THE
RICE INSTITUTE
HOUSTON TEXAS

PRELIMINARY ANNOUNCEMENTS FOR THE ACADEMIC YEAR BEGINNING SEPTEMBER FOURTEENTH NINETEEN HUNDRED AND TWENTY-ONE
THE RICE INSTITUTE
A UNIVERSITY OF LIBERAL AND TECHNICAL LEARNING
FOUNDED IN THE CITY OF HOUSTON TEXAS BY WILLIAM MARSH RICE
AND DEDICATED BY HIM TO THE ADVANCEMENT OF LETTERS SCIENCE AND ART
OPENED FOR THE RECEPTION OF STUDENTS IN THE AUTUMN OF NINETEEN HUNDRED AND TWELVE

THE BOARD OF TRUSTEES
JAMES ADDISON BAKER : CHAIRMAN
WILLIAM MARSH RICE JR. : VICE-CHAIRMAN
BENJAMIN BOTTs RICE : SECRETARY-TREASURER EDGAR ODELL LOVETT
JOHN THADDEUS SCOTT
CALENDAR

1921

September 14-17 . Entrance Examinations
September 16 . Registration of new students
September 17 . Registration of old students
September 19 . Lectures begin
September 21 . Matriculation address
November 24 . Thanksgiving Day
December 21 . Autumn term ends

1922

January 3 . Winter term begins
February 22 . Washington's Birthday
March 2 . Texas Independence Day
March 23 . Winter term ends
March 27 . Spring term begins
April 21 . San Jacinto Day
May 22-27 . Entrance Examinations
June 2 . Spring term ends
June 10-12 . Seventh Annual Commencement
THE RICE INSTITUTE
OFFICERS OF ADMINISTRATION

EDGAR ODELL LOVETT, Ph.D., LL.D.,
President

ROBERT GRANVILLE CALDWELL, Ph.D.,
Dean

SAMUEL GLENN McCANN, M.A.,
Registrar

JOHN THOMAS McCANTS, M.A.,
Bursar
THE RICE INSTITUTE

THE NAME

The new institution bears the name of the founder, the late William Marsh Rice. It aspires to university standing of the highest grade. Dedicated to the advancement of literature, science, and art, the educational programme of liberal and technical learning now being developed may justify the designation "Institute" as representing the functions of a teaching university and, at least in some of its departments, those of the more recent research institutions established in this country and abroad.

BRIEF HISTORICAL SKETCH

It is now rather more than twenty-five years since several public-spirited citizens of the community asked Mr. Rice to bear the expense of building a new public high school for the city of Houston. This direct gift to the city's welfare Mr. Rice was unwilling to make, but a few months later, taking into his confidence a half-dozen friends, he made known to them his desire to found a much larger educational enterprise for the permanent benefit of the city and State of his adoption. These gentlemen were organized into a Board of Trustees for the
THE RICE INSTITUTE

new foundation, which was incorporated in 1891 under a broad charter granting the trustees large freedom in the future organization of a non-political and non-sectarian institution to be dedicated to the advancement of letters, science, and art. As a nucleus for an endowment fund, Mr. Rice at this time made over an interest-bearing note of two hundred thousand dollars to the original Board of Trustees, consisting of himself, Mr. James A. Baker, and the late Messrs. J. E. McAshan, E. Raphael, F. A. Rice, A. S. Richardson, and C. Lombardi. Under the terms of the charter, the board is a self-perpetuating body of seven members elected for life: vacancies since its organization have been filled by the election of Messrs. William Marsh Rice, Jr., Benjamin Botts Rice, Edgar Odell Lovett, and John Thaddeus Scott.

It was the unalterable will of the founder that the development of the work which he had conceived should progress no further during his lifetime. However, in the remaining days of his life he increased the endowment fund from time to time by transferring to the trustees the titles to certain of his properties, and in the end made the new foundation his residuary legatee. Upon the termination of the long years of litigation which followed Mr. Rice's death in 1900, the Board of Trustees found the Institute in possession of an estate whose present value is conservatively estimated at approximately ten million dollars, divided by the provisions of the founder's will into almost equal parts available for equipment and endowment respectively. It may be remarked in passing that it is the determined policy of the trustees to build and maintain the institution out of the income, thus preserv-
ing intact the principal not only of the endowment fund but also that of the equipment fund. While proceeding to convert the non-productive properties of the estate into income-bearing investments, the trustees called Mr. Edgar Odell Lovett, a professor in Princeton University, to assist them in developing the founder's far-reaching plans. Before taking up his residence in Houston, the future president visited the leading educational and scientific establishments of the world, returning in the summer of 1909 from a year's journey of study that extended from England to Japan. About this time negotiations were completed by which the Institute secured a campus of three hundred acres situated on the extension of Houston's main thoroughfare, three miles from the center of the city—a tract of ground universally regarded as the most appropriate within the vicinity of the city.

Another early decision of the trustees of the Institute was the determination that the new university should be housed in noble architecture worthy of the founder's high aims; and upon this idea they entered with no lower ambition than to establish on the campus of the Institute a group of buildings conspicuous alike for their beauty and for their utility, which should stand not only as a worthy monument to the founder's philanthropy, but also as a distinct contribution to the architecture of our country. With this end in view they determined to commit to Messrs. Cram, Goodhue, and Ferguson, of Boston and New York, the task of designing a general architectural plan to embody in the course of future years the realization of the educational programme which had been adopted for the Institute. Such a general plan, the work
of Mr. Ralph Adams Cram, L.H.D., exhibiting in itself many attractive elements of the architecture of Italy, France, and Spain, was accepted by the board in the spring of 1910. Immediately thereafter plans and specifications for an administration building were prepared, and in the following July the contract for its construction was awarded; three months later the erection of a mechanical laboratory and power-house was begun, and by the next autumn the construction of two wings of the first residential hall for men was well under way. In the preparation of preliminary plans for its initial building operations the Institute enjoyed the coöperation of an advisory committee consisting of Professor Ames, director of the physical laboratory of Johns Hopkins University; Professor Conklin, director of the biological laboratory of Princeton University; Professor Richards, chairman of the department of chemistry, Harvard University; and Professor Stratton, director of the National Bureau of Standards. In 1911, on the seventy-fifth anniversary of Texas Independence, the corner-stone of the administration building was laid by the trustees. This building, the mechanical laboratory of the engineering quadrangle, the power-house, and the first two wings of the first residential hall for men were ready for occupancy at the beginning of the first academic year in the fall of 1912. The third wing of this residential hall, begun in 1913, was occupied by the students in the autumn of 1914; while the construction of the physics laboratories and lecture amphitheater, begun also in 1913, was completed in the summer of 1914 from plans prepared by Messrs. Cram and Ferguson under the direction of Mr. H. A. Wilson, D.Sc.,
PRELIMINARY ANNOUNCEMENTS

F.R.S., resident professor of physics in the Institute. In January, 1916, ground was broken for the first wing of the second residential group for men; the construction of this wing was completed by September, 1916. The building schedule for the near future includes also special laboratories for instruction and investigation in chemistry and biology, and in the applications of these sciences to the arts of industry and commerce.

The actual work of instruction of the first academic year began on the 23d day of September, 1912, the anniversary of the death of the founder. In the presence of the trustees of the Institute, members of the teaching staff, and representative citizens of the community, the first class of students was received in the faculty chamber of the administration building with appropriate ceremonies on September 26th. The scholastic work of the first academic year was limited to a single class of freshmen of a standard of preparation as high as the best public and private high schools were capable of producing.

In the early autumn of 1912 an academic festival in observance of the formal opening of the Institute was held under most favorable conditions of weather, most generous coöperation of the community and commonwealth, and the heartening encouragement of several hundred scholars and scientists who came to Houston to assist in the launching of the new university. Chief among these distinguished representatives of life and learning were the twelve foreign savants who had consented to participate in the inaugural programme by preparing series of lectures in the liberal humanities of philosophy, history, letters, and art, and in the funda-
mental sciences of mathematics, physics, chemistry, and biology. A complete account of the proceedings occupying the four days devoted to this celebration has been embodied in publications issued in commemoration of that occasion. In the latter appear in full the inaugural lectures of Professor Rafael Altamira y Crevea, of Madrid, Spain; Professor Emile Borel, of Paris, France; Senator Benedetto Croce, of Naples, Italy; Professor Hugo de Vries, of Amsterdam, Holland; Professor Sir Henry Jones, of Glasgow, Scotland; Privy Councilor Baron Dairoku Kikuchi, of Tokyo, Japan; Professor John William Mackail, of London, England; Privy Councilor Professor Wilhelm Ostwald, of Gross-Bothen, Germany; the late Professor Henri Poincaré, of Paris, France; the late Professor Sir William Ramsay, of London, England; Professor Senator Vito Volterra, of Rome, Italy; Professor Carl Størmer, of Christiania, Norway. In these commemorative volumes there appear also reproductions of responses from American and foreign universities and scientific societies to the invitation of the Institute; the addresses of Governor Colquitt, Chief Justice Brown of Texas, Bishop Gailor of Tennessee, the inaugural poem of Dr. Henry van Dyke of Princeton, and the dedicatory sermon by Dr. Charles F. Aked of San Francisco; together with the addresses delivered by the presidents or other official representatives of Amsterdam, Glasgow, London, Oviedo, Paris, Rome, Baylor, Chicago, Columbia, Lehigh, Princeton, Texas, Vanderbilt, and Virginia universities; and a variety of other literary and artistic performances which are not easily classified in a brief résumé. More recently a special volume has appeared
embodying the lectures and conferences delivered at the Institute on the occasion of visits to the Rice Institute from the British Educational Mission and the Official Mission of French Scholars to the Universities of the United States. Similar publications are in preparation in which will appear lectures on mathematics and mathematical physics delivered at the Institute by Senator Vito Volterra, of the University of Rome, and Professor Jacques Hadamard, of the Collège de France; those of Professor William Howard Taft, of Yale University, inaugurating the Godwin Lectureship; the second course of lectures on the Sharp Foundation, by Professor Andrew Cunningham McLaughlin, of the University of Chicago; lectures on the history of science delivered during the last academic year by Sir Arthur Shipley, of the University of Cambridge; on biology, by Professor Edwin Grant Conklin, of Princeton University; on public affairs, by Sir Auckland Geddes, the British Ambassador, on the Godwin Foundation; and a course by resident members of the Institute in observance of the six hundredth anniversary of the death of Dante.

THE FACULTY

Edgar Altenburg, Ph.D. (Columbia), of Elizabeth, New Jersey; formerly Assistant in Biology at Columbia University; Instructor in Biology at the Rice Institute; Assistant Professor of Biology.

William Orus Andrews, B.S. in C.E. (Illinois), of Boston, Massachusetts; formerly Instructor in Rational

1 Arranged in alphabetical order, with last address and appointment before receiving academic appointment at this institution.
and Technical Mechanics at Rensselaer Polytechnic Institute; Instructor in Civil Engineering.

Philip Heckman Arbuckle, Ph.B. (Chicago), of Georgetown, Texas; formerly Director of Athletics in Southwestern University; Instructor in Physical Education at the Rice Institute; Assistant Professor of Physical Education and Director of Athletics.

Stockton Axson, M.A. (Wesleyan), Litt.D. (Pittsburgh), L.H.D. (Wesleyan), L.L.D. (Knox), of Princeton, New Jersey; formerly of the University of Vermont and of Adelphi College; Professor of English Literature in Princeton University; Professor of English Literature.

Lindsey Blayney, M.A. (Centre), Ph.D. (Heidelberg), of Danville, Kentucky; formerly Professor of European Literature and the History of European Art in Central University of Kentucky; Professor of German.

Hubert Evelyn Bray, B.A. (Tufts), M.A. (Harvard), Ph.D. (Rice), of Great Yarmouth, England; formerly Instructor in Mathematics at Tufts College and at Lafayette College; Fellow in Mathematics at the Rice Institute; Instructor in Mathematics.

Charles Lowman Browne, B.S. (Kenyon), B.Arch. (Cornell), of Paris, France; Instructor in Architectural Construction.

Andrew Bonnell Bryan, M.A. (Rice), of Hearne, Texas; Fellow in Physics at the Rice Institute; Instructor in Physics.

Robert Granville Caldwell, B.A. (Wooster), Ph.D. (Princeton), of Wooster, Ohio; formerly Fellow of Princeton University; Professor of Economics in the College of Wooster; Assistant Professor of History at
PRELIMINARY ANNOUNCEMENTS

the Rice Institute; Professor of American History and Dean of the Institute.

Asa Crawford Chandler, B.A. (Cornell), Ph.D. (California), of Corvallis, Oregon; formerly Assistant Professor of Zoölogy and Physiology at Oregon Agricultural College; Instructor in Biology.

Henry Ernest Conklin, M.A. (Cornell), of Roslyn, Long Island, New York; formerly Scholar in English at Princeton University; Instructor in English.

