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In the LDPC mode, a substantial subset (more than 90%) of the logic gates will

be reused from the Turbo mode. As shown in Fig. 5.35, three major functional units

(α unit, β unit, and the extrinsic-1 unit) and two stack memories are reused in the

LDPC mode. The extrinsic-2 unit will be de-activated in the LDPC mode. The

decoder can process 8 single parity check codes in parallel because each of the α unit,

β unit, and extrinsic-1 unit has 8 parallel FFUs.
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Figure 5.35 : Flexible SISO decoder architecture in LDPC mode.

The dataflow graph of the LDPC decoding (c.f. Fig. 5.29) is very similar to that of

the Turbo decoding (c.f. Fig. 5.34). The decoder works as follows. The decoder first

computes λt(u) based on (5.21). In the LDPC mode, the branch metric γ is equal to

λt(u). Prior to decoding, the α and β metrics are initialized to the maximum value.

We assume that the check node degree is L. In the first L cycles, the α unit recursively

computes the α metrics in the forward direction and stores them in an α stack. In

the next L cycles, the β unit recursively computes the β metrics in the backward
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direction. At the same time, the extrinsic-1 unit computes the extrinsic LLRs using

the α and β metrics. While the β unit and the extrinsic-1 unit are working on the

first data stream, the α unit can work on the second stream which leads to a pipelined

implementation.

5.8.6 LDPC/Turbo Parallel Decoder Architecture Based on Multiple Flex-

SISO Decoders

For high throughput applications, it is necessary to use multiple SISO decoders work-

ing in parallel to increase the decoding speed. For parallel Turbo decoding, multi-

ple SISO decoders can be employed by dividing a codeword block into several sub-

blocks and then each sub-block is processed separately by a dedicated SISO decoder

[112, 113, 114, 103, 12]. For LDPC decoding, the decoder parallelism can be achieved

by employing multiple check node processors [17, 65, 66, 67, 76].

Based on the Flex-SISO decoder core, we propose a parallel LDPC/Turbo decoder

architecture which is shown in Fig. 5.36. As depicted, the parallel decoder comprises

P Flex-SISO decoder cores. In this architecture, there are three types of storage.

Extrinsic memory (Ext-Mem) is used for storing the extrinsic LLR values produced

by each SISO core. APP memory (APP-Mem) is used to store the initial and updated

LLR values. The APP memory is partitioned into multiple banks to allow parallel

data transfer. The Turbo parity memory is used to store the channel LLR values

for each parity bit in a Turbo codeword. This memory is not used for LDPC de-
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coding (parity bits are treated as information bits for LDPC decoding). Finally, two

permuters are used to perform the permutation of the APP values back and forth.
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Figure 5.36 : Parallel LDPC/Turbo decoder architecture based on multiple Flex-SISO
decoder cores.

5.9 Summary

In this chapter, we have presented high-throughput LDPC decoderarchitectures for

QC-LDPC codes. We propose a multi-layer parallel LDPC decoding algorithm and

describe a multi-layer LDPC decoder architecture to achieve 3 Gbps decoding speed.

To support both LDPC and Turbo codes, we propose a unified decoder architecture

which can be dynamically configured for both codes with a small hardware overhead,

based on combining some of the architecture concepts from Chapter 4 on Turbo

decoding with the current chapter on LDPC decoding.
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Chapter 6

ASIC and FPGA Implementation Results

In this chapter, we present the ASIC (application-specific integrated circuit) and

FPGA (field-programmable gate array) implementation results of various MIMO de-

tectors and channel decoders. The algorithms and architectures were presented in

Chapters 3, 4, and 5, with Chapter 3 focusing on MIMO detection, Chapter 4 fo-

cusing on Turbo decoders, and Chapter 5 focusing on LDPC and joint LDPC/Turbo

decoders. First, we will present results on our Rice WARP testbed which is an efficient

verification environment before the creation of a VLSI ASIC acceleration design.

6.1 Decoder Accelerator Design for WARP Testbed

We have implemented a channel decoder accelerator for the Rice WARP Wireless

Research Platform [128, 129]. The Rice Wireless Research Platform is reconfigurable

and consists of DSP and FPGA devices along with RF radios and high speed AD and

DA converters. Experiments on the testbed can be performed to allow for algorithm

and partitioning verification, identification of unforeseen bottlenecks, and over the air

bit and frame error rate determination. The programmable transceiver hardware is

connected to a general purpose host computer for control and interfacing. The testbed

platform currently utilizes Mathworks Simulink environments for coordination and
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execution scheduling. Wireless algorithm design and mapping to parallel architecture

prototypes on the FPGA boards is done via the Xilinx System Generator design tools.

Additional modules can be created in Verilog HDL and either synthesized for ASIC

analysis or mapped to FPGA for inclusion in the Xilinx System Generator design flow.

The testbed uses the custom WARP board with Xilinx Virtex-II Pro and Virtex 4

FPGA devices. WARP allows for rapid prototyping with the integrated Maxim/Sharp

2.4 GHz radio unit daughtercards for end-to-end laboratory experiments. Fig. 6.1

shows the block diagram of the WARP testbed.

Figure 6.1 : WARP testbed, including the custom Xilinx FPGA board and the radio
daughtercards.

