Founded under the charter of the university dated May 18, 1891, the library was established in 1913. Its present facility was dedicated November 4, 1949, and re-dedicated in 1969 after a substantial addition, both made possible by gifts of Ella F. Fondren, her children, and the Fondren Foundation and Trust as a tribute to Walter William Fondren. The library recorded its half-millionth volume in 1965; its one millionth volume was celebrated April 22, 1979.

Board of Directors, 1982-83

Mr. Thomas D. Smith, President
Mr. John T. Cabaniss, Vice-President, Membership
Mrs. Victor H. Abadie Jr., Programs
Sally McQueen Squire, Secretary
Mr. John F. Heard, Treasurer
Mr. Walter S. Baker Jr., Immediate Past President
Dr. Samuel M. Carrington, University Librarian (ex-officio)
Dr. William E. Gordon, University Provost (ex-officio)
Dr. Ronald F. Stebbings, Chairman, University Committee on the Library (ex-officio)
Virginia Kirkland Innes, Executive Director (ex-officio)

Members at Large

Mr. John Baird III
Mr. Berry D. Bowen
Mrs. David J. Devine
Mrs. Katherine B. Dobelman
Mr. Karl Doerner Jr.
Dr. Wilfred S. Dowden
Mrs. J. Thomas Eubank

Ms. Connie Ericson
Mr. Frank G. Jones
Dr. Larry V. McIntire
Mr. H. Russell Pitman
Dr. Bill St. John
Dr. F. Douglas Tuggle
Mrs. Mary Woodson

COVER: Pen-and-ink drawing of Dr. Salomon Bochner commissioned by Alumni Association for Alumni Institute, March 24, 1981.
Dear Friends,

For more than a decade, the members of the Rice Community had the distinct privilege of knowing and being associated with one of the greatest thinkers of the twentieth century, Salomon Bochner, the first Edgar Odell Lovett Professor of Mathematics. As President Norman Hackerman recently remarked, Dr. Bochner was representative of the quintessential man.

Indeed, Salomon Bochner embodied all of the good qualities innate in mankind. For those of us who had the honor of knowing him, we were most influenced by his love and concern for his fellow man. A gentleman scholar, whose intellectual interests and endeavors transcended traditional academic disciplines, he embraced fully the Greek meaning of philosophos, "the love of wisdom."

Dr. Bochner was a strong supporter and ardent user of the Fondren Library's collections. In recognition of one of Rice's most renowned scholars, President Hackerman established on behalf of the Board of Trustees, Faculty, Staff and Students the "Salomon Bochner Collection in the Sources of Science." Comprised of 139 titles in 245 volumes, this series reproduces in facsimile the key works germane to the understanding of the growth and evolution of science in Western Civilization, from antiquity to the twentieth century. Also, through the generosity of his daughter, Deborah Bochner Kennel, the Fondren's Woodson Research Center is beneficiary of Dr. Bochner's personal papers, manuscripts and much of his personal library.

It is most fitting, therefore, that this issue of the Flyleaf be dedicated to the memory and contributions of Salomon Bochner. His position in the world of mathematics and history of science is without peer, and his absence leaves a void in our lives which cannot be filled.

Samuel M. Carrington, Jr.
University Librarian
FIRST ANNUAL BOCHNER LECTURE

Albert Van Helden

One of the last contributions Salomon Bochner made to the intellectual life at Rice University was the foundation of an interdisciplinary institute for the history of ideas. In defining its role on the Rice campus, he had in mind the German word wissenschaft, which embraces studies in the humanities as well as the sciences. Since wissenschaft is not easily translated, however, Bochner opted for a Latin word scientia (literally “knowledge”) as the title for the new institute. This appellation he thought sufficiently flexible to accommodate scholarly activities in various fields related to the history of ideas.

At the time of Bochner’s death, in May 1982, SCIENTIA had five members: Bochner himself; Albert Van Helden (history), whose field is the history of science; R. O. Wells (mathematics), whose specialties are several complex variables and mathematical physics; Jane Chance (English), an expert in medieval literature; and Mark Kulstad (philosophy), a Leibnitz scholar. Also, the first off-campus Fellow, Loyd Swenson (history) of the University of Houston, a Rice alumnus, had been appointed. Under the directorship of Raymond Wells, the four current members of the institute made a small change in the name of the organization, so that now it is entitled “SCIENTIA: an Institute for the History of Science and Culture founded by Salomon Bochner.” During the current academic year the membership will be expanded to at least six. The appointment of several more Fellows is also being discussed.

SCIENTIA sponsors functions such as colloquia, formal lectures, and, in the future, symposia. All four current members have given colloquia in the past few months, and in February, SCIENTIA co-sponsored with the Rice English Medieval Club a very successful talk by Alfred David (English) of Indiana University, entitled “The End of the Miller’s Nose: Directions in the History of Physical Stereotypes.”

It had been Bochner’s aim to have one formal public lecture each year, and in September 1981, Clifford Truesdell of Johns Hopkins University delivered the first such lecture. In memory of Salomon Bochner, SCIENTIA and Rice University have now instituted an annual “Bochner Lecture.” Professor I. Bernard Cohen, Victor S. Thomas Professor of the history of science at Harvard, was invited to deliver the first Bochner Lecture, and on February 23, 1983, he spoke on “The Newtonian Revolution in Science” to a full house in Sewall Hall.

This lecture was chosen as an appropriate occasion for the presentation of a gift to the library in memory of Salomon Bochner. As a tribute to Bochner’s contributions to the intellectual life of Rice University, President Hackerman presented Samuel Carrington, University Librarian, with three symbolic volumes in the series, “The Sources of Science,” reprints of science classics from the past. This series will strengthen Fondren’s holdings in the history of science. Deborah Bochner Kennel, Professor Bochner’s daughter, also participated in the ceremony.

I. Bernard Cohen delivers the first annual Bochner Lecture.
SAalomON BOCHNER

The following is from an article in the Houston Chronicle of November 9, 1969.

Ten months after he had retired to join the faculty of Rice University, Dr. Salomon Bochner was summoned back to Princeton University for signal recognition . . . an assembly of international scholars brought together for a three-day symposium on problems in mathematics as they had been explicated in the writings of Dr. Bochner from 1932 through 1969. [Later . . . the W.A. Benjamin Company, New York publishers . . . issued] a 617-page volume, Selected Mathematical Papers of Salomon Bochner, further honoring the man recognized by colleagues as "one of the greatest mathematicians of the twentieth century."

The book touches scarcely one-fourth of Bochner's researches. It was assembled by a committee appointed during the symposium to produce a work historically representative of Bochner's pioneering contributions to mathematics. It is significant that these papers are reprinted without change as they first appeared.

But who is Bochner? He came to Rice to accept the endowed Edgar Odell Lovett Chair of Mathematics and became chairman of the department . . . [after] thirty-five years at Princeton. Dr. Harold W. Kuhn, chairmain of mathematics at Princeton [in 1969] said of Bochner, "He is one of the greatest living mathematicians, a man of extreme originality and versatility. He has a profound interest in history and the history of mathematics, which is a rare thing in a research expert. Above all, he is a great teacher"

Born in Cracow, Austria-Hungary [now Poland], on August 20, 1899, Bochner obtained his Ph.D. at twenty-one from the University of Berlin and did continuing graduate studies at Copenhagen, Cambridge and Oxford before becoming a lecturer at the University of Munich in 1926. There he remained until his flight to the United States in 1933.

The scope of his knowledge is catholic rather than constricted and he is as much a humanist as a scientist, as much philosopher as he is historian. "Mathematics," he insists, "is not an isolated discipline (but) reaches into other areas of knowledge as an integral, skeletal part of these areas for their own benefit." Bochner often functions as a humanist. He was one of seven on the editorial board of Scribner's Dictionary of the History of Ideas He is a former member of the Institute for Advanced Study at Princeton and he was associate editor of McGraw-Hill's Encyclopedia of Science and Technology.

He walks with authority in many areas and minces no words on what he observes He abhors violence in any form and particularly in its manifestations on campuses across the nation.

"We are a private university here," he says. "We have no walls, no gates, except the symbolic, decorative gates. The university has no defense against those who would move in and tear it down. And it is a wonderful institution, one that, happily, looks back in its traditions to medieval ages — and this is good. There are things about the university which are old-fashioned and they should continue to be so." Bochner is old-fashioned in approach to his students, with whom he has no difficulty communicating. An assistant professor has been assigned to discuss with any student his personal or scholastic problems and Bochner himself is always accessible.

Bochner believes the university has the obligation to provide responsible guidance for the student, to lead rather than to drive him along the path to knowledge. "There is no short cut, no instant knowledge. If we attempt to start the student fresh from the present, if we deny him the body of knowledge of the past, we confuse him. There should be the inculcation of the ideas of the scholars of antiquity to provide perspective. Otherwise, inductive learning is not possible."

He points out that today's space achievements were made possible only through knowledge provided modern science by scholars of the past. "The first confirmation of Newton's law relative to movement of the planets came in the twentieth century with our Moon shots, he says. "Then it was found, for the first time, that man-made satellites did, indeed, move according to the law of Newton, although in the eighteenth century this law was accepted as presumptive. But until now the law was a feigned hypothesis."

Dr. Salomon Bochner, during his Rice years.
In a ceremony preceding the first Bochner Lecture, Librarian Samuel Carrington expressed gratitude to Deborah Bochner Kennel for the donation of her father's papers to the Fondren Library. President Norman Hackerman also announced the Bochner Memorial gift to the library.

Very much a man of the world, Bochner looks to the future and shudders at the prospects inherent in the population explosion. "Urbanization and the Vietnam crisis may stand as the two tragedies of the twentieth century when history is made"

EDITOR'S NOTE:

Before his death on May 2, 1982, Dr. Salomon Bochner received countless awards and honors, among which was the prestigious Leroy P. Steele Prize from the American Mathematical Society in 1979. He had been vice-president of that group for three years and was a member of the National Academy of Sciences. At his memorial service held in the chapel at Rice, Dr. William E. Gordon, University Provost, said, "What did Sal Bochner contribute to the University? He gave himself to the University . . . he taught us, or reinforced in us, the real joys of the academic life . . . Regardless of the result, he proved that the most serious academic work could be savored, could be a pleasure in the deep sense . . . he gave new meaning to the term 'breadth' in scholarship." Colleagues and a former student joined in paying homage to a man not only admired but also much beloved. Professor William Veech, chairman of the mathematics department and close associate, told a story which concerned a banquet attended by distinguished mathematicians on the occasion of Bochner's seventieth birthday. After listening to a succession of laudatory speeches, the honoree rose and confided to the assembly that he had but one regret in his life, that he had never ridden the trolley car that ran between Princeton and Lawrenceville, New Jersey in the 1930's! In Dr. Veech's own words, "While not presuming to speak for the great man . . . the evident joy of his Rice experience suggests that by today, Bochner's list of missed opportunities has not grown."