Bartholow Vincent Crawford, B.A. (Cornell College), Ph.D. (Harvard), of Cambridge, Massachusetts; formerly Instructor in Rhetoric at the University of Minnesota; Harris Fellow at Harvard University; Instructor in English.

Percy John Daniell, M.A. (Cambridge), of Liverpool, England; Senior Wrangler and Rayleigh Prizeman of the University of Cambridge; formerly Lecturer in Mathematics at the University of Liverpool; Research Associate and later Assistant Professor of Applied Mathematics at the Rice Institute; Professor of Applied Mathematics.

Harry Franklin Dart, B.S. in E.E. (Purdue), of Scranton, Pennsylvania; Instructor in Electrical Engineering.

Erwin Escher, M.A. (Chicago), of Jacksonville, Illinois; formerly Professor of Romance Languages at Illinois College; Instructor in Romance Languages.

Griffith Conrad Evans, Ph.D. (Harvard), of Boston, Massachusetts; formerly Instructor in Mathematics at Harvard University; Sheldon Fellow of Harvard University at the University of Rome; Assistant Professor

[15]
of Pure Mathematics at the Rice Institute; Professor of Pure Mathematics.

Lester R. Ford, B.A. (Missouri), Ph.D. (Harvard), of Cambridge, Massachusetts; formerly Instructor in Mathematics at Harvard University and Instructor in Life Insurance in the Graduate School of Business Administration of Harvard University; Assistant Professor of Mathematics.

Clyde Chew Glascock, Ph.D. (Johns Hopkins), of New Haven, Connecticut; formerly Fellow of Johns Hopkins University; Assistant Professor of German in Yale University; Assistant Professor of Modern Languages.

Albert Léon Guérard, Agrégé de l'Université de France, of Palo Alto, California; formerly Junior Professor of French Literature and Examiner of History, State Normal School, Paris; later Instructor in the Romanic Languages at Williams College; Associate Professor of French in the Leland Stanford Junior University; Professor of French.

Claude William Heaps, B.S. (Northwestern), Ph.D. (Princeton), of Columbia, Missouri; formerly Class of 1860 Experimental Science Fellow of Princeton University; Instructor in Physics at the University of Missouri; Instructor in Physics at the Rice Institute; Assistant Professor of Physics.

Lloyd Brelsford Howell, B.A. (Wabash), Ph.D. (Illinois), of Urbana, Illinois; formerly Fellow in Chemistry at the University of Illinois; Instructor in Organic Chemistry.

Herbert Kay Humphrey, B.S. in E.E. (Illinois), M.S.
in E.E. (Union), E.E. (Illinois), of Schenectady, New York; Assistant Consulting Engineer of the General Electric Company; Instructor in Electrical Engineering at the Rice Institute; Assistant Professor of Electrical Engineering.

Laurice Laird Lockrow, B.S. in E.E. (Purdue), M.A. (Rice), of Milwaukee, Wisconsin; Assistant in Electrical Engineering at the Rice Institute; Instructor in Physics.

Edgar Odell Lovett, Ph.D. (Virginia and Leipsic), LL.D. (Drake, Tulane, and Baylor), of Houston, Texas; formerly Professor of Mathematics in Princeton University, and later Head of the Department of Astronomy in the same institution; Professor of Mathematics and President of the Institute.

William Thomas Lyle, C.E. (Princeton), of High Bridge, New Jersey; formerly Professor of Municipal Engineering at Lafayette College; Lecturer in Engineering Drawing.

Leslie Mann, of Lincoln, Nebraska; graduate of the International Y. M. C. A. College, Springfield, Massachusetts; Assistant in Physical Education at the Rice Institute; Instructor in Physical Education.

Baldwin Maxwell, M.A. (North Carolina), of Chicago, Illinois; Fellow in English at the University of Chicago; Instructor in English.

Samuel Glenn McCann, Ph.B. (Wooster), M.A. (Rice), of Dresden, Ohio; formerly Fellow in History at the Rice Institute; Instructor in Jurisprudence and Registrar of the Institute.

John Thomas McCants, M.A. (Virginia and Yale), of Houston, Texas; formerly Scholar at the University of
THE RICE INSTITUTE

Virginia, and University Fellow at Yale University; Instructor in English at the Rice Institute; Instructor in Business Administration and Bursar of the Institute.

Alan Dugald McKillop, Ph.D. (Harvard), of Cambridge, Massachusetts; formerly Instructor in English at the University of Illinois; Instructor in English.

Henry Oscar Nicholas, B.A. (Oberlin), of New Haven, Connecticut; formerly Fellow and Assistant in Chemistry at Yale University; Instructor in Analytical Chemistry.

Eugene Jean Oberlé, M.A. (Stanford), of Palo Alto, California; formerly Instructor in Romanic Languages at the Leland Stanford Junior University; Instructor in French.

Fred L. Orr, B.S. in M.E. (Nebraska), of Lyons, Nebraska; Instructor in Mechanical Engineering.

Joseph Horace Pound, B.S. in M.E., M.E. (Missouri), of Pittsburgh, Pennsylvania; Instructor in the School of the Westinghouse Machine Company; Instructor in Mechanical Engineering at the Rice Institute; Assistant Professor of Mechanical Engineering.

John Herbert Rafferty, B.S. in C.E. (Tufts), of Lynn, Massachusetts; formerly Instructor in Civil Engineering at Tufts College; Instructor in Civil Engineering.

Norman Hurd Ricker, Ph.D. (Rice), of Houston, Texas; formerly Fellow in Physics at the Rice Institute; Instructor in Physics.

Lewis Babcock Ryon, Jr., C.E. (Lehigh), of South Bethlehem, Pennsylvania; Instructor in Civil Engineering.

John Willis Slaughter, B.A. (Lombard), Ph.D. (Mich-
PRELIMINARY ANNOUNCEMENTS

igan), of New York City; formerly Lecturer on Sociology in the School of Economics of the University of London; Lecturer in Civics and Philanthropy.

William Curtis Swabey, M.A. (Stanford), Ph.D. (Cornell), of Lawrence, Kansas; formerly Instructor in Philosophy and Psychology at the University of Kansas; Instructor in Philosophy and Education.

Adolph Benjamin Swanson, B.A. (Augustana), M.A. (Iowa), of Chicago, Illinois; formerly Professor of German at Ellsworth College; Instructor in French.

John Clark Tidden, of Philadelphia, Pennsylvania; Fellow and Traveling Scholar of the Pennsylvania Academy of Fine Arts; Instructor in Architectural Drawing and Painting.

Radoslav Andrea Tsanoff, B.A. (Oberlin), Ph.D. (Cornell), of Worcester, Massachusetts; formerly Sage Fellow of Cornell University; Instructor in Philosophy at Clark University; Assistant Professor of Philosophy.

Curtis Howe Walker, Ph.D. (Yale), of Chicago, Illinois; formerly Assistant Professor of History at the University of Chicago; Lecturer in European History.

James Stephen Waters, B.S. (Rice), of Galveston, Texas; Instructor in Engineering.

William Ward Watkin, B.S. in Arch. (Pennsylvania), M.A.I.A., of Houston, Texas; formerly Scholar in Architecture in the University of Pennsylvania; local representative of Messrs. Cram and Ferguson, the supervising architects of the Institute; Instructor in Architecture at the Rice Institute; Assistant Professor of Architecture.

Harry Boyer Weiser, M.A. (Ohio State), Ph.D. (Cornell) of Memphis, Tennessee; formerly Assistant In-
THE RICE INSTITUTE

structor in Chemistry at Cornell University; Assistant Professor of Chemistry in the University of Tennessee; Instructor in Chemistry, and later Assistant Professor of Chemistry at the Rice Institute; Professor of Chemistry.

Harold Albert Wilson, F.R.S., M.A. (Cambridge), D.Sc. (London), of Montreal, Canada; Fellow of Trinity College, Cambridge University; formerly Professor in King's College, London; Research Professor of Physics in McGill University; Professor of Physics.

ASSISTANTS AND FELLOWS

Paul Edward Boucher, B.A. (Colorado College), of Hanover, New Hampshire; formerly Instructor in Physics at Colorado College; Assistant in Physics at Dartmouth College; Fellow in Physics.

Alice Crowell Dean, M.A. (Rice), of Houston, Texas; Fellow in Mathematics.

Allen Darnaby Garrison, M.S. (Rice), of Austin, Texas; Fellow in Chemistry.

John Broadus Hathorn, B.A. (Rice), of Kingsville, Texas; Fellow in Philosophy and Education.

Frederick R. Lummis, M.D. (Pennsylvania), of Houston, Texas; Medical Adviser to the Committee on Outdoor Sports.

Francisco Montau, B.A. (Chile), of Urbana, Illinois; formerly Acting Instructor in Spanish at the University of Illinois; Assistant in Spanish.

While seeking to develop its students in character, in culture, and in citizenship, the Rice Institute will reserve for scholarship its highest rewards and in particular for evidences of creative capacity in productive scholarship. To encourage this devotion to learning there have been devised through the donations of friends of the Institute a number of undergraduate scholarships to be awarded preferably to those students who have been in residence at the Institute for at least one year. Moreover, honorary scholarships without stipend may be granted to students whose scholastic standing shows marked ability.

The Graham Baker Studentship

The first of these undergraduate scholarships to be established at the Institute is the Graham Baker Studentship, founded by Captain and Mrs. James A. Baker, of Houston, in memory of their eldest son, the late Frank Graham Baker. This studentship is awarded annually to students of the Rice Institute upon the basis of highest standing in scholarship, and the holder is known as the Graham Baker Student for the year. The award is announced at the commencement convocation in June, and the annual stipend is $300.

The Hohenthal Scholarships

The Hohenthal Scholarship Fund is a gift to the Rice Institute made through the good offices of Mr. William M. Rice, Jr., from the estate of the late Lionel Hohenthal,
of Houston, who in his last will and testament instructed his executor, Mr. Rice, to devote the residue of his estate to the founding of a permanent memorial to Mr. Hohnenthal’s mother, father, and brother. The scholarships provided by this fund are known as the Hohnenthal Scholarships, and the holders as the Hohnenthal Scholars of the Institute. These scholarships are awarded annually to necessitous students on a basis of high standing in scholarship. Each of the six now available carries with it an annual stipend of $200.

Scholarships in Civics and Philanthropy

In establishing the Sharp Lectureship in Civics and Philanthropy at the Institute, Mrs. Estelle B. Sharp, of Houston, has undertaken also to associate with this lectureship four scholarships in civics and philanthropy. On Mrs. Sharp’s invitation, these scholarships have been provided during the last academic year by the following gentlemen of Houston: Messrs. Joseph S. Cullinan, Will C. Hogg, Abe M. Levy, and a scholarship by an anonymous donor. The scholarships bear an annual stipend of $250 and are awarded preferably to graduates of high standing intending to prepare for work in social service.

The D.A.R. Scholarship

The John Mcknitt Alexander Chapter of the Daughters of the American Revolution has undertaken to provide an endowed undergraduate scholarship at the Rice Institute. Under the present conditions of the
PRELIMINARY ANNOUNCEMENTS

scholarship it is awarded to necessitous young women students on admission to the Institute and carries with it an annual stipend of $250. The first award was made for the academic year 1919-20.

FELLOWSHIPS

Furthermore, the Institute would interpret in a very large way its dedication to the advancement of letters, science, and art. It would not only look to the employment of these disciplines in the development of the life of the individual and in that of the race, but it would also play its part in the progress and enlargement of human knowledge by contributions of its own resident professors and scholars. Accordingly there should always be associated with the staff of the Institute a group of advanced students in training for careers both as teachers and researchers: with this end in view, graduate fellowships will be awarded from time to time to degree-bearing students of the Institute or other educational foundations of similar standing.

OPPORTUNITIES FOR SELF-HELP

In addition to the stipends of fellowships and endowed scholarships, there are on the campus and in the city opportunities in considerable variety for worthy and deserving students to earn a part of their living expenses while attending the Institute. Information concerning such openings may be obtained from the Bursar. Thanks also to the generosity of several citizens, there is avail-
THE RICE INSTITUTE

able at the Institute a growing student loan fund. Inquiries concerning the administration of this fund should be addressed to the Bursar.

REQUIREMENTS FOR ADMISSION

Candidates for admission to the Institute who present satisfactory testimonials as to their character will be accepted either upon successful examination in the entrance subjects or by certificate of graduation from an accredited public or private high school. The standard requirements for matriculation are determined by the system of units given below. A unit represents a course of study pursued five hours a week for an academic year.

Fifteen units are required for entrance in full standing to the freshman class of the Institute. A limited number of candidates offering at least thirteen units may be accepted conditionally on presentation of a certificate of graduation accompanied by evidence of careful preparation and of ability to carry the courses of the freshman year. Such students are advised to send in their credentials to the Registrar as early as possible.

From the list of subjects printed below every candidate will be required to present three units in English, three units in mathematics, two of which must be in algebra, two units in history, and three units in one foreign language or two units in each of two modern foreign languages. No student will be admitted to a special schedule

1 Students expecting to enter the Institute are advised to elect mathematics during their fourth year. If possible, this course should include training in algebra and trigonometry.
who has not satisfied in full the requirements for admission to the freshman class.