We have implemented an FEC codec (convolutional encoder + Viterbi decoder)

for the WARP OFDM reference design (http://warp.rice.edu/trac/wifi/

OFDMReferenceDesign). The most recent version of the OFDM reference design is

v15.0. All of the PHY components are open-source and are available in the repository

(with revision 1580 for FPGA v1 and svn revision 1585 for FPGA v2).
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The design is built using the 10.1 release of the Xilinx tools (ISE 10.1.03 + IP3,

Sysgen 10.1.3.1386). In this design, a K=7 convolutional code is used. The code

structure and the puncture pattern are compliant with the IEEE 802.11a standard.

The FEC codec supports all three modes of the current WARP OFDM PHY: 1)

SISO mode, 2) 2× 2 MIMO mode, and 3) 2× 2 or 2× 1 Alamouti mode. The FEC

codec supports three modulation types: 1) BPSK, 2) QPSK, and 3) 16-QAM. The

coding can be turned on and off by programming the control register. The coding rate

can be changed by modifying the second byte of the packet header. Four different

code rates are supported: 1/2, 2/3, 3/4, and 1.

The FEC encoder was implemented with Verilog and was integrated into the

Sysgen model as a black-box, which is a standard port to include alternate HDL

blocks. Fig. 6.2 shows the connection between the encoder and the rest of the Sys-

gen blocks. As can be seen, the encoder sits between the “data buffer” block and

the “PktBuffer CRC1” block. The encoder will pre-fetch the data (scrambled infor-

mation data) from the “PktBuffer CRC1” block and encode it. The encoded bits

are stored into a local small buffer. When this buffer is full, the encoder will stop

fetching data from the “PktBuffer CRC1” block. When the encoder sees a new data

byte request from the “data buffer” block, it will return a coded data byte to the

“data buffer” block. When the coding is turned off, the encoder will bypass the

scrambled information data to the “data buffer” block.

The FEC decoder was also implemented with Verilog and is integrated into Sysgen
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as a black-box. Fig. 6.3 shows the connection between the FEC decoder and the other

Sysgen blocks. The FEC decoder takes I and Q data and produce the decoded data

in bytes. The decoded data are then sent to the ”Data Buffer” block for further

processing, e.g. CRC error checking.

The FEC codec takes about 12% of the slices in the Virtex-2 Pro FPGA device.

The Verilog codes will be uploaded to the repository once they are fully tested. The

FEC encoder and decoder support real-time encoding and decoding with a very low

latency (the encoder has zero latency and the decoder has less than 50 clock cycles

latency).
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6.2 VLSI Implementation Results for MIMO Detectors

6.2.1 Trellis-Search MIMO Detector, M = 1

In chapter 3, we have described the VLSI architectures for the trellis-search MIMO

detectors. To evaluate the hardware complexity of the proposed MIMO detector

architecture, we implemented a M = 1 trellis-search MIMO detector (cf. Section

3.1) using Verilog HDL [6, 7, 8]. To save area, this detector is based on the folded

architecture as described in Chapter 3.

This 4×4 16-QAM soft MIMO detector has been synthesized (using Synopsys De-

sign Compiler), placed and routed (using Cadence SoC Encounter) for a TSMC 65nm

CMOS technology. Figure 6.4 shows the VLSI layout view of the MIMO detector.

The fixed-point bit precision for R and ŷ are 10 bits. The LLR outputs are repre-

sented in 7 bits. Based on the fixed-point simulation results, the finite word-length

implementation leads to negligible performance degradation (about 0.1dB) from us-

ing the floating-point representation. The maximum achievable clock frequency is 450

MHz based on the post-layout simulation. The corresponding maximum throughput

is 600 Mbps.

Table 6.1 compares the detection throughput and hardware complexity of the

proposed detector versus two state-of-the-art detectors from the literature: depth-first

soft sphere detector with 256 search operations from [28], and soft K-best detector

from [39]. In [39], a real QR decomposition is used with a small K=5. Compared to

solutions [39, 28], our solution can achieve a faster throughput because we avoid the
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Figure 6.4 : VLSI layout view of the folded trellis-search MIMO detector (M = 1).

sorting operation which is very expensive in the hardware implementation.

6.2.2 Trellis-Search MIMO Detector, M = 2

As shown in Chapter 3, Fig. 3.6 and Fig. 3.7, we know that the trellis-detector with

M = 2 achieves a better performance than the basic trellis-detector with M = 1.

As a good balance between complexity and performance, we have implemented a

trellis-detector with M = 2.

Fixed-Point Design for 4× 4 16-QAM System

In a 4 × 4 16-QAM MIMO transmission, typically the QAM symbol sk is scaled by

1√
10Nt

= 1√
40

in the transmitter for the transmitted symbol to have unit energy. In the



171

Table 6.1 : Architecture comparison with existing MIMO detectors

Garrett [28] Guo [39] This work

Algorithm Depth-First K-Best PPTS (M = 1)

Configuration 4× 4 16-QAM 4× 4 16-QAM 4× 4 16-QAM

Throughput 38.8 Mbps 106 Mbps 600 Mbps

Core Area 10 mm2 0.56 mm2 0.79 mm2

Gate Count 1100 K 97 K 550 K

Max Frequency 122.88 MHz 200 MHz 450 MHz

Technology 180 nm 130 nm 65 nm

Gates (KG)
Throughput (Mbps)

28.4 0.92 0.91

trellis-search MIMO detector, instead of working on the scaled sk signal, we scale each

element in the R matrix by 1√
10Mt

= 1√
40

and use the original QAM symbol sk in the

computation. We use the notation Q[QI].[QF ] to represent a fixed point number with

QI number of integer bits and QF number of fractional bits so that the total word

length is QI + QF . Table 6.2 summarizes the fixed point design parameters for the

scaled R, received ŷ, PED, and LLR, where the PED is rounded to 10 bits between

computational blocks. This fixed-point detector has about 0.1 dB performance loss

compared to the floating-point detector.