The following lecture on Einstein, presented by Dr. Bochner in March, 1979, offers insight into two remarkable human beings.
A LECTURE ABOUT EINSTEIN

Albert Einstein\(^1\) was universally lionized during his lifetime, perhaps more so than any scientist in modern times. It is hard to describe the storm that broke loose around him in Berlin, where I also lived, after World War I, in late 1919, when his theory of relativity began to be talked about, everywhere, anywhere, anytime, in academic halls and in beer halls. The waves of the storm spread quickly all over the world. Newspapers talked about him and reported on his movements for years on end.

Nothing detracted from his standing. In Berlin it was taken for granted that his mannerisms were all publicity devices. His wearing long hair was jocularly ascribed to a competition against the similarly coiffed playwright Gerhard Hauptmann, 1912 Nobel Prize winner for plays on social themes. Around 1926 an older mathematician who had observed him over many years remarked to me that Einstein was his own best and most watchful publicity agent. But none of this was intended to impugn his greatness, nor did it affect the adulation of him.

In this country the *New York Times* began to report on him in 1920. In 1926, Mrs. Josepha Wheeler, daughter of the eminent American astronomer Simon Newcomb, solicited from Einstein, then in Berlin, a statement about her father's work to be deposited with his papers in the Library of Congress. Einstein did respond with a statement, praising Newcomb's work towards explaining deviations of planetary orbits from their elliptical Keplerian paths due to gravitational interference from other planets.\(^2\)

In 1929 Einstein wrote a paper on Unified Field Theory, one of several attempts, none of enduring outcome, to force all physics into the mathematicophysical mold of his theory of gravitation. As I remember it, the American newsmen in Berlin burned up the transatlantic cables transmitting the entire text of the paper to the United States, intricate formulas and all. This account is from my memory. But it is a documented fact that a trustee of Wesleyan University purchased the manuscript directly for deposit at the Olin Library at Wesleyan.

Abraham Flexner, the first director of the Institute for Advanced Study in Princeton, liked to regale young people with stories of his exploits. I was sometimes present, being a member not of his Institute but of Princeton University. Sometime in 1934 he told us how he persuaded the Bamberger Family of Newark, New Jersey, to come across with a donation to found the Institute. It was in 1932, and nobody was willing to make money commitments. Finally the patriarch of the clan blurted out: give us Einstein and you can have your Institute.

And I do remember that probably late in 1931, newspapers in Germany reported that henceforth Einstein would be dividing his time between his position in Berlin and a lush academic sinecure in Princeton, U.S.A.

When late in 1933 he was sailing from Europe for permanent residence here, at the pilot stop in New York harbor two trustees of the Institute took him off the steamer in a tugboat for quick processing in the port.

Finally, during World War II, at a war bond rally in Kansas in 1944, a manuscript copy of Einstein's 1905 paper on special relativity was sold for six million dollars and deposited in the Library of Congress.

Why Einstein should have received such public attention and esteem is, I think, an intriguing problem in mass psychology. After all, Einstein did not write a treatise like Darwin's *Origin of Species*—which, as I remember it, the contemporary *New York Times* called a book in a century—or, if this be too controversial, like Newton's *Principia* (that is, *Mathematical Principles of Natural Philosophy*), the like of which has not been created before or since. For instance, the *Principia* predicted that some day a projectile would be launched with a sufficiently high velocity to make it an earth satellite. This was seriously spoken of in the eighteenth century, even though it came true only in the middle of the twentieth century. I do not think that there is anything like this in the writings of Einstein. In a splendid paper of 1916 Einstein recognized the existence of *stimulated emission* that decades later became a pillar of the theory of lasers. But the paper had no predictive features.

Newton also wrote a book called *Opticks* which, according to Marjorie Hope Nicolson, inspired sages and poets through the length of the eighteenth century and beyond.\(^3\) Einstein wrote nothing of the kind. The *Opticks* is based on the resolution of white light into the visible spectrum from red to violet, together with related experiments. Newton performed all his experimental feats himself, as did other great physicists after him. Maxwell, for instance, however eminent a theoretician, was also the first professor of *Experimental Physics* at Cambridge University. But Einstein never performed an experiment in his life. Einstein spent twenty-two years at the Institute for Advanced Study, but he never formed a school of modern physics, whereas Niels Bohr directed such a school of world renown.

Einstein never coined an original name for anything. He created the elementary particle "photon," calling it a "quantum of light." The beguiling name photon was coined by somebody else. Even his "principle of relativity" was not his by name, but Poincare's. Heisenberg, at the age of twenty-four or twenty-five, proclaimed an "Uncertainty Principle" that scared the daylight out of some philosophers. Einstein never came up with anything so suggestive. I know only one aphorism of his worth remembering: "As far as the laws of mathematics refer to reality they are not certain, and as far as they are certain they do not refer to reality." Interesting as it may be, it does not have half the punch of the cognate saying that "mathematics is the field of knowledge in which nobody knows what it is that he is talking about," which I think is due to Bertrand Russell.

The Fylle& Page 5
An awareness of the fact that Einstein was, after all, a product of a period is beginning to seep through. The National Academy of Sciences in Washington, D.C., has recently decided to erect an out-of-doors monument to Einstein. I have no quarrel with this at all. Einstein became not only an American citizen, but also an American property. After World War II many immigrant celebrities started dashing about all over Europe, usually ending up in Switzerland, where at that time they could get creature comforts approximating those in the United States. Einstein, however, stayed put in Princeton, officially at any rate, and the community, in all its strata, was very appreciative of this. When he died in the Princeton Hospital, right at home, a blanket of sadness spread over the town. Thus a monument to him is well deserved. But the prospectus of the Academy soliciting contributions towards the erection of the monument is surprisingly circumspect. It bills him as the greatest theoretical physicist of the twentieth century, as if shunning a comparison with a nineteenth-century physicist like Maxwell, or with a twentieth-century scientist other than a physicist—say a Sigmund Freud, who would be formidable competition indeed.

Still, with all possible qualifications duly noted, Einstein was a person of really great impact, not only on physics but also on philosophy, as even a schematic presentation of his achievements ought to put beyond doubt.

Einstein's span of high creativity extended from 1900 till 1920, when he was forty-one, or, if one wants to include the Bose-Einstein statistics, till 1924 when he was forty-five. This seems typically to be the approximate productive span for persons of his caliber. Maxwell died at forty-eight, and Riemann, but for whom there would be no Einstein gravitation, at less than forty. Gauss managed to lay the foundation for Riemann's pre-Einstein memoir when he was approaching fifty. Newton published his Principia at forty-five, and his contemporary Spinoza died at forty-five. Galileo crested at the age of forty-six with his Starry Messenger, which created the telescopic depth of the universe. His contemporary Johannes Kepler terminated his high creativity with his third planetary law at about forty-seven, and Galileo's and Kepler's contemporary William Shakespeare retired from London to Stratford at Forty-eight. Before Shakespeare, Giordano Bruno was incarcerated by the Inquisition at the age of forty-four, and long before him Thomas Aquinas amassed a shelf of writings amidst an active career in church policy before dying at the age of forty-eight or—nine. There were notable exceptions though: Miguel de Cervantes, a contemporary of Shakespeare, was already fifty-eight when the publication of Don Quixote plunged him into immortality. Also, Immanuel Kant of Königsberg was about fifty-eight when the publication of the Critique of Pure Reason made him a successor—some would say the successor—to Plato of Athens.

Einstein's creative span from 1900 till 1920 is neatly divided in two halves by the First Solvay Congress of 1911. These Congresses, founded by the manufacturer of sodium carbonate Ernest Solvay, meeting in Brussels, and having about twenty-five participants each, are replete with familiar names, and the first was particularly star-studded. Einstein, at thirty-two, was the youngest participant, and James Jeans, at thirty-four, the next youngest. These two "juniors" were charged with reporting on the bad state of health of the Dulong-Petit Law about specific heat, with Jeans presenting the patient's past history in the nineteenth century when ministered to by Maxwell and Boltzmann, and Einstein explaining the fancy remedy, quanta and all, prescribed by himself in 1907. It leaps at the reader of the Proceedings of the Congress that luminaries like Lorentz, Poincaré, Planck, Nernst, and W. Wien were profoundly impressed with Einstein, and were so indulgent with him. He talked a great deal, and butted in at will. And the luminaries beamed at him, at whatever he said. In return, Einstein was quite deferential in letters to them (less so in letters about them).

Poincaré died soon after, which made it the easier for Einstein to outshine the others within a decade, shining them out of existence, as it were. In a way, they did it to themselves. Only two years after the Congress, in 1913, Planck, speaking for the German delegation to the Congress, told some Prussian authorities that Einstein was a physicist in a century, and must be brought to Berlin. He was made both a salaried member of the Prussian Academy of Sciences with the privilege of lecturing at the University (the two buildings are, or were, close by) and the director of a separate research Institute of Physics whose creation was hastened by his appointment. All this at the age of barely thirty-five, in the spring days of 1914 before the outbreak of World War I, even before Einstein was ready to present his pièce de résistance, the theory of General Relativity and Gravitation, which, incidentally, as some rumor had it, Planck abhorred.

Einstein did indeed lecture at the university, making it a platform for the propagation of the faith in relativity and himself. I attended such a lecture in 1919, sixty years ago, and I vividly remember part of what he said, and certainly how he said it. From time to time, in any lecture or debate, he would look up above the audience, as if actually communing with the powers above, but letting the audience be witness to it.

In content, what I remember most about the lecture was a sharp upgrading of the stature of Michael Faraday. Nowadays there is a Newton-Faraday-Maxwell axis, and I think that Einstein contributed greatly to its creation. At the beginning of the century Faraday was not included in such an exalted company. Even in the late 1930s an Oxford don, a humanist visiting the Institute for Advanced Study at Princeton, told me how enlightening it was for him to learn in Princeton of the great esteem that Faraday enjoyed in the U.S.A. Einstein in his lecture gave Faraday much credit for the creation of the electromagnetic field, even if the lines of force in the field had the material quality of strings or even cables for him.