Advanced credit will be granted to students coming from other recognized colleges and universities only when the work presented is equivalent in content and quality to a full year course at the Institute. Such prospective students should make early application to the Registrar and submit official statements of their preparatory and college work, together with catalogues of the institutions attended.

Entrance examinations will be held at the Institute beginning September 14, 1921, and again during the week beginning May 22, 1922. Applications for the privilege of taking these examinations must be received at the Registrar's Office three weeks in advance of the beginning of the examinations. Such applications must be accompanied by statements and records from schools attended by candidates. Appropriate blanks for such applications and records may be obtained from the Registrar's Office of the Rice Institute on request.

LIST OF SUBJECTS WITH VALUES IN UNITS

Botany 1; Chemistry 1; English (3 or 4); French (Elementary 2, Intermediate 1); German (Elementary 2, Intermediate 1); Greek (Grammar and Elementary Prose Composition 1, Xenophon 1, Homer—Iliad, Books I–III 1); History (Ancient 1, Mediæval and Modern 1, English 1, American 1); Latin, credit will not be given for fewer than 3 units (Grammar, Elemen-
THE RICE INSTITUTE

tary Prose Composition and Cæsar 2, Cicero 1, Virgil 1); Mathematics (Algebra 2, Plane Geometry 1, Solid Geometry 1/2, Trigonometry 1/2); Spanish (Elementary 2, Intermediate 1); Physics 1; Physical Geography 1/2; Physiology 1/2; Zoölogy 1. Substitutes for certain of these subjects may be considered in individual cases.

The terms of admission to the Institute are based on the recommendations of the Carnegie Foundation for the Advancement of Teaching as expressed in the Documents of the College Entrance Examination Board. Complete information with respect to further details of these requirements will be forwarded by the Institute to any candidate upon receipt of a request addressed to the Registrar of the Institute.

EXPENSES

The opportunities for study and research offered by the Rice Institute are open without tuition both to young men and to young women. A small deposit will be required to cover possible breakage in the laboratories and losses from the libraries; the balance from this contingent fee is returnable after the close of the session.

Students, of course, are expected to meet all expenses incurred in the purchase of text books, drafting instruments, note books, registration and examination papers, certificates and diplomas, and the materials actually used up in the experimental courses in pure and applied science.

No student in arrears in his bills to the Institute will be admitted to any of the examinations.

At the time of registration a fee of twelve dollars and
fifty cents is assessed each student by the Students' Association to meet the expenses of the Students' Association, the Honor Council, and the student publications. This assessment is made with the approval of the Faculty and the Board of Trustees, but the payment of the fee is not compulsory. However, students who thus become members of the Students' Association are entitled to admission to all athletic contests of Rice Institute teams held in Houston, and they receive the weekly paper and the college annual.

Rooms in the residential halls for men, completely furnished exclusive of linen, may be had at prices ranging from fifteen to forty dollars for each of the three terms in which the year is divided, payable by the term in advance. As the charge for table board will be listed at actual cost, the monthly price, payable in advance, will probably vary during the year. For the first month of four weeks the charge will be twenty-seven dollars.

These residential halls are of absolutely fireproof construction, heated by steam, lighted by electricity, cleaned by vacuum apparatus, and equipped with the most approved form of sanitary plumbing, providing adequate bathing facilities on every floor. The rooms will be let in the order of applications received. Applications must be accompanied by deposits of ten dollars. Inasmuch as each year the accommodations now adequate to house some three hundred and fifty men have all been engaged before the opening of the session, reservations should be made early. Diagrams showing the floor plans will be sent to any one who may be interested on application to the Office of the Bursar.
Accommodations for the residence of young women on the university grounds are not available at present. However, while attending to their duties on the campus the young women of the university have access to adequate rest rooms, tennis courts, and other forms of recreation under the constant supervision of Mrs. Sara Stratford, Adviser to Women. Information concerning desirable places of residence for young women students may be had at the Office of the Bursar.

COURSES OF INSTRUCTION FOR DEGREES

Although it is the policy of the new institution to develop its university programme rather more seriously from the science end, there are also being provided facilities for elementary and advanced courses in the so-called humanities, thereby enabling the Institute to offer both the advantages of a liberal general education and those of special and professional training. Extensive general courses in the various domains of scientific knowledge will be available, but in the main the programme consists of subjects carefully coördinated and calling for considerable concentration of study. These programmes have been so arranged as to offer a variety of courses in arts, in science, in letters, and in their applications to the several fields of engineering, architecture, and other regions of applied science, leading after four years of undergraduate work to the degree of Bachelor of Arts. Degrees will also be offered in architecture and in chemical,
PRELIMINARY ANNOUNCEMENTS

civil, electrical, and mechanical engineering. Furthermore, for the degrees of Master of Arts, Doctor of Philosophy, and Doctor of Engineering, every facility will be afforded properly qualified graduate students to undertake lines of study and research under the direction of the Institute's resident and visiting professors.

The academic programmes of study leading to the degree of Bachelor of Arts after four years of study are of a common type for the first two years, but for the third and fourth years are differentiated into two forms: first, general courses leading to the degree of Bachelor of Arts, either with some grade of distinction or without special mention, and second, honors courses leading to the degree with honors in certain subjects. These two types will be referred to in the sequel as general courses and honors courses respectively.

The general course leading to the degree of B.A. has been arranged to give thorough training to those students who are seeking university instruction in literary and scientific subjects either as a part of a liberal education or as preliminary to entering upon a business or professional career. The general course therefore involves the study of several subjects up to a high university standard but does not include a highly detailed specialized study of any one subject such as is necessary before research work or university teaching can be profitably undertaken. Students wishing to specialize with a view to research work and university teaching may either complete an honors B.A. course and then proceed by graduate study to the degrees of M.A. and Ph.D., or they may first take a gen-
eral B.A. course and after completing it proceed by graduate study to the higher degrees.

The attention of students intending to enter the profession of engineering or architecture is called to the great advantages in first taking a general or honors academic course before beginning special study in engineering or architecture. At present the Institute is not offering courses leading to degrees in law and medicine, but students looking forward to such careers will find in the earlier years of the B.A. course all the requirements for admission to many medical and law schools, provided suitable subjects are chosen. However, attention is called to the fact that several professional schools of law and medicine are now requiring bachelor degrees for admission.

As has already been intimated, the course for the degree of B.A. extends over four years. During the first two years a considerable part of the work is prescribed, while during the last two years each student is allowed, within certain restrictions, to select the subject he studies. In the majority of the courses the formal instruction offered consists of three lectures a week together with laboratory work in certain subjects. Examinations are held from time to time and at the end of each term. These examinations are conducted under a student honor system. In determining the standing of a student in each class both his work during the term and the record of his examinations are taken into account.

Of subjects included in the B.A. courses the following are now available:
<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. English</td>
<td>1. Pure Mathematics</td>
</tr>
<tr>
<td>2. French</td>
<td>2. Applied Mathematics</td>
</tr>
<tr>
<td>3. German</td>
<td>3. Physics</td>
</tr>
<tr>
<td>4. Italian</td>
<td>4. Chemistry</td>
</tr>
<tr>
<td>5. Latin</td>
<td>5. Biology</td>
</tr>
<tr>
<td>7. Economics</td>
<td>7. Civil Engineering</td>
</tr>
<tr>
<td>8. Education</td>
<td>8. Electrical Engineering</td>
</tr>
<tr>
<td>10. Philosophy</td>
<td></td>
</tr>
<tr>
<td>11. Architecture</td>
<td></td>
</tr>
</tbody>
</table>

Candidates for the degree of Bachelor of Arts of the Rice Institute will be required to select studies from the preceding groups according to the yearly programmes exhibited below.

At the beginning of each year of his residence at the Institute, each student is assigned to some member of the faculty who will act as the student's personal adviser in the selection of his studies and courses and in other matters pertaining to life at the Institute.

First Year

1. Pure Mathematics
2. English
3. A modern language
4. A science
5. One other subject
THE RICE INSTITUTE

Second Year

(1) Pure mathematics or a science
(2) English
(3) A modern language
(4-5) Two other subjects

At the beginning of the third year students may elect to take either a general course or an honors course.

Third Year General B.A. Course

Four subjects, of which two must have been taken in the second year and one in both first and second. At least one subject from each of the groups A and B must be taken. Students will receive advice in the selection of their subjects.

Fourth Year General B.A. Course

Four subjects, two of which must have been taken in the third year and one in both second and third or in first and third. At least one subject from each of the groups A and B must be taken. However, students will be allowed to specialize in their senior year, provided they substitute an advanced course for the required group A or group B subject.

A student who wishes to become a candidate for a general B.A. degree should report his candidacy in writing at the beginning of the year in which he expects to take his degree.

1 Students who enter with credit in two modern languages may substitute another subject for (3) in the second year; on the other hand, students must take at least one second year language course for graduation.
PRELIMINARY ANNOUNCEMENTS

To students who have completed a general four years' course the B.A. degree will be awarded either with some grade of distinction or without special mention.

The third and fourth year honors courses are intended for students who wish to specialize in particular branches of knowledge with a view to research work or teaching or later professional studies.

In view of these special objects the requirements in such courses will be more severe than in the general courses in the same subjects. For this reason it is recommended that students exercise due caution and seek advice before electing to take an honors course. Only those students who have shown in their first and second years that they are especially well qualified will be permitted to take an honors course. A student proposing to take an honors course must satisfy the department concerned that he is qualified to proceed with the study of that subject. He will be required to take the lectures and practical work provided for honors students in that subject during each of the two years and in addition certain courses in allied subjects.

In 1921-22 honors courses will be available as follows:

(1) Pure and applied mathematics
(2) Theoretical and experimental physics
(3) Modern languages and literatures
(4) Biology
(5) Chemistry
(6) Economics and mathematics
(7) English
THE RICE INSTITUTE

The following programme in honors courses in physics may be taken as typical of such courses:

Third year, five subjects: (1) mathematics, (2) physics 300, (3) physics 310, (4) physics 400, (5) one other subject.

Fourth year, five subjects: (1) mathematics, (2) physics 400, (3) physics 420, (4) physics 500, (5) one other subject.

A student who wishes to become a candidate for a degree with honors should report his candidacy at the beginning of his Junior year and renew his application at the beginning of his Senior year.

The degree of B.A. with honors will be awarded at the end of the fourth year to students who have completed an honors course. Candidates for honors who fail may be excused such part of a general course as may be equivalent to the work they have done. Candidates for honors who are not making satisfactory progress may be required to discontinue their honors course and may be excused such part of a general course as may be equivalent to the work they have done.

For courses leading to the degree of Bachelor of Science, see pages 66 and 81.

A student who has completed a general or an honors course for the B.A. degree may obtain the Master of Arts degree after the successful completion of one year of graduate work.

A candidate for the M.A. degree must elect a principal subject, and submit his schedule in writing when he reports his candidacy. Such schedule must represent the equivalent of four advanced courses to be passed with
high credit. The work shall consist of (a) personal investigation, the results of which must be submitted as a thesis, and (b) at least two advanced courses of lectures, one of which must be a graduate course in the principal subject.

For courses leading to the degree of Master of Science, see page 66.

A student who has completed a course for the B.A. degree may be admitted as a candidate for the degree of Doctor of Philosophy. In addition to high attainment, preparation for the Ph.D. degree involves usually at least three years of graduate work. Candidates for the degree must submit a thesis and pass a public examination. The thesis must present a distinctly original contribution to the subject. It must be published in an accredited journal or series, and fifty printed copies must be deposited in the Institute Library.

Candidates who successfully complete the first four years of the engineering course will receive the degree of Bachelor of Science. The B.S. degree with distinction will be awarded to students whose work is of a high standard. Candidates who successfully complete a five-year engineering course will receive the M.S. degree in a specified branch of engineering, under requirements conforming to those for the M.A. degree, namely, very high standing and a thesis.

Candidates who successfully complete the five-year course in architecture will be awarded the degree of Bachelor of Science in Architecture. Students in architecture who satisfy all the requirements for the degree of M.A. may elect to take that degree if they prefer.
THE RICE INSTITUTE

STANDING IN SCHOLARSHIP OF UNDERGRADUATE STUDENTS

Schedule of Undergraduate Students.—No academic student will be allowed to carry more than five courses in the first two years or more than four courses in the last two years of his residence, except by special petition and when his standing is satisfactory. No credit is given toward graduation for less than a full year’s course in any subject, but a course which has been dropped by permission at the end of either of the first two terms and in which a student’s standing is satisfactory may be carried to completion in a succeeding year.

Removal of College Deficiencies.—Summer school courses will be accepted only to remove not more than one Freshman or Sophomore deficiency. To remove a college deficiency no credit will be given for a course unless it is the equivalent in content and quality of a full year course at the Institute.