Table 6.2 : Fixed point design parameters for the 4× 4 16-QAM MIMO system

Signal Scaled R Received ŷ PED LLR

Q[QI].[QF ] Q1.9 signed Q4.6 signed Q4.6 unsigned Q4.2 signed
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ASIC Implementation Result and Architecture Comparison

As a proof of concept, we have implemented a systolic trellis-search MIMO detector

with M = 2, and a folded trellis-search MIMO detectors with M = 2 for a 4 × 4

16-QAM system. The two detectors have been described using Verilog HDL, and

have been synthesized for a 1.08V TSMC 65nm CMOS technology using Synopsys

Design Compiler. Fig. 6.5 shows the VLSI layout view of the systolic detector.
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Figure 6.5 : VLSI layout view of the systolic trellis-search MIMO detector (M = 2).

Table 6.3 compares the throughput and the hardware complexity of the proposed

detectors with two independent works from the literature: a more recent work on

depth-first soft sphere detector from [33], and a soft K-Best detector from [39]. Table

6.4 compares the proposed detectors with two related works in our group and our

collaborator: a bounded soft sphere detector (BSSD) from [86], and a modified metric
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first soft sphere detector (MMF-SSD) from [87].

Since these designs have different technologies, i.e. 65nm, 130nm, 180nm, and

250nm. For a fair comparison, we need to scale these designs into a same technology,

i.e. 65nm. To compare silicon area cost, a fair metric is the gate equivalent or gate

count, which does not change much as technology node changes. To further compare

area efficiency, we define an area efficiency metric (KGate/bit) as:

Area efficiency =
Gate count× Frequency

Throughput
. (6.1)

This metric does not change much as the technology node changes, and can be used

to measure the area efficiency of the design. Similarly, to compare power efficiency,

we define an energy efficiency metric (nJ/bit) as:

Energy efficiency =
Normalized power

Throughput
. (6.2)

In the equation above, the normalized power is the power number that is scaled to a

same technology node, i.e. 65nm, as:

Normalized power =
Power

technology scaling factor2 . (6.3)

As can be seen, the proposed detectors achieve very high data throughput while still

maintaining a low area and energy requirement.

In terms of error performance, the proposed trellis detector with M = 2 outper-

forms the K-Best detector with K = 64 (cf. Fig. 3.6). Although the depth-first

detector with un-limited search steps achieves near-optimal performance, in a prac-

tical design, the search steps will be limited to meet the throughput requirement.
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However, with limited search steps, the error performance of a depth-first detector

quickly degrades. For example, the depth-first MMF-SSD detector from [87] shows a

0.6-0.8 dB performance loss compared to the optimal case.

The trellis MIMO detector with M = 2 achieves a balanced tradeoff between

hardware complexity and error performance (< 0.3 dB loss). Therefore, the proposed

detector is a good solution for the Gbps MIMO detection problem as it achieves both

high throughput performance and good error performance.

Table 6.3 : Architecture comparison with two independent works

Reference Studer [33] Guo [39] Systolic Folded

Algorithm Depth-First K-Best, K=5 Trellis, M=2 Trellis, M=2

Configuration 4x4 16-QAM 4x4 16-QAM 4x4 16-QAM 4x4 16-QAM

Clock Frequency 71 MHz 200 MHz 400 MHz 400 MHz

Technology 250 nm 130 nm 65 nm 65 nm

Throughput 10-95 Mbps 106 Mbps 6.4 Gbps 2.1 Gbps

Core Area 1.9 mm2 0.56 mm2 3.19 mm2 1.18 mm2

Gate Count 56.8 K 97 K 2.22 M 820 K

Power N/A N/A 210 mW 81 mW

Area Efficiency 403-42 183 138 156

Energy Efficiency N/A N/A 0.03 0.04
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Table 6.4 : Architecture comparison with two internal works

Reference Radosav. [86] Myllyla [87] Systolic Folded

Algorithm BSSD MMF-SSD Trellis, M=2 Trellis, M=2

Configuration 4x4 16-QAM 4x4 16-QAM 4x4 16-QAM 4x4 16-QAM

Clock Frequency 200 MHz 250 MHz 400 MHz 400 MHz

Technology 130 nm 180 nm 65 nm 65 nm

Throughput 72 Mbps 31-121 Mbps 6.4 Gbps 2.1 Gbps

Core Area 0.57 mm2 0.59 mm2 3.19 mm2 1.18 mm2

Gate Count 210 K 43.9 K 2.22 M 820 K

Power 43.45 mW 83 mW 210 mW 81 mW

Area Efficiency 583 354-90 138 156

Energy Efficiency 0.15 0.09 0.03 0.04

6.3 VLSI Implementation Results for LTE Turbo Decoders

6.3.1 Highly-Parallel LTE-Advanced Turbo Decoder

A highly-parallel 3GPP LTE/LTE-Advanced Turbo decoder, which consists of 64

Radix-2 SW-MAP decoder cores (cf. Chapter 4 Section 4.4), has been synthesized,

placed and routed for a 1.0V 8-metal layer TSMC 65nm CMOS technology [11]. The

decoder has scalable parallelism. The decoder can employ 64, 32, and 16 MAP units

when the block size N >= 2048, N >= 1024, and N >= 512, respectively. For small

block size N < 496, the decoder can use up to 8 MAP cores. Figure 6.6 shows the top

layout view of this ASIC which shows the core area of this decoder. The fixed-point

bit precisions are as follows: the channel symbol LLRs for systematic and parity
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bits are represented with 6-bit signed numbers (with 2 fractional bits), the internal