But now for Einstein's real achievements.

In 1905, at twenty-six, he published, in one and the same volume of the Annalen der Physik, three papers, each now enshrined in fame. In the first paper he introduced, but for the name, the universal photon as an elementary particle much as it is understood today. Its only rival was the electron, which, although long known, had been institutionalized as a kind of elementary particle in our present-day sense about ten years before. The most notable point of the paper is that Einstein satisfactorily explained the way in which these two
rivals interact in the so-called photoelectric effect. It was this paper that brought Einstein the Nobel Prize in 1921; at least, no other achievement is singled out in the citation. Using the technique of this paper, Einstein began in 1907 to repair the Dulong- Petit law. He carried the repair only halfway. Einstein himself pointing out an imperfection. Debye and others completed the job.

In the second paper of the same volume of the Annalen, and in some follow-up papers, Einstein gave a satisfactory theoretical account of Brownian motion, which is the random motion of particles suspended in liquids. The magnitude of this achievement is not diminished by the fact that, independently of Einstein, Marian Smoluchowski in Cracow did something similar at the same time, and that subsequent theories of Brownian motion, some quite elaborate, were on a different level of mathematical expertise.

The third paper in the volume was the noisily celebrated special theory of relativity—universally celebrated, that is, till 1953, when Edmund Whittaker, in a masterful history of physics, rudely stripped the paper of celebrity and reduced it in rank to a glorified footnote to what Whittaker called “the theory of relativity of Poincaré and Lorentz,” but in the matter of general relativity and gravitation he left Einstein’s standing intact, offering, in fact, an excellent sketch of the theory. The anguish of Einstein partisans notwithstanding, most physicists are tending to acknowledge that Whittaker is not entirely wrong, at least in the sense that there were several origins of the theory and that Einstein was a relative late-comer.

For my part, I do assign to Einstein an outstanding share in the discovery of special relativity, because Einstein’s paper contained a philosophical blockbuster that had a very salutary effect when it exploded, somewhat belatedly in 1919, on the agora of philosophers and bystanders. It was the philosophical question of what it means to say that two events at different locations in space are synchronous, and how one “verifies” this, the matter of verification being of course the heart of the question.

Surprisingly, philosophers did not resent the intrusion onto their turf by a professional outsider. Many of them were exhilarated, on the Continent at any rate. None dared to spur it, “lightweight” as it was when compared to customary “heavy” stuff like ethics, aesthetics, mind-and-body, existence of God, transcendental knowledge, etc. Some of them might even sneak Einstein’s question into their so-called “Introduction” to philosophy, a grab-bag of what a budding philosopher ought to become familiar with. Einstein’s kind of question was not quite unprecedented. Immanuel Kant once asked whether it is meaningful to say that a treasure is buried in the Sahara in a location inaccessible to humans. But these were marginal questions in exotic settings. Nothing can be more common than wanting to know whether two events in different cities have occurred at the same time, however, and, if they have, wanting to establish this in a manner that will stand up in court.

I can cite a witness to the impact of the question. It is Sir Karl Popper, widely known for his book The Open Society and Its Enemies. I remember reading in an autobiographical account of his that it was Einstein’s special relativity, especially the question of synchronicity, that made him into the philosopher he has become, except that it suited his philosophical temper to feature not “verifiability” but “falsifiability,” as a criterion for the validity of any theory, that is.

Formally, special relativity is an alternate to Newtonian mechanics, but different from it. It contains a positive constant c, and Newtonian mechanics arises as a limiting case by letting c go to infinity. By pedigree, however, special relativity was an outgrowth of and even a part of electrodynamics. Lorentz and Poincaré so viewed it, and they included the problem of synchronicity somewhere in their context, as a problem of physics. But Einstein was the first to make it clearly into a problem of knowledge in general. I find that Einstein always thought in this manner. This was his modus operandi throughout his entire career, scientific and other, usually for the good, but not always. It made him extremely apt to be successful for the present, but less enduring as a prophet. We will return to this distinction later.

Einstein was what I venture to call an “essentialist.” He had the drive and capacity to single out, in any scientific situation under purview, what is really essential to the context, not only neutrally, but also in the hierarchical order of its components, and in its scope.

Einstein arrived at the universal photon in this way. The name photon was introduced much later, by G. N. Lewis in 1926. As I have already stated, Einstein himself spoke of a “quantum of light,” because he sifted its existence out of Planck’s quantum theoretic explanation of black body radiation. In fact, in the 1916 paper mentioned before, by penetrating through to essentials, Einstein even gave the simplest proof yet known for Planck’s radiation formula from Planck’s own premises.

Or, consider the famous formula E=mc². It was actually found by Poincaré, but presented by him without derivation or explanation. Einstein, however, after proving it, gave it the universal interpretation that if a physical system, any system, loses energy, then it also loses inertial mass. The amount of that loss is E/c², with the implied suggestion to a later generation that, conversely, by atomic or nuclear disintegration of mass a corresponding amount of energy can be liberated. This is precisely what happens in atomic fission or thermonuclear fusion. Because of this universal interpretation, which was heavily emphasized in the so-called Smyth Report, the formula has been firmly attached to Einstein, irrespective of its origin in Poincaré, who had stated it in an electrodynamic context.

Even Einstein’s gravitation theory, his most original creation ever, was not independent of an essentialist provenance, in Einstein’s own pedigree for it, at any rate. He packaged it inside something he called general theory of relativity, this in turn was an essentialist elaboration of something called special theory of relativity, which was designed to feature the fact that light velocity is maximal and constant. And this special theory in turn was an essentialist shell in which to house something that had been created by Poincaré, a principle of relativity, expressly so named by him. This principle had its debut right in this country, on September 24, 1904, when Poincaré presented it at a Congress of Arts and Sciences...
Assembled at the World Exposition in St. Louis. As if this route were not devious enough, on the road from the principle of relativity to gravitation Einstein built a major way station called the Principle of Equivalence, and a secondary one, a Principle of Covariance, both mandatory stopovers; the stopover at Equivalence involved an eerie plunge in the so-called Einstein Elevator.

All this sounds very involved. Nevertheless, the magnitude of Einstein’s achievement is such that it can be savored from outside without entering into a maze of technicalities at all.

Gravitation is the oldest and most ubiquitous phenomenon, and it is always accessible to observation. Objects are falling and moving all the time and in all places. But explaining gravitation has always been a forbidding problem. Even today the innermost structure of gravitation is more arcane than anything else in physics, and if you overhear a physicist say that something is only probably so, then more likely than not he is talking about gravitation, or something involving gravitation. Thus, some physicists say incessantly that there “probably” are gravitons (elementary corpuscular particles of gravitational force), as if by saying this often enough the gravitons would indeed show up suddenly.

Aristotle proposed a theory in which each body in the universe has its natural place, and if it is not located in it, it seeks to reach it. There was no effective rival theory till the end of the sixteenth century, although dissatisfaction with Aristotle’s theory had been on the increase since the late Middle Ages. In the early seventeenth century Galileo offered a satisfactory explanation, but only for terrestrial events. His paths of falling bodies were even parallel, as if the earth were flat. At the same time Kepler was seeking to explain gravity’s cosmic manifestations. With his powerful intuition he half-guessed the three planetary laws, but an underlying rationale eluded him. Newton then found one, on a comprehensive scale.

The simplicity and grandeur of Newton’s theory fascinated lay intellectuals like Voltaire and unmotivated philosophers like Kant. But professionals in astronomy and mechanics had cause to view it soberly, even disenchanted. When trying to regulate the motions of planets, moons, and comets by the new theory, they encountered difficulty after difficulty. As soon as one difficulty was seemingly over, a new one demanded attention. Therefore there were no discouraging side-glances at Einstein when—after some attempts by others—he started from the very roots, building up something very different, even if it was in close proximity to Newton’s ideas.

From our retrospect, the working mathematics needed for any mathematically controlled theory of gravitation was in Newton’s time still in its infancy, and there was only one space form available in which to create it, the Euclidean. That was all that Newton had to work with, and he made the most of it. Euclidean space happens to be infinite by well-intuited mathematical notions of infinitude. But this does not mean, as some philosopher-historians volubly proclaim, that Newton was intellectually motivated by a metaphysico-theological drive for infinitude of space. Even the fact that Newton viewed his Euclidean space as “absolute” has no such implication for me. If closed Riemannian space had been mathematically accessible to Newton and he had used such a space instead of the standard Euclidean type, then philosopher-historians would have undoubtedly adjusted his alleged metaphysico-theological drive accordingly.

From motives that nobody can fathom, after 1911 (and even earlier) Einstein was driven to erect a theory of gravitation of his own, a genuinely new one. By chance and circumstances he fell in with a body of elaborate mathematics that had come into being long after Newton, in the course of the nineteenth century. As if by a predetermined harmony, it was highly fit to articulate Einstein’s desiderata from physics and give suitable responses to them. It was the so-called Riemannian geometry, that is, the multidimensional differential geometry mainly of Riemann, but indispensably also of Christoffel, Beltrami, Ricci, and Levi-Civita. The mathematician Marcel Grossmann, an old acquaintance of Einstein’s and a faculty colleague at Zurich, was Einstein’s mentor and even co-author in a few papers. But the final theory, and above all the inspiration, drive, and passion of purpose, were wholly Einstein’s. At any rate, there are no reports of Grossmann having had the sense of a brush with immortality followed by failure due to Einstein’s ill-will. Einstein did
exhaust his store of mathematical knowledge, but any physicist has the privilege of doing so with any mathematician. Einstein was after big game, and he applied whatever hunting laws were legitimate.

When mathematicians became aware of this activity in a highly charged mathematical area, their curiosity was aroused, and David Hilbert, the greatest among them, set out to rob Einstein of his prey. In defense, or rather counter-attack, Einstein tore the center piece out of his kill, left the denuded carcass for mathematicians to argue over, dashed off into the promising field of cosmology, and very quickly inaugurated a novel kind of cosmological speculation of which he became the father or godfather for the rest of the century. This was a glorious evasive tactic, and it was Einstein's all-overshadowing enterprise, uniquely his, although mathematicians hesitated to follow Einstein, and even physicists were skeptical. I heard it said that Niels Bohr warned his followers to stay out of cosmology until problems of microphysics have been solved. This is like saying that one should defer space exploration until urban slums have been cleared.