Dropping of Students for Deficiencies in Scholarship.—A student will be required to withdraw from the Institute if he fail in as much as one-half of the work of his schedule. He may also be dropped for failure to improve while on probation, or for poor scholarship due to absences from the exercises of his schedule. A student dropped at the end of the first or second term will not be readmitted before the beginning of the following academic year, and then only to the standing attained at the beginning of the academic year in which the student was dropped. A student dropped from the Institute at the end of the third term for (a) failure in as much as half
the term’s work or (b) failure to improve while on probation, may reenter the Institute at the beginning of the following year but without any credit for the past year except in courses in which his grade for the year is III or better.1 Dropped students, when allowed to return, are received only on probation. Students who have been dropped twice are not entitled to readmission.

Probation.—A student who is carrying five courses will be placed on probation if among his grades for the term there are two V’s or no grade better than IV. A student who is carrying four courses will be placed on probation if he has one V and one other grade below III, or has failed to obtain a grade of III or better in at least one course. A student with less than four courses will be placed on probation if he has one V, or if he does not obtain at least two grades of III or better. A student who is dropped from a course by the instructor on account of inability to carry the work of the course is given a grade of V for the term in the course from which he is dropped. Should a student fail a course for two terms he may not continue that course with the view of securing a year’s credit in that subject.

Promotion.—To attain Sophomore standing, a student must have obtained in four of the five courses of the Freshman year, passing grades of which two must have been III or better. To attain Junior standing, a student must have obtained in at least nine of the ten courses of the Freshman and Sophomore years, passing grades of which four must have been III or better. To attain

1The symbols have the following meanings: I Very high standing, II High standing, III Medium standing, IV Low standing, V Failure.
Senior standing, a student must have obtained passing grades, of which six must have been III or better, in at least thirteen courses of the five courses of the Freshman year, the five courses of the Sophomore year, and the four courses of the Junior year, required for full Senior standing. To obtain the degree of Bachelor of Arts, a student must have obtained passing grades, of which eight must have been III or better, in five Freshman courses, five Sophomore courses, four Junior courses, and four Senior courses, required for the first degree. Attention is called to the fact that this four years' course is built up by years. Accordingly four courses of the Freshman and Sophomore years respectively will not be credited as the equivalent of four courses of the Junior and Senior years respectively, a higher standard and wider range of collateral work being required of Juniors and Seniors who elect in either of those years an elementary subject of the Freshman and Sophomore years.

No student shall attain Sophomore, Junior, or Senior standing in Engineering and Architecture who lacks more than one course of the standard schedule required for full standing in those years.

SUBJECTS OF INSTRUCTION FOR 1921–22

Of the courses to be offered during the scholastic year 1921–22 it is possible to announce those described below. The numbers designating the courses have the following signification: courses whose numbers begin with 1 are open to all students of the Institute; courses whose numbers commence with 2 are open to Sophomores, Juniors,
PRELIMINARY ANNOUNCEMENTS

and Seniors; those beginning with 3 are open to Juniors and Seniors; those beginning with 4 are Senior courses. Unless otherwise indicated, all courses consist of at least three exercises a week.

For each course the days of the week and the hours have been indicated. The Roman numerals refer to the group in the examination schedule. In general, subjects which fall in the same group may not be taken in the same year. Any possible exceptions to this rule must be arranged through the Registrar's Office at or before the time of registration.

ENGLISH 100. The theory and practice of English composition, and the study of fundamental literary forms. Required of Freshmen.

M W F 8:30, 9:30, 10:30 or 11:30; or
T Th S 10:30

ENGLISH 200. Outlines of the history of English Literature, with collateral reading of authors representative of the various periods. M W F 11:30

ENGLISH 310. A study of the English Drama, exclusive of Shakespeare, from its beginnings to the closing of the theatres in 1642. T Th S 11:30

ENGLISH 320. Exposition and Argumentation. The study of contemporary problems in society and government, and, somewhat later, of the principles of argument and debate, the collection and weighing of evidence, fallacies, refutations. Themes, briefs, oral and written debates. Conferences. T Th S 8:30

[39]
THE RICE INSTITUTE

ENGLISH 340. The English Novel, with especial reference to the chief novelists of the nineteenth century.
MWF 10:30 VII

ENGLISH 400. Shakespeare and Modern Drama. A systematic study of Shakespeare with especial emphasis on the tragedies, followed by a rapid survey of Modern Drama.
MWF 9:30 VIII

ENGLISH 410. Eighteenth and Nineteenth Century English Literature.
MWF 11:30 IX

ENGLISH 420. Seminar in Literary Criticism. The examination and application of selected critical theories, beginning with those of Aristotle. Written reports and critical papers. Hours to be arranged.

ENGLISH 430. An introductory course in Old English, followed by a careful reading of Beowulf. (Alternates with English 440.) Hours to be arranged.

ENGLISH 440. An introductory study of Chaucer and other Middle English authors, with a brief sketch of Middle English literature. (Not offered in 1921–22.)

MWF 8:30 or T Th S 8:30, 10:30 VI
PRELIMINARY ANNOUNCEMENTS

French 200. Second Year French. A continuation of French 100. A considerable amount of outside reading will be assigned besides translation in the class. Review of grammar, composition, dictation.

M W F 9:30 or 10:30 or T Th S 9:30 VI

French 300. Third Year French. Open to students who have passed French 200 with a grade of III or better. A survey of the entire history of French literature. Extensive reading of representative texts.

M W F 9:30 VI

French 310. Advanced Composition. Open to students who have passed French 200 with a grade of III or better. Advanced Composition, both oral and written. Writing of themes and abstracts. Review of grammar. Rapid survey of phonetics and historical grammar. This course is specially recommended to those who intend to teach French.

T Th S 9:30 V

French 410. History of French Civilization. Open to students who have passed either French 300 or French 310 (preferably both) with a grade of III or better, and who are able to understand spoken French. Lectures, readings, reports, themes and discussions entirely in French. A survey of French civilization as the necessary background for the study of literature.

M W F 10:30 VI

French 430. Classical French Literature. Open to students who have passed French 300, and preferably
French 310 also, with a grade of III or better, and who can understand spoken French. A definite phase of Classical Literature will be taken up in each of the three terms. Lectures, collateral reading, reports and essays.

The Honors Course in French will include French 300, 310, 410, 430, 440, with special work in connection with at least one of the senior courses.

German 100. Elementary German. Grammar, reading, conversation, and composition. Collateral reading in history.

German 200. Second Year German. Historical, descriptive, and narrative prose. Composition and conversation. Lectures and collateral reading.

German 300. Third Year German. The literature of the eighteenth and nineteenth centuries in Germany. Introduction to history of German civilization. Written reports in German, lectures, and collateral reading. Hours to be arranged.
PRELIMINARY ANNOUNCEMENTS

German 400. Fourth Year German. Intensive study of some period or group of writers in the eighteenth or nineteenth century. Lectures and discussions; essays and reports in German; collateral reading. Hours to be arranged.

German 410. Contemporary and recent German literature. A discussion of modern tendencies in German letters, especially as reflecting the political and moral psychology of present-day Germany. Hours to be arranged.

Italian 300. Elementary Italian. Open to students who have had at least two years of French, Spanish, or Latin. Grammar and composition. A large amount of reading will be required. It is proposed to read the *Inferno* of Dante in the spring term. MWF 10:30 VI

Spanish 100. Elementary Spanish. Grammar, composition, and selections for reading from modern Spanish authors. Emphasis is laid on accurate pronunciation, on the essentials of grammar, and on careful study of simple Spanish prose. Oral exercises and composition.
MWF 8:30, 10:30 or 11:30 or TThS 8:30 II

MWF 8:30 or TThS 10:30 or 11:30 II
THE RICE INSTITUTE

Spanish 300. Open to students who have passed 200 with a grade of III or better. A survey of the entire history of Spanish literature. Reading and explanation of representative texts beginning with the Golden Age. Advanced composition, essays and reviews in Spanish.

M W F 8:30 or T Th S 11:30 II

Spanish 400. Thorough study of classic and recent Spanish literature. Elements of historical grammar. Selections from the *Cid* and old Spanish ballads. Brief survey of Spanish civilization. Lectures, reports and essays in Spanish.

M W F 11:30 II

Latin 100. Selections from Nepos, Sallust, Livy, Cicero, and Ovid. Latin grammar, composition and essays. Roman literature. Collateral reading, lectures.

M W F 9:30 XI

M W F 10:30 VII

Mathematics 100. Elementary Analysis. This course includes Trigonometry and Analytic Geometry and
PRELIMINARY ANNOUNCEMENTS

constitutes the required Freshman course in mathematics. With the second term a section is formed for students who have considerable facility in mathematical reasoning.

M W F 8:30 or 9:30, or T Th S 8:30 or 9:30 III

MATHEMATICS 200. Differential and Integral Calculus. This course is a continuation of Mathematics 100, and deals with derivatives, integrals and series, with their applications. Mathematics 210 is designed for students who have considerable facility in mathematical reasoning.

T Th S 8:30 X

MATHEMATICS 210. Differential and Integral Calculus. This course covers the ground of Course 200, but is more complete and goes further. It is intended for students who have considerable facility in mathematical reasoning. It is a sufficient introduction to Mathematics 310 and 340, and is open to students who obtain high grades in Mathematics 100 or otherwise satisfy the instructor of their fitness to take the course.

T Th S 8:30 X

MATHEMATICS 300. Advanced Calculus and Differential Equations. Differentiation and integration of functions of several variables; multiple integrals; introduction to the theory of differential equations. This course or Mathematics 310 should be taken by students whose major interest lies in physics or engineering; it is open to those who pass successfully in Course 200 or 210 in mathematics.

M W F 8:30 XII
Mathematics 310. Advanced Calculus and Differential Equations. Applications to Mechanics. This course is intended for students with special ability in mathematics who have had Mathematics 210. Mathematics 340 is also a desirable preparation.

MWF 8:30 XII

Mathematics 340. Modern Geometry and Algebra. General algebraic methods applied to geometry. Elementary vector analysis. This course is designed for students who have demonstrated their ability in mathematics: as much for those who are interested in engineering and physics as those primarily interested in mathematics. It should be taken in the Sophomore year if possible.

MWF 11:30 IX

Mathematics 400. Theory of functions, real and complex variable. The important functions of analysis and modern general methods. Hours to be arranged.

Mathematics 500. Differential and Integral Equations. General methods of solution, invariants, oscillation theorems. About half the year is spent on integral equations. Hours to be arranged.

Applied Mathematics 200. Mechanics. A study of the fundamental principles, with applications to machines and structures. It includes elementary statics, dynamics,
and hydraulics. This course is ordinarily prescribed as part of the engineering course, but students who have demonstrated special mathematical ability should take Mathematics 340 instead and follow it in the Junior year with Mathematics 310 instead of Mathematics 300.

MWF 11:30 VI

Applied Mathematics 300. Advanced Mechanics. This course does not presuppose Applied Mathematics 200, but does assume good training in mathematics. It should be taken with or after Mathematics 310. Hours to be arranged.

Applied Mathematics 310. Statistical Economics. An analysis of statistics as applied to economics and biology, theory of probability, mathematical theory of investment. Hours to be arranged.

Applied Mathematics 410. Aerodynamics and Ballistics. This course investigates the dynamics of aeroplanes and projectiles, and in particular problems of resistance, stability and trajectory. Not offered in 1921–22.

Applied Mathematics 500. Theories of Radiation, Motion of Electrons, Gravitation. A study of some of the more modern hypotheses in theoretical physics. Hours to be arranged.
Besides these courses as listed above, to be given during the academic year 1921–22, others may be given to suit the needs of students. Reading courses are also offered in analysis, geometry, and applied mathematics.

Physics 100. A course of three lectures and three hours of practical work per week on experimental dynamics, heat, sound and light. This course is intended for those who wish to obtain some general knowledge of the principles of natural philosophy on which the modern applications of science to human activities are based. The scientific method of dealing with facts and theories is explained and made familiar by numerous experimental demonstrations and laboratory exercises. For the practical work thirty complete sets of apparatus are available for simple experiments in heat, light, sound and mechanics.

Physics 200. A course of three lectures and three hours of practical work per week on electricity and magnetism. This course forms a continuation of Physics 100 and the two together make up a complete course on the principles of physics which is required of all engineering students and should be taken by students intending to specialize on physics, chemistry, medicine, law, biology or mathematics. In this course the fundamental principles of electrical theory are explained and illustrated, including the elementary theory of direct and alternating currents, electric transmission of power, wireless telegraphy, Roentgen rays, the electrical properties of gases,
and other modern developments. In the Laboratory the students are taught how to make measurements of all the important electrical quantities such as current, resistance potential, capacity, magnetic intensity, magnetic properties of iron and steel and electrochemical equivalents, etc. Twenty-five complete sets of apparatus are available for this work.

