terms \(\bar{v}_1, \ldots, \bar{v}_i \) and such that the monomial \(\bar{v}_i \) does not occur in the expression for \(v_j \) \((j \neq i)\). Given a convergent power series \(h \), let \(H = \text{sum of the monomials in the expansion of } h \) which are in \(R \bmod t^N \).

Say \(H = \sum_{i=1}^{l} c_i \bar{v}_i \). Then \(h \in R \) if and only if \(h = \sum_{i=1}^{l} c_i v_i \bmod t^N \).

We will construct the required operator \(P' \) inductively as follows. Having chosen operators of homogeneous strength \(P_{\mu + 1}, \ldots, P_{r+1} \) choose \(P_r \) so
that it satisfies the following conditions: For each \(\alpha \in \mathbb{Z}(r, \overline{R}) \) take \(g \in R \) with its initial term \(\bar{g} \) a monomial of degree \(\alpha \). Let \(G = \text{sum of the monomials in } (P_{\mu} + \cdots, P_{r+1})(g) \) which are also in \(\overline{R} \mod t^N \) and are of order \(< \alpha - r \).

Say \(G = \sum_{i=1}^{l} d_i \bar{v}_i \). Let \(\lambda t^{\alpha-r} \) be the monomial of order \(\alpha - r \) in \(\sum_{i=1}^{l} d_i \bar{v}_i \) (possibly \(\lambda = 0 \)). \(P_r \) is chosen so that \(P_r(g_1) + P_{r+1}(g_2) + \cdots, P_n(g_{r+1-n}) = \lambda t^{\alpha-r} \) where \(g_1 + g_2 + \cdots \) is the Taylor expansion of \(g \) in terms of order \(\alpha, \alpha + 1, \cdots \) etc. Thus for each \(\alpha \in \mathbb{Z}(r, \overline{R}) \) one linear relation is imposed on the coefficients of \(P_r \). Since \(\text{card} \mathbb{Z}(r, \overline{R}) < N+1 \) for \(\mu > r \geq -N+1 \) by hypothesis, there is an operator of order \(\leq m \) and homogeneous strength \(r \) satisfying the above equations (as in lemma 2.3). The above procedure is repeated until \(r = -N+1 \). Then \(P' = \sum_{i=-n}^{N+1} P_i \) has the required properties.

3.4. Corollary. There is a m.d.o of strength \(m \) and order \(m \) preserving \(R \) if \(m \) is sufficiently large.

Proof. Let \(M = \sup_{N \geq j > -N+1}(\text{card} \mathbb{Z}(j, \overline{R}) + 1) \). For \(j \geq N, j \in \mathbb{S} \); so \(\text{card} \mathbb{Z}(j, \overline{R}) = j - 1 \). Now consider any \(m \geq M \). \(M \geq N \) so \(m \in \mathbb{S} \). Thus, by Lemmas 2.2 and 2.3 there is a m.d.o of order \(m \) and strength \(m \) preserving \(\overline{R} \). Now, \(\text{card} \mathbb{Z}(j, \overline{R}) < m \) for \(j = m - 1, \cdots, -N+1 \) so, applying Theorem 3.3, we obtain the required m.d.o.

Let \(A \) be an analytic ring with unique maximal ideal \(\mathcal{A} \). Under composition, the differential operators on \(A \) form a non-commutative ring, denoted \(\text{Diff}(A) \) which is filtered by order. We denote by \(\text{GrDiff}(A) \) the associated graded ring which is commutative. Given \(D \in \text{Diff}(A) \) we denote by \(\bar{D} \) the homogeneous element it induces in \(\text{GrDiff}(A) \).

3.5. Corollary. Given a differential operator \(D \in \text{Diff}(R) \), there exists an integer \(s \) such that \(\bar{D}^s \in \mathcal{A} \text{GrDiff}(R) \) if and only if \(\text{ord}(D) > \text{str}(D) \).