Again, the effect of these developments on philosophy was incalculable. Since Giordano Bruno in the sixteenth century, the space problem involved in astronomy and cosmology was philosophically beset by an utterly sterile yes-or-no question: whether space is finite or infinite and also what infinitude of space means cognitively. Some philosophers of science are clinging to this question even today. Aristotle was naïvely condemned for finitude, and Bruno was even more naïvely hailed for infinitude. Those in the know, the true cognoscenti, were mostly hedging. Copernicus hedged—and this was one of his finest features; and so did Galileo, from indecision. Kepler inclined towards finitude, but less from siding with Aristotle than from disapproving of Bruno, whose brand of infinitude he considered astrophysicaly reckless, and rightly so. Descartes created his own wrinkle and hedged by making his so-called extension (extentions, étendue) neither finite nor infinite but indefinite, which, in its inventiveness, went back right to Anaximander. Newton in the Principia was fully hedging, avoiding a decision throughout the three editions. When the rector Richard Bentley in a pesky letter tried to force Newton's hand by making him agree that a universe of finite matter might suffer gravitational collapse, Newton hemmed and hawed and counter-suggested that such a universe might remain stable by arranging itself in what is nowadays called gravitational clustering. And Immanuel Kant weaseled out of the situation some of the time by devising an antimony that if the world is infinite it is finite, and if finite infinite. Among medieval schoolmen such antinomies must have been quite common. Any trained schoolman could probably make up one on any contrariety offered. Kant himself used several.

To my surprise, Ludwig Wittgenstein was quite conventional in this matter. The logical space of his Tractatus is, by parenthetic remark, infinite. Commentators notwithstanding, this infinitude serves no purpose, but is the standard philosophical presumption since Giordano Bruno.

Einstein changed all this by abolishing the traditional presumption that the universe is the infinite Euclidean space or a finite portion of it. Instead he approached the outlook of Riemann that almost any topological manifold should be eligible to begin with. A compact manifold, for instance, offers a neat compromise between finite and infinite, and Einstein gave attention to the simplest such case, namely, the case of a sphere. Also, it is not necessary to elect one fixed space and adhere to it. One may envisage a family of spaces and examine how observational and speculative data are compatible with all of them or some of them. As a consequence, even the problem whether the universe had an origin in time, in a cosmically meaningful gauge of time, or has been in an eternal state of existence, appeared in a very new light. All in all, as I remember it, one felt one was finally free after centuries of constriction in a straitjacket of presumptions.

Of course, curved spaces were introduced in the nineteenth century, long before Einstein. However, the renowned hyperbolic space of Bolyai-Lobachevsky is topologically not different from Euclidean space and made no immediate impression on physics, or even on mathematics. But the elliptic space of Riemann did draw a quick response. Soon after Riemann's memoir became known in English, Simon Newcomb, whom I have previously mentioned, in an 1877 paper in the prestigious Crelle Journal speculated on how elliptic and even projective space would be detectable by human or astronomical experience. Also, in 1900 an astronomer, Karl Schwarzschild, went into greater quantitative detail. Yet these papers were of no enduring consequence, because they dealt with the same physics as before, only in different spatial frameworks. But in 1916 the same Schwarzschild, in response to the latest work of Einstein, constructed a relativistic space-time model whose importance is such that Schwarzschild's name, I think, currently occurs in cosmology more frequently than Einstein's. Regrettably, he died soon after, at the age of forty-three.

A similar early contribution to relativity was made by Willem de Sitter. In addition to scoring specific achievements, he also wrote in 1932 a small general book called Kosmos. In it he makes a statement that should be emblazoned on all books in physics or astronomy. It is the statement that "Infinity is not a physical, but a mathematical concept." That is, whenever you state in exact science that some physical magnitude is infinite, then, without exception, you refer to a quantity in an appropriate mathematical skeleton of the physical context. Without a mathematical skeleton, however primitive it be, no such statement can be made. This in itself does away with many a version of the query whether the universe is finite or infinite.

In comparison to Einstein's gravitation, Newton's appears to be simplistic. But it is wrong to say that Einstein "overthrew" Newton. Einstein used mathematical resources, readied by others, that would have been inaccessible to Newton in his wildest dreams. Newton was still so ingenious
in the ways of analysis that he took it for granted, half-apologetically, that his gravitational force was an action-at-a-distance, not knowing that the simple analytical device of introducing the gravitational potential turns it into a proximity action, instantly. In fact, the gravitational potential as a dominant concept revealed itself only in the early nineteenth century in the work of Poisson. Einstein himself stated very expressly that, mathematically, what he did was to replace Poisson's one-component object by a more elaborate object of ten components.

Einstein's advance over Newton was evolutionary, and nothing but evolutionary. He overthrew Newton as little as did birds overthrow reptiles out of whom they evolved. In fact, reptiles continue to flourish alongside birds, as does Newton's gravitation alongside Einstein's, for instance, in all engineering mechanics and physics in our time. The theory and production of high velocity particles precludes special relativity, but particle accelerators in which they are generated are architecturally built on Newtonian engineering mechanics exclusively. As Niels Bohr put it in general terms: "No more is it likely that the fundamental concepts of the classical theories will ever become superfluous for the description of physical experience."

Einstein did not overthrow Maxwell either. In fact, it can be argued that special relativity was an apex achievement evolving almost rectilinearly out of Maxwell's electromagnetism, and all but completed it.

Nor can it be maintained that Einstein was superior to Maxwell in an overall sense. It is true that, except for his study of the ring of Saturn, Maxwell did not contribute directly to the study of gravitation in which Newton and Einstein excelled. But he did perform the extraordinary feat, to which there is no parallel, of fusing optics with electromagnetism. Optics, Aristotle's hé optikē, was the most venerable body of knowledge there was, and everybody who was somebody, literally everybody, felt bound to have an outlook on it — physical, philosophical, even inspirational — in late antiquity, the Middle Ages, the seventeenth century, the eighteenth century, etc. Electromagnetism, however, William Gilbert notwithstanding, was an upstart field; the Leyden jar was the perennial toy for adults. Yet Maxwell fused these two fields into one, or, at any rate, consummated their fusion. In the process he created, with posthumous assistance from Hertz and others, the awe-inspiring electromagnetic spectrum from end to end, from frequency 0 to frequency ∞. To appraise its importance one need only consider what would be left of laboratory physics, red-shift cosmology, and radioastronomy if it were not available. To offset this achievement Newton at least wrote his two tremendous works, the Principia and the Opticks, on which Voltaire could compose a beguiling commentary. Einstein wrote nothing to induce Arthur Koestler to include him among his sleepwalkers. Any survey of Einstein's scientific career, however sketchy, must also take into account activities in his later years, after the high creativity had exhausted itself, but the glory and the presence remained. His scientific later years lasted at least three decades, beginning not later than 1925, although he continued to bask in glory for another ten years or so before gradually becoming an "institution" resting on past achievements.

Einstein's later years had a regrettably negative scientific cast. If, as I have maintained all along in this essay, the nineteenth century lasted from the French Revolution and Napoleon till the end of World War I, then, in physics, Einstein was a perfect embodiment of the last two decades of it, shining brilliantly forth into the twentieth century that came afterwards, but not being able to see into it himself, as if the light that he threw into it flashed back at him, blinding his vision. In this sense Einstein was a person of the present, of the lived present and the escapist present, and it was this that made him, especially in this country, a smash hit of the 1920s.

But he was not a prophet; he did not have the passion and vision, selflessness and calling, to be one. Between 1925 and 1927, a crew of post-teens, headed by Heisenberg, Schrödinger, and Dirac, seized the helm of the ship of quantum theory, set out into uncharted waters, and, to the amaze-ment of many, started making discovery after discovery, not only of islands, but even of continents, and of new navigational principals too. This was the so-called new quantum theory. Mathematically, the "classical" equations of mechanics and electrodynamics that had emerged from the work of Newton, Euler, Lagrange, and Maxwell were radically re-interpreted, and the effect on the open mind was compelling and irresistible.

Einstein, amazingly, resisted and remained aloof. He soon became antagonistic to the new discoveries, and gradually more rejectionist. He could not or would not perceive that a momentous development in a new phase of modernity was in the making. He refused to legitimize it, in whole or in any part, and stuck to his refusal to the end, pleas by personal friends notwithstanding. There were no overt public demonstrations, no excommunications of heretics, just a hard stand-off, and an agreement to disagree reluctantly maintained.

There were debates, though, Einstein, being unbeatable in debates, scored on points, sometimes markedly. And like a medieval schoolman, he was content with this kind of victory and the applause of his retinue. But, before the God of Physics, his were illusory victories. The new quantum theory was couched in a new idiom, subdivided into dialectics. Its grammar is not yet settled, even today, to the satisfaction of all the faithful. This bespeaks strength, not feebleness. For instance, analysis was a new idiom for mathematically controlled science. It suddenly sprang up close to 1600, and immediately came up with Kepler's remarkable planetary laws. But it went through the pangs of birth, childhood, and adolescence for over two centuries before reaching the adulthood of rigor and consistency in the nineteenth century, and at first it had many more vulnerabilities than anything that Einstein could adduce against the innovations of his day. One can only pity a twentieth-century student of Kepler bent on making twentieth-century sense out of the ramblings of Kepler's New Astronomy. Yet the achievements of Kepler are here to stay. Einstein should have known that a debate

Page 10 The Flyleaf
or two will not topple something destined to stay, but, alas, he did not. Whether he could not or would not know it is hard to determine, and does not make a great difference anyway.

There were specific findings to which Einstein and a small band of other physicists were dialectically opposed, as some still are. The primary one is Heisenberg's Uncertainty Principle taken in conjunction with Born's probability doctrine. It states that in the case of an elementary particle, say an electron, its position and its momentum (that is, velocity) cannot be, both of them, observed with sharp precision at the same time. If, say, the position has been fixed absolutely, then the momentum is entirely random; joint approximations of the two have thresholds beyond which they cannot be improved, every threshold involving Planck's constant of action; and if one of the two has been observed to fall within a certain range, then the value of the other has possibilities that are given by associated probability distributions.8

These assertions about limitations of microphysical observability produced in Einstein and a handful of other physicists an emotional reaction as if a sacrament hallowing the concepts of space and time had been defiled. Also, pragmatically Einstein must have instantly perceived that this was the end of his dream of a Unified Field Theory on his terms, although for years on end he would go through the motions of trying to find one; and it was perhaps this that he would not ever forgive. While only some scientists balked, many more philosophers were dismayed. Until 1927, when Heisenberg proclaimed his Uncertainty Principle, professional philosophers took little notice of quantum theory, of the "old" theory and even the "new" one. But this apparent contravention of the customary presumption of determinism in the laws and prescriptions of physics took them by very unpleasant surprise and jolted them into attention. It was one thing say, to oppose Hegelianism to Kantianism, old or "neo-"; but it was quite another thing to call nineteenth century determinism into question. An Einstein could afford just to stand aside and pout. The philosophers could not. They had to get into the scrummage and try to explain things to themselves and others. For instance, Popper wrote a lengthy article about it, and the distinguished philosopher Ernest Cassirer, author of a string of important works, added one last book to his list, to deal with determinism and indeterminism in physics. From what I have seen, these philosophers' cogitations have not been overly illuminating so far.