Physics 300. A course of three lectures and three hours of practical work per week on properties of matter, heat and thermodynamics, theory of vibrations and geometrical optics. This course and Physics 310 together make up a more advanced course on physics supplementing the elementary work done in Physics 100 and 200. The laboratory work includes exact measurements of such quantities as elastic properties of metals, surface tension of liquids, viscosity of liquids, mechanical equivalent of heat, conductivity for heat of solids and liquids, vapor pressure of liquids, temperatures with resistance thermometers, thermocouples and radiation pyrometers, optical constants of lens systems, etc.

Physics 310. A course of three lectures and three hours of practical work per week on electricity and magnetism and physical optics. This course includes the elements of the mathematical theory of electrostatics and of direct and alternating electric currents. Also the electromagnetic theory of electric waves and light and the theory of interference, diffraction, and polarization.
of light. The laboratory work includes exact experiments on the electric conductivity of salt solutions, self and mutual induction, absolute determination of resistance, ratio of the electromagnetic and electrostatic units, conduction of electricity through gases, electric waves, spectroscopy, interference and diffraction of light, infrared and ultra violet light, Roentgen rays, etc.

M W F 10:30 Laboratory W 1:30–4:30 VII

Physics 400. Physics Colloquium. One meeting a week at which researches in physics will be discussed.

T 4:30

Physics 410. This course consists of about nine hours a week practical work on exact measurements and research work in some branch of physics. Hours to be arranged.

Physics 500, 510. A course consisting of three lectures a week extending over two years on various modern developments in physics, including theory of heat conduction, advanced thermodynamics, electromagnetic theory of light, discharge of electricity through gases, Roentgen rays, electrical properties of flames and hot bodies, photo-electricity, theory of radiation, electron theory of properties of insulators and conductors, and constitution of matter. General and special theories of relativity and gravitation.

T Th S 11:30

Physics 520. Research work in physics.

Physics 530. Special course for graduates on recent researches.

F 4:30
PRELIMINARY ANNOUNCEMENTS

Attention is invited to the fact that many opportunities exist at the present time for persons possessing adequate training in physics and mathematics to engage in industrial research. A large number of industrial corporations now maintain research laboratories for the carrying on of such work. Among these may be mentioned the General Electric Company, the Western Electric Company, the Eastman Kodak Company, the Bureau of Standards, and others. Students desiring to qualify for positions in such establishments should take the Honors course in physics and then, if possible, take a graduate course in physics leading to the M.A. or the Ph.D. degree. However, positions in research laboratories and at the Bureau of Standards are open to men who have taken the B.A. degree with honors in physics.

Chemistry 100. Introductory Chemistry. Two lectures, one recitation and five hours’ laboratory work weekly. A general introductory course dealing with the fundamental phenomena and principles of the science. During the first half year the laboratory exercises are arranged to verify and illustrate the principles and facts which are discussed in the lectures. During the last half year the laboratory work deals with the general principles and methods of qualitative analysis.

M W F 10:30 Laboratory M and Th or W and F 1:30–4:30 VII

Chemistry 210. Qualitative and Volumetric Analysis. One lecture, one recitation and six hours’ laboratory work weekly. (Prerequisite: Chemistry 100.) The course
in qualitative analysis which extends through the first term is a continuation of the work begun in Chemistry 100. It consists of a study of the detection and separation of the principal bases and inorganic acids and the scientific principles upon which these methods are based. The course in volumetric analysis includes calibration of volumetric apparatus and representative determinations involving the uses of acids and alkalis and such oxidizing agents as potassium bichromate, potassium permanganate and iodine. Special emphasis is placed on chemical mathematics and stoichiometry. Students specializing in chemistry should elect both Chemistry 210 and 220 in the sophomore year.

M W 10:30 Laboratory W and F 1:30–4:30 VII

Chemistry 220. Gravimetric Analysis. One lecture, one recitation and six hours' laboratory work weekly. (Prerequisite: Chemistry 210 or taking Chemistry 210.) This course, with the volumetric analysis offered in Chemistry 210, constitutes the introductory course in quantitative analysis. It embodies a study of representative processes in the gravimetric determinations of the common metals and acids and a discussion of the principles involved. Consideration is also given to the application of these principles to problems other than those undertaken by the student in the laboratory. Particular stress is laid on the care and accuracy necessary for successful quantitative work. Electro-analysis is included in the course.

T Th 10:30 Laboratory T and Th 1:30–4:30
PRELIMINARY ANNOUNCEMENTS

CHEMISTRY 300. Elementary Organic Chemistry. Three hours' lecture and recitation, and six hours' laboratory work weekly. (Prerequisite: Chemistry 210. Students who have completed the work in Chemistry 100 with a grade of II or better may be admitted to this course, upon the advice of the instructor, without previously taking Chemistry 210.) The course is designed to cover the introductory chemistry of the principal classes of organic compounds, and to present the more important theories relating to their structure and reactions. M W F 10:30 Lab. M Th 1:30–4:30 III

CHEMISTRY 310. Physical Chemistry. Two lectures, one recitation and six hours' laboratory work weekly. Prerequisites: Chemistry 220, Physics 200 or taking 200, and Mathematics 200 or taking 200. A systematic presentation of modern chemical theories and their applications. M W F 8:30 Laboritory Th and S 9:30–12:30 XI

CHEMISTRY 410. Colloid Chemistry. Two lectures and three hours' laboratory work weekly. (Prerequisite: Chemistry 220 or taking 220.) The course treats of the theories of colloid chemistry and their applications in biology and the arts. Hours to be arranged. III

CHEMISTRY 420. Electrochemistry. Two lectures and six hours' laboratory work weekly. (Prerequisite: Chemistry 310.) The course will consist of a thorough development of the theories of the subject and the application of these theories to industrial processes. The laboratory work includes practice in the measurement of electrical
THE RICE INSTITUTE

constants; the conditions affecting electrolytic reactions; determination of current and energy efficiencies in electrolytic and electrothermal work; electroplating and electrorefining; tests of storage batteries; electrolytic and electrothermal preparations.

T Th 8:30 Laboratory M W 1:30–4:30 XI

Chemistry 430. Industrial Chemistry. Two lectures and six hours' laboratory work weekly. (Prerequisite: Chemistry 220.) The lectures deal with applied stoichiometry and the chemical control of industrial processes. The laboratory work consists of analytical procedures of particular importance in the industries. A number of trips to commercial establishments are arranged throughout the year and numerous reports are required.

M W 8:30 Laboratory T Th 1:30–4:30 III

Chemistry 440a. Advanced Organic Chemistry. One hour of conference and nine hours of laboratory work weekly. (Prerequisite: Chemistry 300 and 310.) The work of the first two terms is in Qualitative Organic Analysis: A systematic procedure, based on the principles of homology, for the separation and identification of pure organic compounds. By means of selected topics during the spring term the student is given a rapid and thorough review of his elementary knowledge of the subject. The entire course aims to strengthen the hold of the undergraduate student of organic chemistry and to give the graduate a sound basis for further advance in the subject. (Given in 1920–21 and in alternate years thereafter.)
PRELIMINARY ANNOUNCEMENTS

Chemistry 440b. Advanced Organic Chemistry. Two lectures and one conference per week. (Prerequisite: Chemistry 300 and 310.) A seminar course dealing with a more advanced study of the mechanism, applications and limitations of organic reactions. The course also includes the consideration of such special fields as tautomerism, geometric and optical isomerism, divalent and trivalent carbon and the recent chapters on the chemistry of the carbohydrates. Hours to be arranged.

Chemistry 450. Advanced Quantitative Analysis. Two lectures and nine hours' laboratory work weekly. (Prerequisite: Chemistry 220.) The exact determination of a number of constituents in complex and difficultly soluble minerals and practice in the uses of the more refined procedures and instruments in volumetric, gravimetric, and gasometric analyses.

Chemistry 470. Experimental Problems. Chemical engineers and students who are specializing in chemistry may elect in their senior year at least nine hours a week in experimental problems under the direction of some member of the staff of instruction.

Chemistry 480. Chemistry Seminar. One hour each week. Participation in the seminar is required of all chemical engineers and students specializing in chemistry after the completion of their third year. Attendance is open to all members of the Institute. Discussions of general topics or of recent advances in the progress or the applications of chemistry.
Chemistry 500. Chemical Research. Chemical engineers or students who are specializing in chemistry are expected in their fifth year to elect at least nine hours a week in research under the direction of some member of the staff of instruction.

Chemistry 530. Industrial Chemistry. (Prerequisite: Chemistry 430.) An advanced course which includes a theoretical discussion of representative industrial processes.

During the academic year 1921-22 the following course outlined in previous announcements will, except in case of special requirement, be omitted: Chemistry 400, Advanced Inorganic Chemistry; Chemistry 460, Advanced Qualitative Analysis; Chemistry 510, Theoretical Chemistry and Thermodynamics.

Students who desire to take their major work in Chemistry should select their courses according to the following arrangement: First year, Chemistry 100; Second year, Chemistry 210 and Chemistry 220; Third year, Chemistry 300 and Chemistry 310; Fourth year, Chemistry 420 and Chemistry 430. The related courses in mathematics and physics should also be taken during the first two years if possible.

Biology 100. General Biology. This course will include a general study of the origin and constitution of living matter; the fundamentals of morphology and physiology as illustrated by selected animal and plant types; the development of the individual and of the race; together with a brief introduction to other biological ideas that are of general interest. The course is planned to
PRELIMINARY ANNOUNCEMENTS

meet the needs not only of those who intend to continue the study of biology, but also of those who wish to specialize in other subjects, but yet are desirous of getting some general knowledge of biology. It is a prescribed subject for those who wish to enter a medical college later, and it is thought that this course will prove valuable to those intending to study philosophy, psychology, economics, or agriculture. Three lectures and one three-hour laboratory period a week.

T Th S 11:30 Laboratory Th or F 1:30–4:30 IV

Biology 220. Sanitary Biology. (Prerequisite: Biology 100.) A study of the relation of Biology to sanitation and human health. The first term is devoted to a study of the relation of insects and their allies to disease, including the rôle of insects in the transmission of disease, an examination of important disease-transmitting species, and an investigation of their life histories and control measures against them. The animal parasites of man are taken up in the second term, special attention being given to modes of infection and prevention. The third term is devoted to a general introduction of bacteriology, with a discussion of the principles of immunity, and the prevention of disease by personal care and community effort.

M W F 8:30 Laboratory W 1:30–4:30 XII

Biology 300. Heredity and Evolution. This course is open to juniors, and also to those sophomores who have obtained a grade of III or better in Biology 100. In the subject of heredity, special emphasis will be laid on the most modern advances, as this science has been
revolutionized in recent years. Mendelism, mutation, and the constitution of the germ plasm as disclosed by breeding experiments and microscopic investigation, will be among the topics studied. Older theories, such as the inheritance of acquired characters, and applications of heredity, such as eugenics, will be considered in the light of the newer knowledge. Students will also receive training to enable them to work out actual cases of heredity. The laboratory work, which will consist of breeding experiments on Drosophila, will occupy about three hours a week, but will not be at set hours.

In the third term the chief topics will be: the general principles of evolution; the courses which evolution has taken in the plant and animal kingdoms; the descent of man; evolution in man to-day; also a brief discussion of cosmic and geological evolution in their relation to that of the organic world. In this term there will be theses and required reading, but no laboratory work. Not offered in 1921–22.

Biology 320. Cellular Biology. This course is the logical sequel to Biology 100, and undertakes a more scientific examination of the foundation principles of life. It is essential to those who wish to continue in biology, but it should be of interest to students of other subjects as well. The course is very general in scope, including a study of all the important features of cell structure and activities, such as the constitution of protoplasm; its nutrition, metabolism, and mode of motion; irritability and the properties of nerve cells; the mechanism of development; youth and old age; and the physical basis of repro-
duction and heredity. Recent lines of experimental work in general physiology, embryology, and cytology will receive special attention. In the laboratory students will have an opportunity to study living and prepared specimens illustrating the course, and to become acquainted with some of the methods of modern biological experiment and technique. Chemistry (high school or college) is a prerequisite, or may, in special cases, be taken as a parallel course. Three lectures and four to six hours of laboratory a week.

M W F 9:30 Laboratory T 1:30–4:30, and when required F 1:30–4:30 VIII

Biology 340. Vertebrate Zoology. (Prerequisite: Biology 100.) A study of vertebrate animals, with special reference to local forms. The various classes of vertebrates will be discussed with regard to their systematic position, morphology and correlation of structure and habit, embryology and life history, geographic distribution, economic relationships, and methods of propagation or control. Not offered in 1921–22.

Biology 350. General Embryology. A general course covering both vertebrate and invertebrate embryology.

M W F 10:30 Laboratory M 1:30–4:30 I

Biology 510. General Problems of Biology. Reading, themes, and seminar work on advanced general topics of biology. Graduate course.

Biology 520. Special work in Biology. This course will consist of advanced work in some special field of
biology and will be adapted to the needs of the particular student.

Biology 530. Mammalian Physiology. Open to duly qualified students who have obtained the consent of the instructor. Hours to be arranged.

Economics 200. Elements of Economics. An introduction to the fundamental theories of economics and to their applications, with special reference to the problems of money, banking, transportation, international trade, and business organizations.