Proof. Let \(D \) be of strength \(\mu \) and order \(> \mu \). \(D \) may be written in the form \(D = \sum_{k=0}^{\infty} h_k(d^k/dt^k) \) where \(h_k \) is analytic and \(h_k(0) = 0 \). Now \(D^M \) (\(M \) is the integer introduced in Cor. 3.4) is an operator with leading term \((h_k)^M(d^{km}/dt^{km}) \) and there is, by Corollary 3.4, an m.d.o \(P \) preserving \(R \) of order \(kM \) and strength \(kM \). Now \(h_{kM} \in \mathcal{A} \), so there exists an element \(h \in \mathcal{A} \) such that \(\text{ord}(D^M - hP) < kM \). Thus \(\bar{D}^M = \bar{h}\bar{P} \) in \(\text{GrDiff}(A) \).

Conversely, if \(\bar{D}^s \in \mathcal{A} \text{GrDiff}(A) \), there is an m.d.o \(P \) with \(\text{ord}(P) = s \text{ord}(D) \) such that \(\text{ord}(D^s - hP) < \text{ord}(P) \) for some \(h \in \mathcal{A} \). Say \(D^s = hP + P' \) where \(\text{ord}(P') < \text{ord}(D^s) \). Now \(\text{str}(D^s) \leq \max(\text{str}(hP), \text{str}(P')) \). But \(\text{str}(hP) < \text{str}(P) \leq \text{ord}(P) = \text{ord}(D^s) \).
In either case, \(\text{str}(D^0) < \text{ord}(D^0) \), so
\[
\text{str}(D) < \text{ord}(D).
\]

Thus, we may associate to the ring \(R \) a semi-group \(S' = \{ \mu \in \mathbb{Z} \mid \text{there exists a m.d.o } D \text{ preserving } R \text{ and such that } \text{ord}(D) = \text{str}(D) = \mu \} \). \(S' \) is, of course, intrinsic to the singularity of \(X \) at \(p \) since the above corollary gives an intrinsic characterization of those operators \(D \) such that \(\text{ord}(D) = \text{str}(D) \). In fact, \(S' \) is the semi-group of integers which are the degrees of the homogeneous elements of the \(\mathbb{C} \)-algebra \(\text{GrDiff}(R) / \sqrt{\mathbb{M} \text{GrDiff}(R)} \). Now \(\text{GrDiff}(R) / \sqrt{\mathbb{M} \text{GrDiff}(R)} \) is a one-dimensional Noetherian ring.

The relations in the ring may be described as follows: Let \(a \) and \(b \) be homogeneous elements of degrees \(\alpha, \beta \) respectively. Let \(\gamma = \text{g.c.d.}(\alpha, \beta) \). Then there exists non-zero \(\lambda_1, \lambda_2 \in \mathbb{C} \) such that
\[
\lambda_1 a^{\alpha/\gamma} = \lambda_2 b^{\beta/\gamma}.
\]
and all relations are generated by ones of the above form. Thus the ring is completely characterized by \(S' \).

For the weighted homogeneous curves of section 2, \(S' = S \); but, as example 4.2 shows, \(S' \neq S \) in general.

3.6 Corollary. \(\text{GrDiff}(R) \) and \(\text{Diff}(R) \) are finitely generated \(R \)-algebras.

Proof. It is a standard algebraic argument that if \(\text{GrDiff}(R) \) is finitely generated then \(\text{Diff}(R) \) is finitely generated as a left or right \(R \)-algebra. We will prove that \(\text{GrDiff}(R) \) is finitely generated, in fact, generated by operators of order \(< 2M \) where \(M \) is the integer introduced in corollary 3.4.

Since \(\text{card}(\mathbb{Z}(j, R)) < M \) for \(j = M, M - 1, \ldots, M - (N - 1) \), there exist (following the procedure of Lemma 2.3) m.d.o's \(P_0, \ldots, P_{N-1} \) preserving \(R \), of order \(M \) and such that \(P_i \) is of homogeneous strength \(M - i \) for \(i = 0, \ldots, N - 1 \). Applying Theorem 3.3 there exist m.d.o's \(Q_0, \ldots, Q_{N-1} \) preserving \(R \), of order \(M \) and such that \(\text{str}(Q_i) = M - i \) for \(i = 0, \ldots, N - 1 \).