From my viewpoint, their lack of success does not reflect on the new physics or the struggling philosophers, nor does it justify Einstein's aloofness. The new quantum theory is finally a creation of the twentieth century proper. It expresses the vicissitudes and anxieties, the fears and uncertainties of our age much more faithfully than did the old theory, and professional philosophy will have to find the drive and the idioms by which and in which to articulate this.

The nineteenth century knew a great deal about discontinuities, and it spiced the naïveté of the eighteenth century by inserting "additives" of discontinuities, some good-sized, into its philosophemes about continuity all around. But these added discontinuities were somehow felt to be undesirable, even if ineluctable, and continuity remained the paramount wish and expectation, even more intensely than in the eighteenth century. In fact, academics have been wont to proclaim that the nineteenth century was the century of continuities. Although Darwin's continuist evolution had to be salvaged from immobilizing rigidity by an injection of potent mutationist discontinuity, overall continuity nonetheless remained paramount. Bernhard Riemann, one of the gentles of men, in a paper of 1860 inaugurated thought patterns and even words of violence that only twentieth century technology was able to follow up. He did not have "shock wave" in his vocabulary, but he had "compression wave" (Verdichtungswelle) and "compression thrust" (Verdichtungsstoss); yet the world around him took little notice of his anticipation. Karl Marx envisaged a violent socioeconomic upheaval, that is, discontinuity, to come. But it was sociopolitically predetermined and bound to be followed by a future free of such discontinuities. And Marx bitterly fought anarchists, that is, advocates of political discontinuity as a way of life.

But as the twentieth century wanes, discontinuities are gradually advancing to a level equal in day-to-day importance to that of continuities. They are becoming severally and jointly a way of life and thought throughout, and not only in select areas. Einstein had no qualms about imputing to elementary particles two co-existent aspects, a continuous undulatory aspect and a discontinuous corpuscular aspect. And he had no objection to, but productively cooperated in the large nineteenth-century statistical theory of matter that takes into account the difficulties of truly precise observations and the mathematical inconvenience of dealing rigorously with a mechanical system of many particles. But he balked more than half of his academic life at the Born-Heisenberg statistical theory, because its statistical aspect is not marginally approximative but centrally legislative.

And yet, already decades before Born-Heisenberg, the American philosopher Charles Sanders Pierce (1839-1914) perceived, from pure thinking as it were, the possibility of an "absolute chance," that is, of genuine indeterminacy as opposed to an indeterminancy arising merely from "ignorance", be the ignorance genuine or presumptive. Pierce even installed the minor Greek goddes Tyche (chance) to be in charge of this "Tychism."9

Niels Bohr, only six years younger than Einstein, proposed to come to grips with the perplexities of twentieth-century physics by the use of a new rule of comprehension, a tricky one. He called it the principle of complementarity. By this principle there are near-contradictory aspects in the process of verifying phenomena. Yet, however contradictory, the aspects complement each other. If an experiment illumines one aspect it necessarily obscures the other. On translating from experimentation to cogitation it follows that there are theories that are both contradictory and complementary.10 As if to corroborate this, there are physicists who find that relativity theory and quantum theory are of this kind.
This sort of thinking was outside Einstein’s horizon. Before World War I certain intellectual circles hopefully expected that a common language of communication, a true Esperanto, would cure many if not all ills of the world; and Einstein’s heart was arrested in this expectation. But it is a vain expectation. In our century there is a built-in possibility for ambiguity and uncertainty that cannot be eliminated. Gödel’s theorem, when boldly transferred from Logic to Life, already points to this, whether Gödel himself would approve of such a transfer or not. Suppose the United States and Russia would agree, in the purest of intentions, to draw up a detailed comprehensive document of coexistence in the most precise language possible. By Gödel’s theorem no precaution of wording can prevent situations from arising about which it could not be decided whether they are or are not subsumable under the provisions of the document. An equally bold transfer of the principal of complementarity suggests that subsumability in all cases could be insured by composing the treaty in two versions: English and Russian, but at a price: The price is that in some instances conflicting interpretations might arise, either outright contradictory, or differing so much in degrees of clarity as to amount to a contradiction. Albert Einstein, physicist sans pareil, could not or would not see what was quintessential in the workaday doings of a younger generation of physicists all around him.

Bertrand Russell, with whom Einstein was in rapport, was not far different from him. Russell’s great disciple Ludwig Wittgenstein did have a sense of something new in the offing. His Tractatus was done at the same time as Einstein’s work on General Relativity, and fits snugly into the outgoing phase of the extended nineteenth century. After that, Wittgenstein began to grope for something radically different, towards entering into the twentieth century proper, as I see it; this is shown by the difference of style in his Philosophical Investigations, and in the Brown and Blue Books before. But he could not make it. His intellectual resources were too limited and too exhausted for such a radical reorientation.

Kafka and other existentialists, with the Sigmund Freud of around 1930 among them, did show an awareness of a rising Discontent in Civilization, but they were too continuity-bound, too conditioned and too overwhelmed by the past effusions of Schopenhauer, Kierkegaard, and Nietzsche, to recognize the twentieth-century novelty of it all.

Even Arnold Toynbee, when he tried to extrapolate from the past into the future, did not have things in focus. Too much eschatological mysticism clouded his vision. But his rival prognosticator Oswald Spengler, author of The Decline of the West, clearly described the woes of our “imperial presidency,” for instance, and he clearly foresaw the oncoming struggle between the West—which he calls the Faustian culture—and a resurgent Russia. What is more, he insisted before 1918 that in the end it will be not the Lenins but the Solzhenitsyns that will oppose us.

The contrast between the nineteenth and twentieth centuries can be epitomized by a changing of the guard in Central Europe, and I mean Central Europe literally. In the extension of the nineteenth century there were Freud, Einstein, Spengler. Their counterparts in the twentieth century proper were Kafka, Heisenberg, Gödel. Overwhelming as the nineteenth century is in this confrontation—and it was an overwhelming century indeed—the twentieth century does have a very distinctive composition and orientation of its own, a radically different one. How the twenty-first century will compare with the two preceding ones will be for the twenty-first to decide.

NOTES

1. Albert Einstein was born March 14, 1879, in Ulm, Germany, and died April 15, 1955, in Princeton, New Jersey. He was cremated and his ashes were scattered, except for the brain, which has been preserved.

After an irregular attendance at high schools in Munich, Germany, and Aurau, Switzerland, he was enrolled at the reputed Zurich Institute of Technology ETH (Eidgenössische Technische Hochschule) from July 1896 till August 1900, graduating from its Division IV with a diploma for teaching mathematics and physics. After temporary teaching jobs he became on June 23, 1902, a clerk at the Patent Office in Bern, from which position he resigned October 15, 1909, to become an associate professor (Extraordinarius) at the University of Zurich. Until joining his university, while still with the Patent Office, he was also a Privatdozent at the University of Bern. He left the University of Zurich in the summer of 1911, to become professor at the German University of Prague. He stayed only one year, 1911/1912, leaving to become full professor (Ordinarius) at the ETH, upon the recommendations of Marie Curie and Henri Poincaré. This stay was also brief, and from April 1, 1914, till the middle of March 1913 he was a salaried member of the Prussian Academy of Sciences in Berlin. In October 1913 he reached his final academic destination. He joined the Institute for Advanced Study at Princeton, New Jersey, as one of its faculty members, Becoming a resident Emeritus in 1946.

These data are taken from Max Flückiger. Albert Einstein in Bern (Bern, 1974), and the comprehensive biography of Einstein: Ronald W. Clark, Einstein. The Life and Times (New York and Cleveland: World Publishing Company, 1971).

Some data in the text have been taken from the bibliography in P. A. Schupp. Albert Einstein. Philosopher-Scientist (Evanson, Ill., 1949); from Jagdish Mehra. The Solvay Conferences on Physics (Dordrecht and Boston, 1975); and from A. Eucken, Die Theorie der Strahlung und der Quanten (Halle, 1914), which is detailed report on the First Solvay Conference.

2. Science 49 (1929): 248-249. Einstein observes that, whatever Newcomb achieved, he could of course not explain the irregularity of the perihelion of Mercury because only General Relativity could cope with this anomaly. In an assessment of Newcomb’s achievements this was an odd observation to make, since Newcomb died in 1909, years before there was a theory of General Relativity. Newton could not have explained it either.

(continued on page 20)
GIFTS TO THE
FONDREN LIBRARY

September 1, 1982—
February 1, 1983

The Friends sponsor a gifts and memorials program for the Fondren Library which provides their members and the community at large a way to remember or honor friends and relatives. It also provides the Fondren the means to acquire books and collections beyond the reach of its regular budget. All gifts to the Fondren through the Friends' gift program complement the library’s university subsidy.

Funds donated through the Friends are acknowledged by the library to the donor and to whomever the donor indicates. Gifts can be designated in honor or memory of someone or on the occasion of some signal event such as birthdays, graduation or promotion. Bookplates are placed in volumes before they become part of the library’s permanent collection.

For more information about the Friend’s gift program, you may call Gifts and Memorials or the Friends’ office (527-4022). Gifts may be sent to Friends of Fondren, Rice University, P.O. Box 1892, Houston, Texas 77251, and qualify as charitable donations.

The Friends and the Fondren Library are grateful to acknowledge the following gifts, donations to the Friends’ fund and donations of books, periodicals, and other materials to the Fondren. All gifts enhance the quality of the library’s collection and enable the Fondren Library to serve more fully an ever-expanding university and Houston community.