Economics 300. An introduction to Sociology. The course includes an analysis of the geographical and biological factors in social evolution, social psychology, and a study of the functions of citizenship. There is added a rapid survey of modern social problems such as those of poverty, industry, immigration, public health and delinquency. Students expecting to take this course are advised to take Biology 100, History 100, and Economics 200.

Business Administration 200. Business Management. The promotion and organization of business enterprises and the administration of such enterprises in operation. The course considers in particular marketing, financing, personnel management, risk-bearing, community and state relationships, accounting, and the interpretation of financial reports.
PRELIMINARY ANNOUNCEMENTS

T Th S 8:30 XI

Education 100. History of Education. A survey is made of the historical development of educational theory and practice from the earliest times to the present.

T Th S 9:30 or 10:30 VIII

Education 210. Educational Psychology. A survey is made of the leading facts and principles of psychology in their application to education. M W F 9:30 VIII

The Department of Education of the State of Texas will grant, without further examination, a State first grade teachers' certificate, valid for two years, to students who complete at the Institute a year's work consisting of one course in Education and four other courses. A person who has received two State first grade teachers' certificates valid for four years based upon four full college courses and one full course in the department of education may receive another such certificate by offering one additional course in education and four other courses, no one of which was offered for the first certificate. Applications for such certificates may be made at any time
THE RICE INSTITUTE

following the completion of the necessary work; the certificates expire on the second anniversary of the thirty-first day of August of the calendar year in which they are issued.

The Department of Education of the State of Texas will grant, without further examination, a State permanent teachers' certificate to persons holding the B.A. degree from the Rice Institute who have completed four of its courses in education and also to persons holding the B.A. degree from the Rice Institute who have taught three full years of not less than nine months each. The three years' teaching experience may be secured prior to, during the time of, or after the completion of the college work leading to the B.A. degree.

History 100. European History. A general survey of the intellectual, social, and political development of Europe from the fourth century through the nineteenth. Lectures and required reading. T Th S 8:30 X

History 220. The political, constitutional, social and economic history of England and the British Empire. T Th S 9:30

[62]
PRELIMINARY ANNOUNCEMENTS

History 230. Modern European History. A study of social, political, and economic history of Europe since the beginning of the French Revolution. (To alternate with History 220.) Not offered in 1921—22.

History 300. The historical development of the United States, with special reference to the period since the adoption of the Constitution. T Th S 10:30 I

History 500. The interpretation of the Constitution by the courts. An advanced seminar course. Hours to be arranged.

History 510. American history since 1850. A seminar course for the intensive study of selected topics. Prerequisites: History 100, History 300, Economics 200 or their equivalents. Not offered in 1921—22.

Jurisprudence 300. A course planned to give the student a knowledge of the history of the development and of the philosophy of law, together with a knowledge of the essentials of selected divisions of modern law, including Criminal Law, Torts, Contracts, Agency, Partnership, Negotiable Instruments, and Private Corporations. M W F 8:30 XII
THE RICE INSTITUTE

Philosophy 210. Logic and Ethics. First half-year: a study of the process of thinking, the laws of inductive and deductive reasoning, and the nature of truth. Second half-year: an examination of the development of moral ideas, the essentials of the main ethical theories and the problem of morality at the present time.

T Th S 10:30 I

Philosophy 300. History of Philosophy. An historical survey of the essential features and main currents of philosophical thought, ancient, mediæval, and modern.

T Th S 9:30 V

Philosophy 410. Philosophy of Religion. An introduction to the historical-philosophical study of religion, dealing with the main facts in the evolution of religion and the more fundamental problems of the religious consciousness.

T Th S 11:30 XI

Philosophy 420. Theory of Knowledge. An intensive critical study is made of selected portions of the writings of the classical epistemologists, notably Locke, Berkeley, Hume, and Kant.

M W F 10:30 I

Philosophy 500. Seminar. Hours to be arranged.

Philanthropy 500. A course designed to train the student for professional social work. It includes the history of public and private relief, the functions of the more important social agencies, and the technique of social diagnosis and treatment. Theoretical instruction in the case method will be accompanied by field work
PRELIMINARY ANNOUNCEMENTS

under the direction of experts connected with the social agencies of the city of Houston. This course is limited to advanced students who are expecting to undertake professional social work.

M W F 9:30 III

PHILANTHROPY 510. Social Problems. An intensive treatment of the following topics: Child Welfare, Industry, Immigration. This course aims to equip the student of social activities as well as the prospective social worker with a knowledge of important types of social maladjustment. It is open to qualified seniors who wish to pursue advanced work in social science. Pre-requisites: History 100, Economics 200, Economics 300.

M W F 10:30 VII

PHILANTHROPY 520. Social Problems. This course is given alternately with Philanthropy 510, and applies the same methods of study to the following topics: Recreation, Delinquency and Crime, Public Health and Housing. Not offered in 1921—22.

PHYSICAL TRAINING

The athletic Field House, completed in the fall of 1920, with its ample locker and shower facilities, and with its gymnasium floor and modern athletic apparatus, not only meets the needs of the university athletic teams but also furnishes ample opportunity for systematic physical training on the part of all members of the institution.

One period of physical training each week is required of all men of the Freshman class and voluntary classes
are formed for the benefit of all other members of the Institute. The classes are organized in such divisions as to eliminate direct competition between the physically weaker and the physically stronger among the students. The classes take up regular gymnastic work including boxing, wrestling, athletic dancing, basket-ball, indoor and outdoor base-ball, track work and the like. Appropriate emblems are awarded to students showing various degrees of efficiency. Numerous intramural games and contests are arranged between classes and other organizations to utilize the competitive spirit in the development of athletic and gymnastic proficiency. Each student is subjected to a thorough physical examination, and this examination determines in a large measure the character of work that the individual student is permitted to take. Lectures are given on personal hygiene and the principles of health.

COURSES IN ENGINEERING

Courses will be offered in chemical, civil, electrical, and mechanical engineering. A complete course in any one of these branches will extend over five years. A student who has successfully completed the first four years of a course will be awarded a bachelor's degree, and after successfully completing the remaining year of his course he will be awarded a master's degree. The work of the first three years will be practically the same for all students, but in the last two years each student will be required to select one of the special branches mentioned above.

The work of the first two years will consist chiefly of
PRELIMINARY ANNOUNCEMENTS

courses in pure and applied mathematics, physics, chemistry, and other subjects, an adequate knowledge of which is absolutely necessary before the more technical courses can be pursued with advantage. During the first two years, however, a considerable amount of time will be devoted to engineering drawing and the elements of surveying.

Technical work will begin in the third year with courses of a general character in mechanical engineering, civil engineering, and electrical engineering, all three of these branches to be taken by all engineering students, with a slight change in schedule for those in chemical engineering.

In the third year instruction will also be begun in shopwork. The classes in shopwork are intended to give familiarity with workshop methods. The object of these classes is not primarily to train students to become skilled mechanics, but to provide such knowledge of shop methods as is desirable for those who may be expected as engineers to employ mechanics and to superintend engineering shops. It is intended in the engineering courses to pay special attention to the theoretical side, because experience has shown that theoretical knowledge is difficult to obtain after leaving the university, and without it a rapid rise in the profession of engineering is almost impossible. It is recommended that students obtain employment in engineering work during the summer vacations, for it should be remembered that no amount of university work can take the place of practical experience in engineering establishments and in the field. The courses in engineering are not intended to take the place
of learning by practical experience, but are designed to supply a knowledge of the fundamental principles and scientific methods on which the practice of engineering is based and without which it is difficult, if not impossible, to succeed in the practice of the profession.

Students who can afford the time are recommended to devote three or four years to preliminary work instead of two, taking the B.A. at the end of four years and an engineering degree at the end of six or seven years. Students proposing to do this are advised to take a course devoted largely to mathematics, physics, and chemistry, or an honors course in either mathematics, physics, or chemistry. The subjects taken during the years of preparatory work must include those of the first two years in the general engineering course, which may be substituted for options in the academic B.A. course. The honors course in physics is strongly recommended for those who wish to become either electrical or mechanical engineers. Typical schedules permitting such combination courses will be furnished by the Registrar on request.

The following are the schedules for the five-year course leading to a bachelor's degree in four years and an engineering degree in five years:

First Year

(1) Mathematics 100
(2) Physics 100
(3) English 100
(4) Chemistry 100
(5) Engineering 110
PRELIMINARY ANNOUNCEMENTS

Second Year

(1) Mathematics 200 or 210
(2) Applied Mathematics 2001
(3) Physics 200
(4) French or Spanish2
(5) Engineering 2103

Third Year

MECHANICAL ENGINEERING AND ELECTRICAL ENGINEERING

(1) Mathematics 300
(2) Mechanical Engineering 300
(3) Electrical Engineering 300
(4) Civil Engineering 300
(5) Mechanical Engineering 310

CIVIL ENGINEERING

(1) Mathematics 300
(2) Mechanical Engineering 300
(3) Electrical Engineering 300
(4) Civil Engineering 300
(5) Civil Engineering 310

CHEMICAL ENGINEERING

(1) Chemistry 300
(2) Chemistry 310

1 Chemical Engineers take Chemistry 210.
2 Chemical Engineers take German 100, other Engineers may substitute Chemistry 210.
3 Chemical Engineers take Chemistry 220.
THE RICE INSTITUTE

(3) Electrical Engineering 300
(4) Civil Engineering 300

Fourth Year

MECHANICAL ENGINEERING

(1) Mechanical Engineering Laboratory (M.E. 400)
(2) Machine Design (M.E. 410)
(3) Heat Engine (M.E. 420)
(4) Industrial Management (M.E. 430) or an approved Elective
(5) Gas Engines and Producers (M.E. 440)
(6) Economics 200
(7) Seminar (Eng’g 400)

ELECTRICAL ENGINEERING

(1) Alternating Currents (E.E. 400)
(2) Electrical Engineering Laboratory (E.E. 410)
(3) Electrical Design (E.E. 420)
(4) Industrial Management (M.E. 430) or an approved Elective
(5) Economics 200
(6) Seminar (Eng’g 400)

CIVIL ENGINEERING

(1) Municipal Engineering (C.E. 420)
(2) Masonry Construction (C.E. 440)
(3) Graphic Statics and Structural Design (C.E. 450)
PRELIMINARY ANNOUNCEMENTS

(4) An approved Elective
(5) Economics 200
(6) Seminar (Eng’g 400)

CHEMICAL ENGINEERING

(1) Chemistry 420
(2) Chemistry 430
(3) Mechanical Engineering 300
(4) Economics 200
(5) Chemistry 480
(6) Engineering 400 (Seminar)

Fifth Year

MECHANICAL ENGINEERING

(1) Advanced Machine Design (M.E. 500)
(2) Mechanical Plants and Processes (M.E. 510)
(3) Thesis (M.E. 530)
(4) Seminar (Engineering 400)
(5) Elective (M.E. 520, or an advanced C.E., E.E.,
or science course)

ELECTRICAL ENGINEERING

(1) Advanced Alternating Currents (E.E. 500)
(2) Thesis (E.E. 510)
(3) Heat Engines (M.E. 420)
(4) Seminar (Eng’g 400)
(5) Elective
CIVIL ENGINEERING

(1) Structural Design (C.E. 500)
(2) Hydraulic and Sanitary Engineering (C.E. 510)
(3) Railway Engineering (C.E. 520)
(4) Elective (Must be approved)
(5) Thesis (C.E. 530)

CHEMICAL ENGINEERING

(1) Chemistry 500
(2) Chemistry 530
(3) Chemistry Elective
(4) Engineering Elective
(5) Chemistry 480
(6) Engineering 400 (Seminar)

ENGINEERING 110. Mechanical Drawing and Descriptive Geometry. Mechanical Drawing: the use of drafting instruments; lettering; drawing figures in isometric, cabinet, and orthographic projection; intersections and developments. Descriptive Geometry: orthographic projections of points, lines, planes, warped surfaces, etc., in the four angles of projection.

Section 1
W and F 11:30 and 1:30-4:30

Section 2
T and S 11:30 M and T 1:30-4:30

PRELIMINARY ANNOUNCEMENTS

Kinematics. The study of relative motion of parts of machines, instant centers, velocities, gearing and wrapping connectors.

T and Th 9:30 Th 1:30–4:30 (Half year)

Structural Drawing. Lettering; working drawings and tracings of structural details, etc.

S 9:30–12:30 (Half year)

Plane Surveying. The study of the uses and adjustments of surveying instruments and of office methods. Problems are given in field work to familiarize the student with chain, compass, level, and transit. Plotting and compilations from field notes. Prerequisites: Engineering 110 and Mathematics 100.

T and Th 9:30 Th 1:30–4:30 S 9:30–12:30 (Half year)

Engineering 400. Seminar. A weekly meeting conducted by the fourth year engineering students for the discussion of current topics from the technical periodicals, and of scientific and technical papers of general engineering interest.