α and β state metrics are represented with 10-bit unsigned integer numbers (mod-

ulo normalization), and the extrinsic LLRs are represented with 8-bit signed integer

numbers. Based on the fixed-point simulation result, the finite word-length implemen-

tation leads to negligible BER performance degradation from using the floating-point

representation. The maximum achievable clock frequency is 400 MHz based on the

post-layout simulation. The corresponding maximum throughput is 1.28 Gbps (at 6

iterations) with a core area of 8.3 mm2.

We compare the proposed Turbo decoder with existing Turbo decoders from [112],

[113], [58], and [61]. In [112], a parallel Turbo decoder based on 7 MAP decoders

is presented. In order to avoid memory contention, a custom designed interleaver,

which is not standard compliant, is used. In [113], a 3G-compliant parallel Turbo

decoder based on the row-column permutation interleaver is introduced. In [58], a

188-mode Turbo decoder chip for 3GPP LTE standard is presented. In this decoder,

8 MAP units are used to achieve a maximum decoding throughput of 129Mbps (at

8 iterations). In [61], a Radix-4 Turbo decoder is proposed for 3GPP LTE and

WiMax standards. A maximum throughput of 186Mbps is supported by employing

8 MAP units (at 8 iterations). Table 6.5 summarizes the implementation results

of the proposed decoder and the hardware comparison with existing decoders. As

can be seen, the proposed decoder supports the 3GPP LTE-Advanced throughput

requirement (1 Gbps) at a small area cost, and achieves a good energy efficiency.



177

Table 6.5 : Turbo decoder ASIC comparison

This work Bougard Thul Wong Kim

[11] [112] [113] [58] [61]

Max. block size 6144 432 5120 6144 6144

MAP cores 64 7 6 8 8

Maximum iterations 6 6 6 8 8

Technology 65nm 180nm 180nm 90nm 130nm

Supply voltage 0.9V 1.8V NA 1.0V 1.2V

Clock frequency 400MHz 160MHz 166MHz 275MHz 250MHz

Core area 8.3mm2 7.16mm2 13mm2 2.1mm2 10.7mm2

Gate Equivalent 5.8M 587K † 1.3M ‡ 740K †† 800K

Arithmetic Logic 4.9M 373K N/A N/A 500K

Throughput 1.28Gbps 75.6Mbps 60Mbps 129Mbps 186Mbps

Power consumption 845mW N/A N/A 219mW N/A

Energy efficiency 0.11 1.45 1.65 0.21 0.61

(nJ/bit/iteration)

† The gate count is estimated based on the chip data in this thesis.
‡ The unit cell area is assumed to be 10.00 µm2 for 180nm technology.
†† The unit cell area is assumed to be 2.82 µm2 for 90nm technology.
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Figure 6.6 : VLSI layout view of an LTE-advanced Turbo decoder.

6.4 VLSI Implementation Results for LDPC Decoders

6.4.1 IEEE 802.11n LDPC Decoder

An IEEE 802.11n LDPC decoder is implemented based on the single-layered offset

min-sum algorithm [18]. The decoder was implemented in Verilog HDL and syn-

thesized on a TSMC 0.13µm standard cell library. Table 6.6 shows a summary of

synthesis results. Complexity is measured in equivalent gates for logic and in bits

for memories. An overall complexity of 90 K logic gates is measured for the non-

pipelined implementation, plus 77, 760 bits of RAM. In comparison, 195 K logic gates

is measured for the pipelined implementation, plus 77, 760 bits for memories based

on the additional register and control needed for pipelined operation.

A Verilog RTL simulation model was used to measure average throughput v.s.
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SNR level. For instance, at a rather low SNR of 1.0 dB, the pipelined decoder can

achieve 150 Mbps. While at a higher SNR of 2.2 dB, the pipelined decoder can achieve

about 1 Gbps.

Table 6.6 : IEEE 802.11n LDPC decoder design statistics [18].

Non-pipelined Pipelined

Frequency 400 MHz 400 MHz

Area 1.3 mm2 1.9 mm2

Logic gates 90 K 195 K

Total memory 77, 760 bits 77, 760 bits

Throughput@2.2dB SNR 500 Mbps 1 Gbps

Throughput@1.0dB SNR 80 Mbps 150 Mbps

6.4.2 Variable Block-Size and Multi-Rate LDPC Decoder

A flexible LDPC decoder which supports variable block sizes from 360 to 4200 bits

in fine steps, where the step size can be 24 (at rate 1/4, 1/3, 1/2, 2/3, 3/4, 5/6 and

7/8), or 25 (at rate 2/5, 3/5 and 4/5), or 27 (at rate 8/9), or 30 (at rate 9/10), was

described in Verilog HDL [17]. Layout was generated for a TSMC 0.13µm CMOS

technology as shown in Fig. 6.7. Table 6.8 compares this decoder with two existing

LDPC decoders from [69] and [80].
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Figure 6.7 : VLSI layout view for a variable block-size and multi-rate LDPC decoder.