Now, let \(T \in \text{Diff}(R) \) be of order \(\geq 2M \) and suppose \(\text{ord}(T) - \text{str}(T) \equiv K \mod N \). Then, take (by 3.4) \(T' \) a m.d.o preserving \(R \) such that \(\text{ord}(T') = \text{str}(T') = \text{ord}(T) - M \). Consider \(Q_K \circ T' \). Now \(\text{ord}(Q_K \circ T') = \text{ord}(T) \) and \(\text{str}(T - Q_K \circ T') \equiv 0 \mod N \). Thus there exists \(h \in R \) such that \(\text{ord}(T - hQ_K \circ T') < \text{ord}(T) \) so that \(hQ_K \circ T' = \bar{T} \) in \(\text{GrDiff}(R) \).

If \(\text{ord}(T') \geq 2M \), we repeat the above procedure. It is clear, thus, that operators of order \(< 2M \) generate \(\text{GrDiff}(R) \) as an \(R \)-algebra.
4. We will illustrate by two examples.

4.1 \(f_1(t) = t^2, f_2(t) = t^3 \). Here \(R = \{ \sum_{i=0}^{n} a_i t^i | a_1 = 0 \} \), \(X = \{ x, y \in \mathbb{C}^2 | x^3 = y^2 \} \).

The operators

\[
D_1 = \frac{d^2}{dt^2} - \frac{2}{i} \frac{d}{dt} \quad \text{and} \quad D_2 = \frac{d^3}{dt^3} - \frac{3}{i} \frac{d^2}{dt^2} + \frac{3}{i^2} \frac{d}{dt}
\]

preserve \(R \). They represent tangent vectors which are a basis for the Zariski tangent space to \(X \) at \((0,0)\).

Since \(\text{ord}(D_1) = \text{str}(D_1) = 2 \), and \(\text{ord}(D_2) = \text{str}(D_2) = 3 \), they generate

\[
\frac{\text{GrDiff}(R)}{\sqrt{\mathcal{M}}}\text{GrDiff}(R).
\]

4.2. \(f_1(t) = t^4, f_2(t) = t^5 + t^6 \). Here \(N = 12 \).

As a special \(\mathbb{C} \) basis of \(R \mod t^{12} \) (as in Lemma 3.3) we have \(v_1 = t^4, v_2 = t^5 + t^6, v_3 = t^8, v_4 = t^9 - 2t^{11}, v_5 = t^{10} + 2t^{11} \). \(\bar{R} \) is the ring associated to \(t^4, t^5 \).

There is no m.d.o preserving \(R \) of strength 4 and order 4. For suppose \(P \) were such a m.d.o and \(P = P_4 + P_3 + \ldots \) its expansion into terms of homogeneous strength. \(P_4 \) would preserve \(\bar{R} \) and would be unique up to a constant multiple. \(P_3 \) must satisfy the equations

\[
P_3(t^4) = 0
\]
\[
P_3(t^5) + P_4(t^6) = 0
\]
\[
tP_4(t^9) = P_3(t^5)
\]
\[
2P_4(t^{11}) + P_5(t^{10}) = 0
\]
\[
tP_4(t^{14}) = 2P_3(t^{14})
\]

These are five linearly independent equations for the coefficients of \(P_3 \), so it must be of order \(\geq 5 \).

In fact, the minimal order operator \(P \) such that \(P \) preserves \(R \) and \(P(t^4) \) is nonzero at zero is of order 5. Thus \(P \) is an operator of minimal order which represents a tangent vector; however, \(\text{ord}(P) > \text{str}(P) \).

4.3 Kantor [4] and Stutz [6] studied differential operators on certain analytic spaces of dimension \(> 1 \). A detailed study of differential operators on the curves \(x^b - y^a = 0 \) was made by Jaffe [3]. With regard to the specific questions discussed in this note we point out that \(A \) is the local
ring at $(0,0,0)$ of analytic functions on the \(\{ x, y, z \in \mathbb{C}^3 \mid xy^2 - z^2 = 0 \} \), then \(\text{GrDiff}(A) \) is not a finitely generated \(A \)-algebra whereas \(\text{Diff}(A) \) is a finitely generated algebra.

Note: It has been brought to the author's notice that similar results to the ones in this note, in particular Corollary 3.6, have been announced by Jean-Pierre Vigué, \textit{C. R. Acad. Sc. Paris}, t. 274 (March 1972), 895–899.

REFERENCES