F 1:30–4:30

Mechanical Engineering 300. Prime Movers. A general course of lectures, recitations from text, and laboratory covering the characteristics, fields of usefulness, operation, and tests of fuels, steam engines and turbines, boilers, pumps, condensers, and auxiliaries; properties of steam; valve gears; simple internal combustion engines and accessories. Numerous problems illustrate the theory
discussed. Prerequisites: Physics and Chemistry 100, Mathematics 200 or 210. Laboratory fortnightly.

M W F 10:30 T or Th 1:30–4:30 VII

Mechanical Engineering 310. Engineering Shop. Text-book and lectures dealing with general shop practice and its effect on machine design, metallurgy, forge and foundry work. Practice with a variety of metal-working bench and machine tools, carefully selected for their fitness in illustrating the principles studied, affording actual contact with machine work and developing a certain degree of skill and resourcefulness in the student.

Recitations, all sections, T Th 9:30
Shop Section A M W 1:30–3:30 F 1:30–4:30 V
Shop Section B T Th 10:30–12:30 S 9:30–12:30

Mechanical Engineering 400. Senior Mechanical Laboratory. An advanced course in general steam, air, oil, water, and power-transmission machinery operation and testing. Recitations from text, reports, and laboratory. Prerequisite: Mechanical Engineering 300. Must be accompanied with or preceded by Mechanical Engineering 420.

Mechanical Engineering 410. Machine Design. Recitations from text and references, also calculations and drafting involved in the design of machine parts, considering both the theory and its modifications due to shop practice and financial limitations. Prerequisites: Engineering 210, Mechanical Engineering 310, Civil Engineering 300.

M W F 8:30–11:30 XII
PRELIMINARY ANNOUNCEMENTS

Mechanical Engineering 420. Heat Engines. General thermodynamics; applications of thermodynamics to the design and operation of steam engines and turbines, air compressors; commercial forms of such machines, with special emphasis on steam turbines; elementary steam plant design. Prerequisite: Mechanical Engineering 300. Lectures, text, and problems.

T Th S 10:30 I

Mechanical Engineering 430. Industrial Management. A study of the principles and practice in the management of manufacturing plants; location and layout of works; organization of administration, sales, cost and production departments; selection of machinery, materials, and labor; wage systems; cost analysis; welfare work; a short survey of the law of sales and contracts. Two recitations a week. Senior elective.

M W 11:30 II

Mechanical Engineering 440. Gas Engines and Producers. A study of the theory, design, and operation of internal combustion engines, and gas-producers. Must be accompanied with or preceded by Mechanical Engineering 420.

T Th S 8:30 IV

Mechanical Engineering 500. Advance Machine Design. The investigation of elaborate complete machines; original design of complete machines; design of mill-building trusses, floors, and structural details.

[75]
THE RICE INSTITUTE

Mechanical Engineering 510. Mechanical Plants and Processes. A general course dealing with special plants and processes, such as the manufacture of cement, metallurgy, water-softening, oil production, etc., not covered by other special courses. Details of design and operation of special power and heating plants. Pre-requisite: Mechanical Engineering 420.

Mechanical Engineering 520. Advanced Heat Engines. The design and operation of heating, ventilating, and refrigerating equipment and plants; design of standard types of steam turbines, engines, and boilers. Elective.

Mechanical Engineering 530. Thesis. The investigation, under the Mechanical Engineering staff, of some undeveloped engineering problem, either through experiment, design, or compilation of available information. The time required will be at least that necessary for a standard advance course. Two copies of the accepted report will be required for deposit in the Institute libraries.

Mechanical Engineering 550. Turbine and Boiler Design. Text-book, lectures, and drafting practice re-
PRELIMINARY ANNOUNCEMENTS

Lating to the design of standard forms of steam turbines and boilers. Elective. Prerequisite: Mechanical Engineering 420.

Electrical Engineering 300. The fundamental principles of dynamo machinery, both direct and alternating current. The course includes laboratory work, which as far as possible parallels the class-room work. Prerequisites: Physics 200 and Mathematics 200 or 210. Laboratory fortnightly.

T Th S 8:30 T or Th 1:30-4:30 X

Electrical Engineering 400. Alternating Currents. A mathematical treatment of the theory of alternating current phenomena, using Steinmetz’s symbolic method. The various types of alternating current generators and motors; their characteristics and operation. Transformers. Synchronous converters. Prerequisite: Electrical Engineering 300.

M W F 9:30 V

Electrical Engineering 410. Electrical Engineering Laboratory. A laboratory study of alternating current circuits, instruments, and machines. Standard testing of direct and alternating current machinery. Prerequisite: Registration in Electrical Engineering 400.

M W 1:30-4:30 X

T Th S 8:30 VIII
THE RICE INSTITUTE

Electrical Engineering 500. A continuation of Electrical Engineering 400. Advanced alternating currents. Transients. Attention will be given to special branches such as high voltage installations, high frequency, illumination, telephony, wireless telegraphy, etc. Three lectures and one laboratory period per week.

Electrical Engineering 510. Thesis. A thorough report on an engineering investigation selected and carried out by the individual student. It is expected that a great deal of time will be given to thesis work. The course is considered the equivalent of a three-hour course.

Civil Engineering 300. Strength of Materials and Hydraulics. Strength of Materials: a course given primarily for the study of the theory of beams, columns, and shafts. In the theory are considered stresses and deformations due to tensile, compressive, and shearing forces; the distribution of shear, bending moments, deflections, combined stresses, and torsional stresses. Physical tests of steel, wrought iron, cast iron, cement, and concrete are made in the laboratory, and this work is supplemented with lectures for the purpose of discussing the manufacture and uses of the common structural materials. Hydraulics: a course devoted to the principles of hydrostatic and hydrodynamic pressures; the flow of water through orifices, pipes, nozzles, open channels, and over weirs. Prerequisites: Physics 100 and Mathematics 200. Laboratory fortnightly.

M W F 11:30 T or Th 1:30–4:30 VI
Civil Engineering 310. Topographic, Geodetic, and Railroad Surveying. In this course are given the theory and practice of base line and triangulation measurements, determination of meridian, traversing with transit and stadia and with a plane-table, and mapping. Simple, compound, reversed, and spiral easement railroad curves, computation of earth work, excavation, and haulage. Prerequisite: Engineering 210.

T Th S 9:30-12:30 V

M W F 10:30 VII

beams, slabs, and columns. Prerequisite: Civil Engineering 300. MWF 11:30 Th 1:30–4:30 VI

Civil Engineering 450. Graphic Statics and Structural Design. Algebraic and Graphic Statics. Theory and design of simple roof trusses, bridge trusses, and plate girders. Detailed drawings and estimates of cost and weight. Prerequisite: Civil Engineering 300. MWF 9:30 MT 1:30–4:30 VIII

Civil Engineering 500. Structural Design. Design of steel office and mill buildings. Analysis of stresses in statically indeterminate structures such as swing, cantilever, arch, and suspension bridges. A study of secondary stresses. Two lectures and one design period a week. Prerequisite: Civil Engineering 450 or its equivalent.

Civil Engineering 510. Hydraulic and Sanitary Engineering. Investigation and development of water power. Design of dams and irrigating systems. Hydraulic turbines and pumps. Preliminary design for a water supply and sewerage system for a small city. Study of general sanitary problems including: garbage disposal, public health, street cleaning, etc. Three lectures and one design period a week. Prerequisite: Civil Engineering 420 or its equivalent.

Civil Engineering 520. Railway Engineering. A study of the principles of economic location and construction, railway maintenance, railway structures. Design of
PRELIMINARY ANNOUNCEMENTS

terminals and signalling systems. Railway organization and valuation. Three lectures and one design period a week. Prerequisite: Civil Engineering 310 or its equivalent.

CIVIL ENGINEERING 530. Thesis. This will consist of an original investigation along some approved line of civil engineering work, an original design, or a critical review of existing work. In every case a complete type-written or printed report will be required, and this will become the property of the Institute and be deposited in the general or departmental library.

COURSES IN ARCHITECTURE

To students of architecture the Institute offers a full course extending over five years, leading to a bachelor's degree at the end of the fourth year and to an architectural degree at the end of the fifth year. It is the purpose of the course in architecture to lead students during their residence to a comprehensive understanding of the art of building; to acquaint them with the history of architecture from early civilization to the present age; and to develop within them an understanding and appreciation of those conceptions of beauty and utility which are fundamental to the cultivation of ability in the art of design.

In arranging the courses which follow it will be observed that there are included certain indispensable elements of a liberal education and also such engineering and technical subjects as are becoming more and more
necessary to the general education of a practising architect. Of the more strictly architectural subjects, design is given by far the largest place. As a matter of fact, the courses in history and design and those in freehand drawing, in water color, in drawing from life, and in historic ornament have all a double object: to create in the student an appreciation of architectural dignity and refinement and to increase constantly his ability to express conceptions of architectural forms. Accordingly, the training of the student is not limited to training in draftsmanship alone, but all courses conspire to the cultivation of creative and constructive ability in expression and design. With a view to keeping the student in touch with the progress of his profession and with the daily routine and detail of its practice, it is strongly recommended that he spend a portion of each of his summer vacations in the office of some practising architect.

The following are the schedules for the five-year course leading to a bachelor's degree in four years and a degree in architecture in five years:

First Year

(1) Mathematics 100
(2) English 100
(3) French
(4) Physics 100
(5) Architecture 100: consisting of
 (a) Elements of Architecture
 (b) Freehand Drawing
PRELIMINARY ANNOUNCEMENTS

Second Year

(1) Pure Mathematics
(2) English
(3) French¹
(4) A science
(5) Architecture 200: consisting of
 (a) Design
 (b) Freehand
 (c) History of Architecture

Third Year

(1) English
(2) History or Economics
(3) Architecture 300—Design
(4) Architecture 310: consisting of
 (a) Freehand Drawing
 (b) Water Color
 (c) History of Architecture

Fourth Year

(1) English or History
(2) Architecture 400—Design
(3) Architecture 410²: consisting of
 (a) History of Painting
 (b) Freehand

Architecture 420³: consisting of
 (a) History of Modern
 Architecture
 (b) Freehand

¹ Students who enter with credits in two modern languages may substitute another subject.
² Given in 1922–23 and in alternate years thereafter.
³ Given in 1921–22 and in alternate years thereafter.
THE RICE INSTITUTE

(4) Architecture 430: consisting of
 (a) Construction
 (b) Special Lectures

(5) Architecture 440: consisting of
 (a) Historic Ornament
 (b) Water Color

Fifth Year

(1) Architecture 500—Thesis Design
(2) Architecture 510: consisting of
 (a) History of Painting
 (b) Life Drawing
 (c) Water Color

Architecture 520: consisting of
 (a) History of Modern Architecture
 (b) Life Drawing
 (c) Water Color

(3) Architecture 530: consisting of
 (a) Construction
 (b) Special Lectures

ARCHITECTURE 100.

(a) Elements of Architecture. Elementary training in drawing of order plates, wash drawings, lettering, with a series of lectures on descriptive geometry, shades and shadows, and perspective. Six hours a week.

M F 1:30-4:30 VIII

1 Given in 1922-23 and in alternate years thereafter.
2 Given in 1921-22 and in alternate years thereafter.
PRELIMINARY ANNOUNCEMENTS

(b) Freehand Drawing. Elementary drawing in pencil and charcoal of single simple objects and block groups and casts. Four hours a week. T S 10:30-12:30

ARCHITECTURE 200.

(a) Design. Rendered drawings embracing the design of simple elements of buildings, together with advanced work in the use of the orders and in composition. Eight hours a week.

T Th 1:30-4:30 W F 3:30-4:30

(b) Freehand. Drawing in charcoal from simple casts of classical ornament. Four hours a week.

T Th 10:30-12:30

(c) History of Architecture. Two lectures a week on the history of ancient architecture, illustrated by lantern slides, and two hours a week of research and tracing of historic buildings. Four hours a week.

W F 1:30-3:30 IV

ARCHITECTURE 300.

Design. The design of small buildings. The problems average five weeks in duration with twenty-four hours for the sketch problems at the end of major problems. Nine hours a week.

M W F 1:30-4:30

ARCHITECTURE 310.

(a) Freehand Drawing. Drawing from casts of antique sculpture. Four hours a week. M F 8:30-10:30

(b) Water Color. Elementary training in color drawing and simple groups of still life. Two hours a week.

W 8:30-10:30

[85]
(c) History of Architecture. Two lectures a week in the history of mediaeval and modern architecture, illustrated by lantern slides, and two hours a week of research in the study of historic buildings. Four hours a week.

T Th 2:30–4:30 IV

ARCHITECTURE 400.

Design. The design of public buildings and groups of buildings. The problems average six weeks in duration, alternating with twelve-hour sketch problems. Twelve hours a week.

M 1:30–5:30 T W Th F 3:30–5:30

ARCHITECTURE 410. (Given in 1922–23 and in alternate years thereafter.)

(a) History of Painting. Two lectures a week on the History of Painting. A critical survey of the historic schools of painting and their influence on modern artistic effort.