Table 6.7 : Variable-size LDPC decoder comparisons

This work [17] Blanksby [69] Mansour [80]

Throughput 1.0 Gbps@2.2dB 1.0 Gbps 1.3Gbps@2.2dB

Area 4.5 mm2 52.5mm2 14.3 mm2

Frequency 350 MHz 64 MHz 125 MHz

Power 740 mW 690 mW 787 mW

Block size 360 to 4200 bit 1024 bit fixed 2048 bit fixed

Code Rate 1/4 : 9/10 1/2 fixed 1/16 : 14/16

Technology 0.13µm, 1.2V 0.16µm, 1.5V 0.18µm, 1.8V
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6.4.3 An IEEE 802.11n/802.16e Multi-Mode LDPC Decoder

In order to support even more wireless systems than our result in Section 6.4.2, a

multi-mode LDPC decoder which supports both IEEE 802.11n and IEEE 802.16e

has been synthesized on a TSMC 90nm 1.0V 8-metal layer CMOS technology [16].

The detailed VLSI architecture has been described in Chapter 5 Section 5.5. Fig. 6.8

shows the VLSI layout view of the LDPC decoder. Table 6.8 compares this decoder

with the state-of-the-art LDPC decoders of [130] and [80]. The decoder in [130] has

the flexibility to support 19 modes of LDPC codes in the WiMax standard, however

it will not support the higher data rates envisioned for 4G and IMT-Advanced. The

decoder in [80] has a throughput of 640 Mbps, but it does not have the flexibility to

support multiple codes. As can be seen, our decoder shows significant performance

improvement in throughput, flexibility, area and power.

Table 6.8 : IEEE 802.11n/802.16e LDPC decoder comparison

This Work [16] Shih [130] Mansour [80]

Flexibility 802.16e/.11n 802.16e 2048-bit fixed

Max Throughput 1 Gbps 111 Mbps 640 Mbps

Total Area 3.5 mm2 8.29 mm2 14.3 mm2

Max Frequency 450 MHz 83 MHz 125 MHz

Peak Power 410 mW 52 mW 787 mW

Technology 90 nm 0.13 µm 0.18 µm

Max Iteration 10 8 10

Algorithm Full BP Min-Sum Linear Apprx.
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Figure 6.8 : VLSI layout view of an IEEE 802.11n/802.16e multi-mode LDPC de-
coder.

As low power design is critical for wireless receivers, in order to save power, we

have implemented a simple and effective early termination criteria for stopping the

iteration process. The decoding will stop if the following two conditions are satisfied:

1) the hard decisions for the information bits based on their LLR values do not

change over two successive iterations, and 2) the minimum of the absolute values of

the information bit LLRs is larger than a pre-defined threshold. Fig. 6.9 (a) shows the

power consumption for different SNR levels for a block size of 2304 bits LDPC code

with a maximum iteration number of 10. As shown in Fig. 6.9 (a), when the wireless

channel is good, the decoding needs fewer iterations to converge, which therefore saves

substantial power (up to 65% power reduction). Another power saving technique is
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to use distributed SISO decoders and memory banks. Fig. 6.9 (b) shows the power

reduction from deactivating the unused SISO decoders and memory banks when the

LDPC code size is small.
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Figure 6.9 : Two power reduction techniques

6.4.4 LDPC Decoder Implementation Using High Level Synthesis Tool

Because of design complexity and variation needed as shown in the thesis, there is

much research interest in using high level synthesis (HLS) tools to design LDPC

decoders. High level synthesis maps from C/C++ codes to Verilog/VHDL RTL

codes. As a case study, we created a flexible LDPC decoder which fully supports the

IEEE 802.16e WiMax standard using a high level synthesis design tool [15], the PICO
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[131, 132] tool. The generated RTL was synthesized using Synopsys Design Compiler,

and placed & routed using Cadence SoC Encounter on a TSMC 65nm 0.9V 8-metal

layer CMOS technology. The VLSI layout view of this decoder with a core area of

1.2 mm2 (standard cells + SRAMs) is shown in Fig. 6.10. Table 6.9 compares our

decoder with the state-of-the-art LDPC decoders of [65] and [66]. A fair comparison

is difficult to make because of different design parameters. However, it can be roughly

inferred that the PICO-generated decoder can achieve comparable performance with

the hand designed decoders in terms of throughput, area, and power.

Standard Cells

(Core1, Core2, Shifter, etc.)

R Memory (SRAM)

P Memory (SRAM)

Figure 6.10 : VLSI layout view of the LDPC decoder created from high level synthesis.

The PICO scheduler can analyze the underlying data flow graph, and set those

idle registers’ “enable” signals to “0” when the module has no activity. PICO also
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Table 6.9 : LDPC decoder comparisons, HLS v.s. manual design.