GIFTS IN KIND

Gifts of books, journals, manuscripts and records were received from

Dr. Sidney M. Gospe
Mrs. William Harvey
Mrs. Henry W. Hoagland
Timothy J. Howard
M. K. Hubbard
William B. Hunter Jr.
Dr. & Mrs. Harold M. Hyman
Mrs. Lee Kobayashi
Mrs. Roger Legeron
F. K. Levin
H. Malcolm Lovett
Curtis McKallip Jr.
D. Bradford Macaruda Jr.
Harris Masterson Jr.
Alice K. Reynolds Meyer
Mrs. Ben H. Powell Jr.
Mrs. W. Wyatt Sansom
Beth Siever
Mrs. Charles F. Squire
Joseph Stewart Jr.
Dr. & Mrs. Virgil W. Topazio
John L. Wathen
Dr. Roland S. Young
Dr. Stephen A. Zelf
Mr. E. K. Zingler

Gifts were received in memory of
Lloyd Edward Madole, by
Kathy & Larry Madole

Gifts were received in honor of
Speros Martel, on the occasion of his ninetieth birthday, by
George R. Brown
Karen Ostrum George
Ralph S. O’Connor

GIFTS FOR THE PURCHASE OF BOOKS

Unrestricted gifts

Irene T. Fenster
Mr. & Mrs. John F. Heard
Mr. & Mrs. C. M. Hudspeth
Dr. Elizabeth Long
Dr. & Mrs. Burton J. McMurtry
Mr. & Mrs. Edwin P. Neilan
Oscar Matthew Palmer Jr.

Restricted gifts

Miss Mary Elizabeth Johnston, to be used for the Winifred Graham Johnston Memorial Fund for English Literature

John N. Loomis, M. D., to be used for purchase of Seven Poems by Stéphane Mallarmé, translated by Frederick Morgan with images by Christopher Wilmarth. Signed and numbered edition, number one of thirty.

John N. Loomis, M. D., to be used for the Andrew Louis Endowed Fund for Germanic Studies.

Mr. & Mrs. H. Malcolm Lovett, to be used for the Friends of Fondren Endowed Fund

Karl O. Sh hips, to be used for the purchase of periodicals in Physics

Gifts in honor of/given by

Mrs. James A. Agnew,
on the occasion of her ninety-seventh birthday, by Mr. & Mrs. W. H. Calkins

Adelaide Lovett Baker,
on the occasion of Christmas 1982, by Mr. & Mrs. W. Browne Baker Jr.
Browne Baker III
Jeffrey Baker
Mark Baker

The Flyleaf Page 13
Prof. André M. G. Bourgeois, a Civilized Man, whose teaching enriched my life, by Dr. Thomas E. Sample Jr.

Mr. & Mrs. Ted Bowen, by Dr. & Mrs. Vernon Knight

Sam & Sara Brateman, on the occasion of their fiftieth anniversary, by Emma Smith & Sarah Mendelovitz

Mr. & Mrs. Lewis Markham Corson, on the occasion of their marriage, by Mr. & Mrs. John E. Joiner

Mrs. Katherine Dobelman, by Rockwell Fund, Inc.

David Farnsworth, for his civic leadership, by Mr. & Mrs. John C. Gallagher

Mr. & Mrs. Albert Bel Fay, on the occasion of Christmas 1982, by Mr. & Mrs. Dudley C. Sharp

Mr. & Mrs. James W. Hargrove, on the occasion of their fortieth wedding anniversary, by Mr. & Mrs. Robert Simonds

Mr. & Mrs. Joseph Maurice Loisel IV, on the occasion of their marriage, by Mr. & Mrs. John E. Joiner

Mr. & Mrs. H. Malcolm Lovett, for receiving the first Friends of Fondren Award, by Mr. & Mrs. Henry W. Hoagland

Mr. & Mrs. John Lyndon Mc Knight, on the occasion of their twenty-fifth wedding anniversary, by Mr. & Mrs. John E. Joiner

Dr. I. S. Mc Reynolds, by Mrs. John M. Vetter

Mr. & Mrs. A. L. Martin, on the occasion of their fiftieth wedding anniversary, by Evelyn Epley Shimek

J. Emmet Niland, on the occasion of his birthday by Van T. Stallcup

J. Emmet Niland, on the occasion of Christmas 1982, Mrs. Loretta Niland Chandler Van T. Stallcup

Billy R. Reagan, Ed.D., on receiving his Doctor of Education degree, by Mr. & Mrs. John E. Joiner

Mr. & Mrs. Mark Harold Reed, on the occasion of their marriage, by Mr. & Mrs. John E. Joiner

Judge Woodward Seals, on the occasion of his retirement, by Mr. & Mrs. Gus A. Schill Jr.

Hugh Lenox Scott, by Mr. & Mrs. Mavis P. Kelsey Jr.

Mrs. Neva W. West, by Tas C. Thornhill, Jr.

Gifts in memory of / given by

Dr. Walter Abbott
Mr. & Mrs. George Guion Williams

Everitt Alexander
Mr. & Mrs. W. L. "Dutch" McKinnon

Mrs. Jeff J. Allen
Dr. & Mrs. Karl C. ten Brink

Thomas W. Archer
Ralph A. Anderson Jr. Mr. & Mrs. S. I. Morris

Mrs. Betty Ann Ashby
Mr. & Mrs. David S. Howard Jr.

Mrs. Khleber V. Attwell Sr.
Mrs. Ben A. Calhoun Mr. & Mrs. H. Malcolm Lovett Mr. & Mrs. Ralph S. O'Connor

Miss Margaret C. Austin
H. Blandin Jones Owen Wister Literary Society Alumnae

Hines H. Baker
Mr. & Mrs. H. Malcolm Lovett

Mrs. Patricia Barrett
Mr. & Mrs. Edwin H. Dyer Jr.

Arthur F. Barrett, M. D.
Dr. & Mrs. Charles B. Headrick

James Leavell Bayless
Mr. & Mrs. George R. Brown Katherine B. Dobelman
Mr. & Mrs. Henry W. Hoagland Mr. & Mrs. Louis Letzerich
Mr. & Mrs. H. Malcolm Lovett Tas C. Thornhill, Jr.

James E. Beall
Dr. & Mrs. Charles B. Headrick Mr. & Mrs. H. Malcolm Lovett

Mrs. Charles E. Beard
Mr. & Mrs. Claude T. Fuqua Jr. Mrs. Kegham S. Gregory

Norman J. Bering
Alice Britton Mr. & Mrs. Robert J. Hogan Mr. & Mrs. W. H. Keenan Mr. & Mrs. H. Malcolm Lovett Mrs. Carl W. Schumacher

Mrs. Norman J. Bering
Mr. & Mrs. W.H. Keenan

Mrs. Donald W. Berry
Mr. & Mrs. Walter Hebert

Mr. & Mrs. F. M. Black
Raymond H. Moers

Captain A. D. Blackledge
Mr. & Mrs. Herbert Allen

Elizabeth B. Blaine
Mr. & Mrs. George R. Brown Mr. & Mrs. H. Malcolm Lovett Mr. & Mrs. Frank Zumwalt Jr.

Mrs. Martin Bludworth
Mr. & Mrs. James R. Sims

Allie A. Bobbitt
Mrs. Eleanor S. MacMahon Mrs. Margaret T. Smith Mrs. Margot T. Teague

Salomon Bochner
Mr. & Mrs. Franz R. Brotzen

James J. Braniff Jr.
V. P. Ringer

Mrs. Stella Brenner
Sandra J. Lockaby

Morris Brooksban
Dave Chapman
Mayan Construction
George R. Brown
Ralph A. Anderson Jr.
Cliff & Donna Ashmun
Officers & Employees of Austin Steel
Co., Inc.
Mrs. Benjamin M. Bloomfield
Mr. & Mrs. James L. Britton Sr.
Mr. & Mrs. Franz R. Brotzen
Mr. & Mrs. Alan J. Chapman
The Discussion Group
David Farnsworth
Mary E. Johnston
Mr. & Mrs. John T. Jones Jr.
Mr. & Mrs. J. Griffith Lawhon
Mr. & Mrs. H. Michael Lockwood
Hugo V. Neuhau Jr.
Mr. & Mrs. Cooper K. Ragan
Mr. & Mrs. Thomas R. Reckling III
Rice University Associates
Susan Virginia Sample
Dr. Thomas E. Sample Jr.
Mrs. H. George Schneider
Mr. & Mrs. James R. Sims
Mr. & Mrs. Anderson Todd
Mr. & Mrs. W. T. Thagard
Mr. & Mrs. Richard O. Wilson
Mrs. Paul E. Wise

Robert C. Byars
Mr. & Mrs. A. L. Selig

Dr. F. O. Calaway
Mr. & Mrs. Sam Dunnam

J. O. Carter
Mr. & Mrs. P. A. Meyers

Gene Catlett
Mr. & Mrs. Richard O. Wilson

Mr. George W. Chapman
Dr. & Mrs. Karl C. ten Brink

Mrs. Carol Cherry
Mr. & Mrs. Claude T. Fuqua Jr.

Mrs. Catherine Christie
Mr. & Mrs. Hugh McGee Jr.

Dr. Richard O. Clements
Dr. & Mrs. Charles B. Headrick
Mr. & Mrs. Forrest Howard

Constance Coale
Mrs. Gertrude Barnstone

Henry C. Coke Jr.
Mr. & Mrs. George R. Brown

Mrs. Edna Commander
Fondren Library Staff

Mrs. Elizabeth Sackett Crocker
Mrs. Ben A. Calhoun
H. T. Investment Club
Mr. & Mrs. A. L. Selig

Mrs. Winnie Crump
Mr. & Mrs. Charles M. Hickey

James F. Culp
V. P. Ringer

Mrs. H. Dillon Culver
V. P. Ringer

Mrs. Hatch Cummings
Alice Britton
Mr. & Mrs. Charles M. Hickey

K. R. Dailey
Mr. & Mrs. Carl Illig

Maurice N. Dannenbaum
Mrs. Anne K. Berling
Mr. & Mrs. H. Malcolm Lovett

Mrs. Joseph I. Davies
Faculty Women's Club

William Kenneth Davis
Mr. & Mrs. H. Malcolm Lovett

Mrs. Rudolph R. Dean
Mr. & Mrs. H. Malcolm Lovett

Mrs. Lanson B. Ditto
Mr. & Mrs. H. Malcolm Lovett
Mr. & Mrs. Ralph S. O'Connor

Mrs. Anne Gleave Drought
Mr. & Mrs. David M. Underwood

John S. Dunn
Alice Britton
Mr. & Mrs. James L. Britton
Bill Wolter

Viola Dunn
Ray & Priscilla Skaggs

T. F. Dupont Jr.
Mr. & Mrs. David A. Archer
Mr. & Mrs. George Hartung
Mrs. Lillian H. Hermance
Mr. & Mrs. L. M. Hermes Jr.
Harriet M. Joekel
Oscar M. Palmer Jr.
Mr. & Mrs. Kirk Rote
Mrs. E. Joe Shimek
Robert V. Turner

Mrs. Elsie Eltz
Mrs. A. W. McStravick

A. C. English
Mr. & Mrs. George B. Kitchel

F. Wood Eubank
Dr. & Mrs. Charles B. Headrick

Marian Evans
Mr. & Mrs. Neal B. Heaps

Albert Fanestiel
Mrs. Frank S. Turner

Mrs. May Del Flagg
Mr. & Mrs. J. W. Hoover
Mr. & Mrs. H. Malcolm Lovett

Joe Flaig
Mr. & Mrs. Claude T. Fuqua Jr.