This Work [15] Rovini [65] Brack [66]

Core Area 1.2 mm2 0.74 mm2 1.337 mm2

Max Frequency 400 MHz 240 MHz 400 MHz

Max Power 180 mW 235 mW NA

Technology 65 nm 65 nm 65 nm

Quantization 6 5 6

Number of Iterations 10 13 25-20

Max Code Length 2304 1944 2304

Memory (SRAM) 82,944 bit 68,256 bit 0.551 mm2

Max Throughput @ R=1/2 415 Mbps 178 Mbps 333 Mbps

Max Latency @ R=1/2 2.8 µs 5.75 µs 6.0 µs

provides block-level clock gating which shuts off entire processing blocks to minimize

power at an architectural level. Table 6.10 compares the power consumption of a

(2304, 1/2) pipelined LDPC decoder with and without clock-gating. SpyGlass [133]

was used to conduct the gate-level power estimation (not including external SRAMs).

From Table 6.10, we can see a 29% reduction of the “sequential internal power” via

clock-gating. It should be noted that the power number shown in Table 6.10 is just

the standard cell power consumption number.

Table 6.10 : SpyGlass power estimates with and without clock gating

Power Leakage Internal Switching Total

W/ clock-gating 3.43mW 46.1mW 22.5mW 72.0mW

W/O clock-gating 3.43mW 64.5mW 22.5mW 90.4mW
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6.4.5 Multi-Layer Parallel LDPC Decoder for IEEE 802.11n

A flexible double-layer parallel decoder which fully supports IEEE 802.11n LDPC

codes was designed in Verilog HDL [134]. The detailed VLSI architecture of this

decoder was described in Chapter 5 Section 5.6. The fixed-point design parameters

are as follows. The channel input LLR is represented with 6-bit signed numbers with

2 fractional bits. The word lengths of the extrinsic R values and the APP LLR values

are 6 bits and 7 bits, respectively. According to the computer simulation, this fixed-

point implementation introduces only a performance loss of 0.05 dB compared to the

floating-point implementation.

We have synthesized the decoder for a TSMC 45nm CMOS technology. The

maximum clock frequency is 815 MHz and the area is 0.81 mm2 based on the Synopsys

Design Compiler synthesis result. Table 6.11 summarizes the throughput performance

of this double-layer parallel decoder for the decoding of IEEE 802.11n LDPC codes

at 15 iterations. Table 6.12 compares the implementation result of our decoder with

existing 802.11n LDPC decoders from [65, 68, 122]. The solutions from [65, 68, 122]

are all based on the conventional single-layer decoding architecture. Compared to

those decoders, our pipelined double-layer parallel decoder achieves a much higher

throughput at low complexity.
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Table 6.11 : Throughput performance of the multi-layer parallel decoder

Block length Rate 1/2 Rate 2/3 Rate 3/4 Rate 5/6

648 bits 380 Mbps 520 Mbps 760 Mbps 1.0 Gbps

1296 bits 750 Mbps 1.1 Gbps 1.3 Gbps 2.0 Gbps

1944 bits 1.1 Gbps 1.7 Gbps 2.2 Gbps 3.0 Gbps

Table 6.12 : LDPC decoder comparison for IEEE 802.11n

This work [134] Rovini [65] Gunnam [68] Studer [122]

Technology 45 nm 65 nm 130 nm 180 nm

Area 0.81 mm2 0.74 mm2 1.85 mm2 3.39 mm2

Frequency 815 MHz 240 MHz 500 MHz 208 MHz

Iter. 15 14 5 5

Throughput 3.0 Gbps 410 Mbps 1.6 Gbps 780 Mbps

6.5 VLSI Implementation Results for LDPC/Turbo Multi-

Mode Decoder

To support more wireless standards with both LDPC and Turbo coding schemes, we

have implemented a joint LDPC/Turbo decoder. This flexible decoder together with

the proposed MIMO detector can provide a solution for the more advanced iterative

detection and decoding scheme.

6.5.1 Implementation Results for The Flexible Functional Unit

The flexible functional unit (FFU) introduced in Chapter 5 (cf, Fig. 5.32) was first

synthesized. The word lengths for X, Y , V , and W are all 9 bits. To evaluate the area
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efficiency of the proposed FFU, we have described the LDPC f(a, b) unit, the Turbo

ACSA unit, and the FFU in Verilog HDL, and synthesized them on a TSMC 90nm

CMOS technology. The maximum achievable frequency (assuming no clock skews)

and the synthesized area at two frequencies (400 MHz and 800 MHz) are summarized

in Table 6.13. As can be seen, the proposed flexible functional unit FFU has only

about 15% area and timing overhead compared to the dedicated functional units. The

area efficiency is achieved because many logic gates can be shared between LDPC and

Turbo modes.

Table 6.13 : Synthesis results for different functional units

Functional unit |f(a, b)| ACSA FFU

Max frequency 920 MHz 885 MHz 815 MHz

Area (400MHz) 1192 µm2 1263 µm2 1419 µm2

Area (800MHz) 1882 µm2 2086 µm2 2423 µm2

6.5.2 Implementation Results for The Flex-SISO Decoder

The Flex-SISO decoder introduced in Chapter 5 (cf, Fig. 5.33) has been synthesized

on a TSMC 90nm CMOS technology. Table 6.14 summarizes the area distribution of

this decoder. The maximum clock frequency is 500 MHz and the synthesized area is

0.098 mm2. The Flex-SISO is a basic building block in a LDPC decoder or a Turbo

decoder, and can be reconfigured to process an 8-state trellis for a Turbo code, or 8

check rows for an LDPC code. As the baseline design, a single Flex-SISO decoder can
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approximately support 30-40 Mbps (LTE) Turbo decoding, or 40-50 Mbps (802.16e

or 802.11n) LDPC decoding. In a parallel processing environment, multiple SISO

decoders can be used to increase the throughput.