Richard H. Folkman
Mr. & Mrs. Jerome R. Epstein

Mrs. Walter Fondren
Mrs. Edward W. Kelley
Mr. & Mrs. H. Malcolm Lovett

Reverend Monsignor Anton J. Frank
Walter H. Hebert
Mr. & Mrs. Fred J. Stancliff

Dr. Joe L. Franklin
H. F. Hartman
Mr. & Mrs. H. Malcolm Lovett
Mr. & Mrs. M. V. McEnany
Rice University Faculty Women's Club
Dr. & Mrs. H. E. Rorschach
Mr. & Mrs. Robert M. Thrall
Dr. Yasuo Wada
Mr. & Mrs. Sam P. Worden

Fritz Emil Fuchs
Mr. & Mrs. Edwin H. Dyer Jr.

Amelia Duncan White Gabet
Mrs. Neil C. Bland
Mr. & Mrs. H. Malcolm Lovett

Joe Gallegly
Mr. & Mrs. Augie Erfurth
Mr. & Mrs. Charles M. Hickey
Mr. & Mrs. Charles E. Moore
Oscar M. Palmer Jr.
Rice University Faculty Women's Club
V. P. Ringer
J. C. Wilhoit Jr.
James Robert Groves Jr.
Gerhard Paseman
Mrs. Waltraud S. Paseman

Kathy Greer Gulnac
Mr. & Mrs. C. M. Hudspeth

Laura Breed Haden
Mr. & Mrs. George R. Brown
Mr. & Mrs. H. Malcolm Lovett
Mr. & Mrs. Haylett O'Neal Jr.
Rice University Associates
V. P. Ringer

John Hanchet
Mr. & Mrs. Richard O. Wilson

Dr. Theodore R. Hannon
Mr. & Mrs. Grover J. Geiselman Jr.
Mr. & Mrs. H. Malcolm Lovett
Mr. & Mrs. Ralph S. O'Connor

William E. Harvey
Mr. & Mrs. Roy D. Demme
Mrs. Elva Kalb Dumas

Elizabeth Curson Heath
Mr. & Mrs. Louis D. Spaw Jr.

Martha Louise Hedrick
August Hedrick

Robert Hellums
Mr. & Mrs. Arthur D. Alsobrook
Dorothy M. Biel
Biomedical Engineering Gang
Col. & Mrs. R. C. Bishop
Mr. & Mrs. Robert L. Bland
Linda Bramlett
Betsy A. Brandt
Mr. & Mrs. Franz R. Brotzen
Mr. & Mrs. G. Sidney Buchanan
C. S. Burrus
Mr. & Mrs. Alan J. Chapman
John E. Chappelear
Mr. & Mrs. George C. Collins
Dr. & Mrs. Joseph Cooper
Dr. & Mrs. Robert Curl
Mr. & Mrs. John W. Day
R. J. P. de Figueiredo
Charles & Lynne D'Huyvetter
Derek C. Dyson
Mr. & Mrs. Angie Erfurth
Mr. & Mrs. Pierre Escaron
Mr. & Mrs. Frank M. Fisher Jr.
Dr. & Mrs. William E. Gordon
Dr. & Mrs. Norman Hackman
Mr. & Mrs. Robert V. Haynes &
Chip Haynes
Earle & Mary Louise Hellums
Mr. & Mrs. J. V. Hellums
John & Barbara Hellums
Mr. & Mrs. Mark Hellums
Mrs. Lilian H. Hermance

Ann & Joe W. Hightower
V. Hoff
Mr. & Mrs. C. Murph Holley
Mr. & Mrs. Murph Holley
Mr. & Mrs. C. M. Hudspeth
Mr. & Mrs. W. R. Humphreys
Harold & Ferne Hyman
The Joe Family
D. H. Johnson
J. R. Jump
Dr. & Mrs. John E. Kilpatrick
D. M. Kim
Mr. & Mrs. Willis K. King
Mr. & Mrs. R. Arnold Kramer
Randall & Kathryn Kramer
Reed & Tamela Kramer
Dr. & Mrs. Thomas W. Leland Jr.
Dr. & Mrs. Donald Levin
Mr. & Mrs. Brad Long
Mr. & Mrs. H. Malcolm Lovett
Minerva M. McCauley
Mr. & Mrs. M. V. McEnany
Mary & Larry McIntire
Dr. & Mrs. Rex B. McLellan
Mr. & Mrs. Donald McNamara
Scoot & Manning Mann
Dr. & Mrs. John L. Margrave
Allen & Rosalyn Matusow
Mr. & Mrs. Donald Minzenmayer
Midn. Brian Minzenmayer
Mr. & Mrs. Clarence A. Miller
T. W. Parks
M. Pearlman
J. B. Pearson
Mr. & Mrs. Ralph S. O'Connor
Dr. & Mrs. J. S. Olson
Paul R. & Charlotte W. Paslay
Kathryn B. Payette
Ellen E. Pettifils
Nora Quiocio
T. A. Rabson
John B. Rappazzo Jr.
Rice University Environmental Science Department
Rice University Faculty Women's Club
Chuck Rice
Mrs. J. Milton Richardson
Mr. & Mrs. G. V. Rimlinger
Dr. & Mrs. H. E. Rorschach
Mr. & Mrs. John H. Sieber
The Tom Smith Family
Mr. & Mrs. Robert M. Thrall
Gordon & Elizabeth Towell
A. S. Veletosos
Mr. & Mrs. G. King Walters
Mr. & Mrs. J. C. Wilhoit Jr.
W. L. Wilson
J. D. Wise
Mr. & Mrs. Jack B. Zilker
Mr. & Mrs. Frank Zumwalt Jr.
Franklin C. Jones Jr.
Mrs. Chester L. Coleman
Mr. & Mrs. A. T. Hubly Jr.
Mr. & Mrs. Robert K. Jewett
Judge & Mrs. Phil Peden

Mrs. Elizabeth Keenan
Mr. & Mrs. Claude T. Fuqua Jr.

Dr. Louis Kestenberg
Dr. & Mrs. Simon Miron

Mrs. Frank King
Mr. & Mrs. Lee May
Ms. Marilee M. Wood

Mrs. Leona Knolle
Mrs. Hugh McGee

James A. Lacy
Mr. & Mrs. Walter P. Moore Jr.

Herman W. Lay
Mr. & Mrs. Claude T. Fuqua Jr.

Dr. Paul V. Ledbetter
Mr. & Mrs. Lebbeus C. Kemp Jr.
Mr. & Mrs. H. Malcolm Lovett
Mr. & Mrs. Anderson Todd

Mrs. Carrie Lefevre
Mr. & Mrs. A. L. Selig

Morton L. Levy Sr.
Mr. & Mrs. Raymond D. Brochstein
Mr. & Mrs. Melvin L. Hildebrandt

Mrs. Thomas L. Lewis
Mr. & Mrs. Lee Blocker
Mr. & Mrs. M. H. Waterman

Mrs. Edna Lightman
Emma J. Smith

Leslie Lindahl
Jefferson S. Lewis

Earnest W. Lindstrom Jr.
Mr. & Mrs. Luke T. Fullen

Sam & Hattie Lee Lipscomb
Mr. & Mrs. Harvey A. Feenan

Mrs. Corinne Litovich
Dr. & Mrs. A. A. Mintz

John Morgan Lloyd
John T. Maginnis

Mrs. Amelia Pace Long
Rice University Faculty Women’s Club

J. Gene Long
Mr. & Mrs. Herbert Allen
Mr. & Mrs. Walker J. Duffie
Mr. & Mrs. Walter P. Moore Jr.

Mrs. Mary Lou Lopez
Mr. & Mrs. George R. Brown

Mr. & Mrs. John Lunsford
Mrs. C. Fred Much
Mr. & Mrs. Frank Zumwalt Jr.

Mrs. Bethel Mann McBride
Dr. & Mrs. Karl C. ten Brink

Mrs. John McClintock Jr.
Mr. & Mrs. E. C. Chauviere Jr.
Mr. & Mrs. Edward A. Kelso

Val Jean McCoy
Mr. & Mrs. Dick Eason
Mr. & Mrs. John E. Joiner

Irene B. McDowell
Mr. & Mrs. R. L. Stevenson

O. L. McFaddin
Dr. & Mrs. Edward F. Heyne III

Lance McFaddin
Mr. & Mrs. Richard O. Wilson

Mrs. Edyth McMurty
Mrs. George V. Miller

Miss Hazel Maes
Mrs. Charles M. Hickey

Mrs. Cleta Marsh
Dr. & Mrs. Edward T. Smith

Michel Jamison Mellinger
Mr. & Mrs. H. Malcolm Lovett

Elwood Augustus Merwin
Mr. & Mrs. Franz R. Brotzen
Mr. & Mrs. Alan J. Chapman
Rice University Department of Civil Engineering
Mr. & Mrs. James R. Sims

Leopold L. Meyer
Mr. & Mrs. J. S. Brochstein
Mr. & Mrs. George R. Brown
David Farnsworth
Mr. & Mrs. H. Malcolm Lovett
Rice University Associates
Mr. & Mrs. Dana Weaver Jr.

Mr. & Mrs. Hugh E. Gragg

Raymond H. Moers

Mr. & Mrs. C. A. Moers

Mr. & Mrs. J. L. Aldendice

Alpha Tau Conclave, Kappa Kappa Iota

Mr. & Mrs. T. C. Armstrong

Dr. & Mrs. Frank L. Avery

Mr. & Mrs. John H. Barker

Frances L. Best

Mrs. Lena Blasdel

Kathleen W. Bloomquist

Edmund A. Blume

Irwin H. Blume

Mr. & Mrs. Robert C. Brady

Mrs. Roe Brewer

Bryan Production Credit Association

Mrs. Lois Taylor Burer

Mr. & Mrs. W. H. Calkins

Mrs. L. R. Center

Houston Group, Chapter 15, National Association of Clock and Watch Collectors

Roslie Cochran

Mr. & Mrs. Robert L. Cole Jr.

Mr. & Mrs. Alton B. Cook

Miss Mildred Cook

Mr. & Mrs. Harold A. Cory

Mrs. Nora Moers Cox

Mrs. Louella Crawford

Mrs. T. F. Crayton

Mrs. J. W. Crout

Erbin & Louise Crowell

Elizabeth S. Dickson

K. F. Doerner Sr.

Mr. & Mrs. Karl Doerner Jr.

Dick Dowling Camp No. 1305, Sons of Confederate Veterans

Mrs. F. H. Ellington

Thelma & Karen Ethredge

Kay Flowers

Mr. & Mrs. Eldon W. Fogler

Mr. & Mrs. Neil E. Garland

Mr. & Mrs. J. D. Hancock

Mr. & Mrs. William E. Harmon

Mrs. Paul Harper

Mrs. Darlene Hauser

Mrs. C. E. Hill

Thelma B. Hodges

Ruth Moers Holt

Mrs. Al Horton

Dr. Lysle H. Humphrey

Miss Edith M. James

Augusta Moers Jones

Tillie Moers Keng

Mrs. J. John Koy

Mr. & Mrs. Norvis G. Land

Mr. & Mrs. Robert M. Lay

Mr. & Mrs. James E. Lewis Sr.

Mr. & Mrs. Mark Liverman

Directors & Employees of Lubbock Production Credit Association

Mrs. Norman McAnthur

Mrs. Milburn Martin

Miss Marie Moers

Mrs. J. D. Mothereal Jr.

Mrs. H. H. Nichols

Mrs. Victor T. Oliver

Mrs. T. H. Osborne

Mrs. L. L. Peacock & Milton

Mr. & Mrs. Lester B. Pickle

Mr. & Mrs. Robert L. Redwine

Mr. & Mrs. Paul K. Rees

Mrs. Hazel Rich

Mr. & Mrs. O. H. Richardson

Mr. & Mrs. M. A. Ruebright

Elaine R. Shanks

Margaret P. Smith

Letha Starling

Mrs. Alberta Taylor

Mrs. Ruby D. Thomas

Mr. & Mrs. Reginald Tomlinson

The Twenty-Six Literary Club

Mr. & Mrs. Ted Turicchi

Edna May Vaughan

Mrs. Willie Alma Walling

Mr. & Mrs. George Welshimer

Harold E. Wigren

Mr. & Mrs. Bobby Wilson

Mr. & Mrs. William J. Yost

Stephen A. Moncrief

Mr. & Mrs. Charles M. Hickey

Mr. & Mrs. Carl Illig

Jeff Montgomery

Mr. & Mrs. George R. Brown

David Farnsworth

Bettie Fulshear Mooney

Texas Beta Unit, Texas Assn. of Parliamentarians

Mrs. Ruth Baker Moore

Mr. & Mrs. Victor N. Carter

Mr. & Mrs. H. Malcolm Lovett

Mr. & Mrs. Harris Masterson

Miss Alice Jannier Murrill

Mrs. Fred L. Williams Jr.

Mrs. Elizabeth Mossberger

Mr. & Mrs. Edwin H. Dyer Jr.

Mr. & Mrs. Ralph S. O’Connor

Dr. Marcus D. Murphy

Mr. & Mrs. Walter Hebert

Mr. & Mrs. John O. Wynn

Gerald Wayne Naccarato

The Members of Hanszen College

Mrs. Evelyn Yorty Nichols

Raymond H. Moers

Mrs. Isabel Nunnelee

The Fondren Foundation

Ely Nussbaum

Mr. & Mrs. Charles V. Puccio

Mrs. Flora O’Brien

Mr. & Mrs. E. H. Dyer Jr.

Mr. Haynes B. Ownby

Mr. & Mrs. William James Miller

Arthur Virgil Pace III

Mr. & Mrs. H. Malcolm Lovett

Mrs. Ruth G. Page

Mr. & Mrs. R. P. McCants

Dr. John E. Parish

Dr. Jeffrey Allan Johnson

Jack S. Peifer

Mr. & Mrs. John E. Joiner

Mrs. W. E. Pennington

Mrs. E. Joe Shimek

Elizabeth Pirsig

Mr. & Mrs. John T. Smith

Herbert R. Porter

Mr. & Mrs. William J. Hudspeth

Robert V. Turner

Frank Power Jr.

Mr. & Mrs. H. Malcolm Lovett

Mrs. Martha H. Purifoy

Doris Allen

Patricia H. Lemmons

Foflo Lewis

Sharlyn Liningr

Shirley Mathis

Betty S. Miller

Shirley Payne

Helen Wilcox

La Domino Quiteschorra

Dr. Aliyah W. M. von Nussbaumer

Poopsi Quiteschorra

Dr. Aliyah W. M. von Nussbaumer

Mrs. Joe J. Rady

Mr. & Mrs. James R. Sims

Sam J. Raymon

Mr. & Mrs. Julian L. Shapiro

Gene Redmon

Mr. & Mrs. W. L. McKinnon

Arthur Renaud

W. H. Higginbotham, M.D.
Willard Tressel Jr.
Dr. & Mrs. F. M. Bramlett

Miss Pender Turnbull
John G. Barrett, M. D.
Mr. & Mrs. George D. Blocher
Mrs. Hubert E. Bray
Mr. & Mrs. Franz R. Brotzen
Margaret M. Cameron
Mrs. Hardin Craig Jr.
Mr. & Mrs. J. Thomas Eubank
Homoiselle & Albert Fay Foundation
Mrs. William John Geldert
Beverley Hendrickson
Mr. & Mrs. S. W. Higginbotham
Mr. & Mrs. Henry W. Hoagland
H. Blandin Jones
Miss Lola Kennerly
Mrs. Aristotle Michal
Mrs. Norman H. Moore
Richard H. Perrine
Mr. & Mrs. Rex W. Sjostrom
Mrs. Elmer Summers
Mrs. William Ward Watkin

Milton R. Underwood
Mr. & Mrs. Henry W. Hoagland
Mrs. Edward W. Kelley Sr.
Mr. & Mrs. Louis Letzerich
Mr. & Mrs. H. Malcolm Lovett
Mr. & Mrs. H. T. Tellepsen
Mr. & Mrs. Louis A. Waters

Mrs. Guadalupe V. Uresti
Mr. & Mrs. George R. Brown

John L. Vestal Jr.
Mr. & Mrs. Charles M. Hickey
Mr. & Mrs. W. T. Richard

John M. Vetter
Mr. & Mrs. George S. Bruce Jr.
Mr. & Mrs. J. Griffith Lawhon
Mr. & Mrs. H. Malcolm Lovett
Mrs. E. Joe Shimeck
Mrs. Louise A. Stevenson

Jane Oberwetter Wainwright
Anne H. Coley
Mr. & Mrs. H. Malcolm Lovett
Mr. & Mrs. Ralph S. O'Connor

Dr. John A. Wall
Mr. & Mrs. George B. Kitchel
Mr. & Mrs. Louis Letzerich
Mrs. Jon E. Madsen
Mr. & Mrs. James U. Teague

Mrs. Mamie McFadden Ward
Rice University Associates

Leslie H. Warner
Mrs. Gardiner Symonds

Bob Webster
Mrs. Elda F. Brewer

Monika S. Weissenberger
Mr. & Mrs. Franz R. Brotzen
Harold & Feme Hyman
Barbara Kile
Fredericka Meiners
Rice University Faculty Women's Club
Dr. & Mrs. G. V. Rimlinger

James Lee Whitcomb
Mr. & Mrs. Ward N. Adkins
Robert L. Cook
Mr. & Mrs. L. D. Gilmer
Mr. & Mrs. Henry W. Hoagland
Virginia Kirkland Innis
Mr. & Mrs. W. H. Keenan
Mrs. Edward W. Kelley
Mr. & Mrs. Frank B. Lander
Mr. & Mrs. H. Malcolm Lovett
Mr. & Mrs. Ralph S. O'Connor
Mr. & Mrs. Frank C. Shelden
Mr. & Mrs. Charles F. Square
F. Talbot Wilson

Jack K. Wicker
Dr. & Mrs. A. A. Mintz

Mrs. M. B. Wilburn
Mr. & Mrs. Robert K. Jewett

Katherine Neuhaus Wilmerding
Mr. & Mrs. H. Malcolm Lovett

Bradley Randolph Wilson
Mr. & Mrs. Ralph S. O'Connor

Mrs. Arthur M. Wirtz
Alvin S. Moody

Roger J. Wolfe
Mr. & Mrs. H. Malcolm Lovett

Andrew Jackson Wray
Homoiselle & Albert Fay Foundation

Mrs. Myra Wright
Elizabeth K. Gayle

Notes on A Lecture About Einstein (continued from page 12)

4. Died at age forty-five.

5. H.D. Smyth, Atomic Energy for Military Power
(Washington, D.C., 1945). This book, a best-seller, was, in ef-
fact, a government publication.

7. Niels Bohr Atomic Theory and the Description of Nature
(Cambridge, 1934), p. 16.

8. Ibid.

ly p. 850.

MEMBERSHIP

Membership in the Friends of Fondren Library is open to all. The membership year usually follows the academic year—beginning in September—and is arranged on a rotating basis. Membership dues are as follows:

- **Contributor** ... $25
- **Sponsor** .. $50
- **Patron** ... $100
- **Benefactor** ... $500
- **Rice University Student** .. $10
- **Rice University Staff/Faculty** $20

Members of the Friends will receive *The Flyleaf* and invitations to special programs and events sponsored by the Friends. In addition, members who are not already students, faculty, or staff of the university will receive library circulation privileges.

Checks for membership dues should be made out to the Friends of Fondren Library and should be mailed to Friends of Fondren, Rice University, P.O. Box 1892, Houston, Texas 77251, along with your preferred name and address listing and home and business phone numbers. Dues qualify as charitable donations. Dues, like donations to the gift fund, also help meet the Brown Foundation Challenge Grant which last year, in response to gifts to the university for current operating expenses, added nearly $2.5 million to the university's permanent endowment. The same opportunity exists this year.