Table 6.14 : Flex-SISO decoder area distribution.

Unit Area

α-unit 0.014 mm2

β-unit 0.014 mm2

Extrinsic-1 unit 0.014 mm2

Extrinsic-2 unit 0.004 mm2

α and γ stack memories 0.045 mm2

Control logic & others 0.007 mm2

Total 0.098 mm2

6.5.3 Implementation Results for The Top-level LDPC/Turbo Decoder

We have designed a high-throughput, flexible LDPC/Turbo decoder to support the

following three codes: 1) 802.16e WiMAX LDPC code, 2) 802.11n WLAN LDPC code,

and 3) 3GPP-LTE Turbo code [14, 19]. Table 6.15 summarizes the performance and

design parameters for this decoder. The number of the Flex-SISO decoders is chosen

to be 12.

To evaluate the fixed-point decoding performance, we perform float-point and bit-

accurate fixed-point simulations for LDPC and Turbo codes using BPSK modulation

over an AWGN channel. As a good trade-off between complexity and performance,



190

Table 6.15 : Performance of the unified LDPC/Turbo decoder.

Codes Code size Parallelism Quant. Iter. Throughput Latency

LDPC 802.16e 576-2304 b z = 24-96 6.2 15 600 Mbps 1590 cycles

LDPC 802.11n 648-1944 b z = 27-81 6.2 15 500 Mbps 1620 cycles

LTE Turbo 40-6144 b 12 6.2 6 450 Mbps 6822 cycles

we use 6.2 (6 bits in total with 2 fractional bits) quantization scheme for channel LLR

inputs for fixed-point LDPC and Turbo decoders.

Fig. 6.11 shows the bit error rate (BER) simulation result for a WiMAX LDPC

code with code-rate = 1/2, and code-length = 2304. The maximum number of it-

erations is 15. As can be seen from Fig. 6.11, the fixed-point FFU solution has a

very small performance degradation (< 0.05dB) at BER level of 10−6 compared to

the floating point solution. We also plot a BER curve for the scaled minsum solu-

tion [63], which is a sub-optimal approximation algorithm without using the look-up

tables. As can be seen from the figure, the look-up table based FFU solution can

deliver a better decoding performance than the scaled minsum solution. The com-

plexity of adding the look-up tables is relatively small because the word length of

the data in the look-up table is only 2-bit (cf. Chapter 5 Table 5.2). Figure 6.12

compares the convergence speed of the single-layered decoding algorithm with the

standard two-phase flooding decoding algorithm.

Fig. 6.13 shows the BER simulation result for 3GPP-LTE Turbo codes with block
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Figure 6.11 : Simulation results for a rate 1/2, length 2304 WiMAX LDPC code.
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Figure 6.12 : Comparison of the convergence speed.

sizes of 6144, 1024, 240, and 40. The maximum number of Turbo iterations is 6

(12 half iterations). The sliding window length is 32. As can be seen from the

figure, the FFU based fixed-point decoder has almost no performance loss compared

to the floating point case. The proposed FFU solution will deliver a better decoding

performance than the sub-optimal max-logMAP solution.

For LDPC decoding, with 12 available Flex-SISO cores the decoder can process up

to 12× 8 = 96 check nodes simultaneously. Because the sub-matrix size z is between

24 to 96 for 802.16e LDPC codes, and 27 to 81 for 802.11n, the proposed decoder

always guarantees that all of the z check nodes within a layer can be processed in

parallel.

For 3GPP-LTE Turbo decoding, the codeword can be partitioned into M sub-
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blocks for parallel processing. The LTE Turbo code uses a quadratic permutation

polynomial (QPP) interleaver [96] so that it allows conflict free memory access as

long as M is a factor of the codeword length. There are 188 different codeword

sizes defined in LTE. For LTE Turbo codes, all of the codewords can support a

parallelism level of 8, some of the codewords can support parallelism levels of 10 or

12. Because we have 12 Flex-SISO cores available, we will dynamically allocate the

maximum possible number of Flex-SISO cores (8 ≤ M ≤ 12) constrained on the QPP

interleaver parallelism. As an example, for the maximum codeword size of 6144, we

can allocate all of the 12 Flex-SISO cores to work in parallel. It should be noted that

the parallelism level has some impact on the error performance of the decoder due to

the edge effects caused by the sub-block partitioning [135].

This flexible decoder has been implemented in Verilog HDL and synthesized on a

TSMC 90nm CMOS technology using Synopsys Design Compiler [14]. The maximum

clock frequency of this decoder is 500 MHz. The synthesized core area is 3.2 mm2,

which includes all of the components in this decoder. Table 6.15 summarizes the

features of this decoder. The decoder can be configured to support IEEE 802.16e

LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Compared

to a dedicated LDPC decoder solution [16], this flexible decoder has only about 15-

20% area overhead when normalized to the same throughput target (with the same

number of iterations). Compared to a dedicated Turbo decoder solution [114], our

flexible decoder shows only about 10-20% area overhead when normalized to the same
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technology and the same throughput and code length. Table 6.5 compares our flexible

decoder with existing LDPC/Turbo multi-mode decoder.

Table 6.16 : Architecture comparison with existing flexible LDPC/Turbo
solutions.

This work [136] [137] [138]

Technology 90nm 65nm 130nm 90nm

Clock frequency 500MHz 400MHz 200MHz NA

Core area 3.2mm2 0.62mm2 NA NA

Throughput (LDPC) 600Mbps 257Mbps 11.2Mbps 70Mbps

Throughput (Turbo) 450Mbps† 18.6Mbps† 86.5Mbps‡ 14Mbps†
† Binary Turbo code.
‡ Double-binary Turbo code.

6.6 Discussions on the Iterative Receiver Design and Imple-

mentation

With the proposed MIMO detector and LDPC/Turbo decoder, an iterative receiver

can be realized by connecting the detector to the decoder. For a channel decoder,

data buffers would be required because the decoder usually needs to receive a whole

codeword block before starting the decoding process. For a MIMO detector, data

buffers will also be required because of the channel interleaving. Fig. 6.14 and Fig. 6.15

show the area and power estimation for the iterative receivers for different antennas.

In the estimation, we assume each stream is separated coded and multiple LDPC

decoders are used for decoding multiple data streams. The detector area and power
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for 4 antenna systems are estimated based on the implementation result in Table 6.3,

and the decoder area and power for 4 antenna systems are estimated based on the

implementation result in Table 6.8. All the numbers are normalized to a same

technology, i.e. 65nm. The area and power for 2 and 8 antenna systems are estimated

based on the ASIC implementation results for 4 antenna system. Since the streams are

separated coded, the decoder complexity increases almost linearly with the number of

antennas. However, the detector complexity increases quadratically with the number

of antennas, with a complexity of O((Nt − 1)(Nt − 2)/2).
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Figure 6.14 : Area estimation for iterative receiver.
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6.7 Summary

We have implemented a channel encoder and a channel decoder accelerator for the

Rice WARP FPGA testbed. The encoder/decoder was successfully integrated into

the WARP MIMO-OFDM System Generator model.

We have implemented various detectors and decoders on ASICs to evaluate the

implementation complexity. Compared with the existing detector and decoder solu-

tions, our architecture can achieve a higher throughput performance with reasonable

hardware resources.

A potential receiver system for 4G wireless systems could be created from the

MIMO detection in Chapter 3 and Chapter 6 connected a channel decoder support-
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ing Turbo and LDPC codes from Chapter 4 and Chapter 5. The system could con-

figured for a single pass or for multiple iterations. Initial simulation results for this

architecture were presented in Chapter 3 Section 3.3.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion of The Current Results

In this thesis, we introduced a reduced-complexity MIMO detector based on a novel

trellis-search algorithm. We represent the search space of the MIMO signal with a trel-

lis structure and convert the MIMO detection problem into a shortest path problem.

We proposed a high-throughput VLSI architecture, which can support multiple Gbps

data rate. We presented the ASIC implementation results for the proposed MIMO

detector architecture. Compared to the existing solutions, the proposed trellis-search

based MIMO detector has a significant throughput advantage and a higher area effi-

ciency. The simulation results suggest that the error performance is very close to the

optimum MAP detector.

We proposed a parallel Turbo decoding algorithm and architecture to achieve Gbps

data rate. We employ multiple MAP decoding units to process a codeword in parallel.

By utilizing the contention-free interleaver structure, we avoid the memory conflict

problem. We implemented a LTE-Advance Turbo decoder on an ASIC technology.

We proposed a multi-layer parallel LDPC decoding algorithm and architecture

to achieve multiple Gbps data rate. The proposed scalable LDPC decoder can be
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configured to support different block sizes and code rates. We presented several

ASIC implementation results for LDPC decoders for various wireless standards, e.g.

IEEE 802.11n and IEEE 802.16e. We further presented a joint LDPC/Turbo decoding

algorithm and architecture to support more wireless standards with a small hardware

overhead.

We developed an iterative detection and decoding scheme based on the proposed

trellis-search detector. In this scheme, the LLR soft values generated by the decoder

are fed to the detector, and then the detector restarts a new round of detection to

further refine the LLR soft values. The simulation results suggest that a 2.5-3 dB gain

can be achieved by such a scheme. The component detector and decoder architectures

and ASIC implementations can be combined to create this receiver.

7.2 Future Work

The following issues can be further investigated:

1. Real-value decomposition based trellis-search algorithm: The current trellis-

search algorithm is based on the complex-value decomposition of the channel matrix.

A variation of this algorithm is to use the real-value decomposition of the channel

matrix and to form a real-valued trellis diagram. The number of stages and the

number of nodes in each stage will change in a real-valued trellis diagram. It would be

an interesting problem to extend the current complex-valued trellis-search algorithm

to support real-valued model and compare the complexity and the performance of
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these two schemes.

2. Unified decoding architecture: It would be an interesting problem to extend

the current joint LDPC/Turbo decoder architecture to support more error-correcting

codes such as LDPC convolutional codes, non-binary LDPC codes, and non-binary

Turbo codes.

3. Low power design: Next generation CMOS technology would offer more low-

power features such as multiple supply voltages and multiple threshold libraries. Fur-

thermore, the 3D CMOS technology is emerging to replace the current planar CMOS

technology. The designer can take advantage of these new technologies to reduce

the power consumption from all aspects. Low power design is especially useful for

hand-held devices, such as cellphones.
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