(b) Freehand. Identical with Architecture 420 (b).

ARCHITECTURE 420. (Given in 1921–22 and in alternate years thereafter.)

(a) History of Modern Architecture. Two lectures a week on the history of Modern Architecture.

T Th 2:30–3:30 VIII

(b) Freehand. Drawing from casts of full figure and group, antique sculpture. Four hours a week.

M W 9:30–11:30

ARCHITECTURE 430. (Given in 1921–22 and in alternate years thereafter.)

(a) Construction. Two lectures a week on masonry
construction, with one plate a week. This course alternates with Construction 530 in successive years.

M W 2:30–3:30

(b) Special Lectures. Lectures on the professional practice of architecture, including the business relations of architect with client and contractor. One lecture a week.

ARCHITECTURE 440.

(a) Historic Ornament. The study of the history of ornament, with a series of design plates in ornament from historic periods of architecture. Six hours a week.

T Th S 8:30–10:30 VI

(b) Water Color. Water-color drawing and sketching in color, work advanced, subjects varied. Two hours a week.

W 9:30–11:30

ARCHITECTURE 500.

Thesis Design. The problem for a thesis may consist of a single building or group of buildings, and must include large-scale studies as well as general drawings. The student may select his own problem, but his entire programme is subject to the approval of the instructors in design. Sixteen hours a week.

T Th S 8:30–12:30 M F 1:30–3:30

ARCHITECTURE 510. (Given in 1922–23 and in alternate years thereafter.)

(a) History of Painting. Identical with Architecture 410 (a).
THE RICE INSTITUTE

(b) Life Drawing. Drawing and sketching from the draped figure. Four hours.

(c) Water Color. Identical with Architecture 520 (c).

ARCHITECTURE 520. (Given in 1921–22 and in alternate years thereafter.)

(a) History of Modern Architecture. Identical with Architecture 420 (a).

(b) Life Drawing. Identical with Architecture 510 (b).

(c) Water Color. Rendered architectural details and measured drawings in color. Two hours.

T Th 2:30–3:30 VIII
M W 10:30–12:30
F 10:30–12:30

ARCHITECTURE 530. (Given in 1922–23 and in alternate years thereafter.)

(a) Construction. Two lectures a week on carpentry construction and roof trusses, with one construction plate a week. This course alternates with Architecture 400 (a) in successive years.

(b) Special Lectures. Identical with Architecture 430 (b).

Included in the work of design of the second, third, and fourth years with a special study of the theory of design.

UNIVERSITY EXTENSION LECTURES

To bring the people of the city and community into more intimate touch with the academic life of the university, and to carry the influence of that life directly to many homes not represented on the rolls of its undergraduate
or postgraduate students, regular series of public lectures, in the form of university extension lectures, are offered without matriculation fee or other form of admission requirement. These performances are authoritative in character, but as non-technical and popular in treatment as their subjects will permit. From domains of literature, history, science, art, philosophy, and politics subjects of current interest as well as those of assured and permanent value are chosen. The present plan for these university extension lectures consists in giving each academic year two regular series of thirty-six lectures each on Mondays, Wednesdays, and Fridays, from the middle of November to the middle of February, the second series running similarly from the middle of February to the middle of May. All these lectures are delivered in the lecture halls and amphitheaters of the Institute, each afternoon lecture beginning promptly at 4:30 and closing not later than 5:30. In addition to the afternoon lectures, occasional Thursday evening lectures are given. The Rice Institute Pamphlet for January, 1918, contains a detailed record of the university extension lectures delivered at the Institute during the academic years 1913–14 to 1917–18, inclusive. These performances were partially interrupted during the war, but have been resumed under some modifications of the original plan as to time and place.

ENDOWED PUBLIC LECTURESHIPS

Two endowed public lectureships have been founded at the Rice Institute. The first of these, established in 1918
THE RICE INSTITUTE

by Mrs. Estelle B. Sharp, of Houston, has to do primarily with topics in the social sciences, while the second, founded in 1919 by Herbert Godwin, Esq., of Houston, is to be devoted initially to subjects of public concern during the period of reconstruction. The Sharp Lectureship was inaugurated in the autumn of 1918 by a course of lectures on "The Obligations and Privileges of Citizenship—a plea for the study of social science," by Sir Henry Jones, F.B.A., professor in the University of Glasgow. The Sharp lectures for the academic year 1919–20 were delivered by Professor Andrew Cunningham McLaughlin, of the University of Chicago, whose subject was "Some Social Forces in American History." The Godwin Lectureship was inaugurated in the spring of 1920 by lectures on "The Conservation of the Institutions of the Republic," and "World-wide Coöperation among the Nations," by the Hon. William Howard Taft, twenty-seventh President of the United States of America. The Godwin Lecturer for the year 1920–21 is Sir Auckland Geddes, the British Ambassador.

RICE INSTITUTE PUBLICATIONS

Among the publications of the Rice Institute are at present included the Announcements, the Descriptive Brochure, the Programmes of University Extension Lectures, and the Rice Institute Pamphlet. The first three of these have appeared at intervals and in several editions; the Pamphlet, now in its eighth volume, is published quarterly in January, April, July and October, with a view to giving wider publicity in permanent form to
PRELIMINARY ANNOUNCEMENTS

inaugural and other lectures in letters, science, and art by visiting lecturers and professors to the University. In this connection the reader may wish to turn to the paragraph of this Announcement concerning the formal opening of the Institute.

LIBRARY

Quarters for the Library of the Institute have been provided in the Administration Building. The affairs of the Library are administered by a committee of the Faculty and Miss Alice C. Dean, M.A., as Acting Librarian. In providing the initial equipment of the Library the policy is being followed of supplying such books as are necessary to supplement the courses of instruction and to support the independent investigations of members of the Faculty and advanced students. In this manner a high degree of efficiency becomes possible at the very beginning of the Library’s existence. Moreover, for work of general and more popular interest the shelves of the Carnegie Library of Houston are accessible to all members of the Institute.

Besides several hundred current literary and scientific journals, the Library of the Institute contains at present above ten thousand volumes in back files of serial publications; among these may be mentioned complete files of the following: Acta Mathematica, American Academy of Political Science—Annals, American Anthropologist (New Series), American Electro-Chemical Society—Transactions, American Chemical Society—Journal, American Historical Association—Annual Reports,
THE RICE INSTITUTE

PRELIMINARY ANNOUNCEMENTS

LABORATORY INSTALLATION

The physics laboratories are located on the north side of the academic court, adjoining the administration building, and are connected with the latter by a continuation of the original cloister. The buildings are constructed of brick and marble, corresponding in design to the style as defined in the administration building, but of a simpler character expressing their purpose as laboratories. The physics laboratory proper is a two-story building 275×56 feet, connected with a large lecture amphitheater 121×72 feet. The main building contains four large students' laboratories, two lecture rooms equipped for giving illustrated lectures, two class rooms, two dark rooms, a library, and administrative offices. The principal room of the amphitheater wing is a large lecture hall with seating capacity for about four hundred auditors. The room is fully equipped for giving illustrated lectures and is arranged with seats properly elevated to command a 28-foot lecture table which is supplied with gas, hot and cold water, compressed air, vacuum, and
PRELIMINARY ANNOUNCEMENTS

direct and alternating electric currents. In this wing also are six rooms fitted for research work in physics, a battery room in which a battery of 60 Edison storage cells of 300 ampere-hours' capacity has been installed with space provided for another equal battery, a switchboard room where the wires from the battery can be connected in any desired manner for use in the laboratories, motor generators for charging the batteries and supplying direct current to the lecture rooms and laboratories, a vacuum pump, liquid air plant, constant temperature rooms, a preparation room, a large dark room, and a fully equipped workshop. The floor of the workshop is supported free from contact with the surrounding walls so that vibration from the machines does not affect the building. Elevators for moving heavy apparatus are provided, and all laboratories, lecture rooms, and research rooms are equipped with individual service, for the students, of gas, water, steam, compressed air, vacuum, and both direct and alternating currents of electricity. The laboratory now contains a fine collection of modern apparatus suitable for teaching and research work in all branches of physics. This collection includes about seventy ammeters and voltmeters of all types, including a Kelvin gauge reading up to 30,000 volts and standard Weston instruments. About forty resistance boxes of all kinds are also provided, and numerous galvanometers, electrometers, and electroscopes of various types. High potential batteries and generators are available for research work. A large Weiss electromagnet, a Leeds and Northrup potentiometer, and complete equipment for the accurate measurement of the conductivity of solutions, a precision
electric wave meter and precision air condenser, may be specially mentioned among the other electrical instruments. The optical instruments include a Hilger's wave length spectrometer, monochromatic illuminator, spectrophotometer, and quartz spectrograph; also a set of interferometers of various types. For work in heat, electrical furnaces, various types of radiation pyrometers, resistance thermometers, and standard thermocouples are available. The apparatus for general work includes several Gaede and diffusion pumps; also standards of weight, length, etc. The collection of apparatus for illustrating lectures is exceptionally complete. An instrument maker and a glass blower are employed in the construction of special apparatus for research work.

The department of chemistry is for the present housed in the mechanical laboratory and in an annex adjoining the same. It contains three large laboratories with locker space for three hundred and fifty students; two lecture rooms; six research rooms; a department library room; a spacious stock room, offices, apparatus rooms. The department is splendidly equipped with modern apparatus and materials for research and for lecture room and laboratory work in inorganic, organic, analytical, physical, electro-, and industrial chemistry. Each laboratory room is equipped with the necessary conveniences, such as water, gas, alternating and direct current, air blast, hoods, suction pumps, etc. The lecture rooms are suitably arranged for the illustration of lectures by experiment and lantern projection. In the department library will be found the more important journals, works of
PRELIMINARY ANNOUNCEMENTS

reference, and standard text-books on the different branches of chemistry. These books and periodicals are accessible to all students.

The department of biology is for the present situated in the west end of the main wing of the physics laboratories. It contains a laboratory capable of seating sixty students; a lecture room with lantern for microscopic and other forms of projection; three research rooms, a preparator's room, store rooms, etc. The undergraduate courses are cultural in their aim. Laboratory work is given in all; microscopes of the most modern type are provided for the students. The department is equipped with an extensive series of specimens, casts, and charts for the study of zoölogy. Six binocular microscopes, seven microtomes of various kinds, thermostats, embedding baths, and considerable accessory equipment, including physiological apparatus, are available for research work. Most of the important current zoölogical periodicals are to be found in the library.

The department of architecture is located on the second floor of the mechanical laboratory, and is equipped with a large general drafting room modern in all its appointments, and with a large studio for freehand drawing and water color. A working library of architecture adjoins the drafting room and is equipped with the standard architectural publications; current files of architectural periodicals; plates, photographs, and lantern slides. The freehand studio is well equipped with plaster casts from the antique, and of historic ornament. The department
also possesses models for elementary instruction in the orders, and models for the teaching of construction.

In the equipment for instruction in Engineering Drawing may be mentioned a new, elaborate set of Olivier models including the war mast, hyperbolic paraboloid, elliptical, and conchoidal hyperboloid, conoid, groined, and cloistered arch, intersecting cylinders, raccording warped surface and corne de vache.

The civil engineering laboratory is fully equipped with the usual surveying instruments, transits, levels, compasses, traverse tables and plane-tables, all of standard American makes. These include C. L. Berger and Sons, Buff and Buff, W. and L. E. Gurley, Bausch and Lomb, Keuffel and Esser, Eugene Dietzgen and Company, William Ainsworth and Sons, and Heller and Brightly. There is also a large assortment of the necessary auxiliary equipment such as tapes, rods, range poles, etc. The drafting room is fully equipped with instruments not required by each individual student, such as planimeters, protractors, special slide rules, military sketching boards, railroad curves and irregular curves consisting of splines and weights. The materials testing laboratory of this department is equipped with one 50,000 pound Riehle universal machine; one 100,000 pound Olsen machine; and one 60,000 inch-pound Riehle torsion machine; also a Fairbanks 2000 pound cement testing machine and the necessary auxiliary apparatus for making the usual tests. All these machines except the cement testing machine are operated by 220 volt, 3 phase, 60 cycle motors, directly connected so as to avoid all shafting and belting. It is
planned to have a road materials testing laboratory and also a sanitary engineering laboratory for advanced students and research.

The electrical engineering laboratory is on the first floor of the engineering building. The laboratory power supply, arranged to be independent of the general Institute lighting and power system by running from a separate generator in the power house, is 220 and 110 volts, 3 phase, 60 cycles. From a central switchboard, the distribution of power is accomplished by open overhead busses to small switchboards conveniently located about the laboratory. The circuit breakers on these distribution boards are of varied make, representing Westinghouse, General Electric, I-T-E, Condit, and Roller-Smith practice. The laboratory equipment is ample for a thorough study of both direct and alternating current circuits and machinery. Direct current for laboratory use is obtained from a General Electric three wire generator, of 35 kilowatts capacity, 125 and 250 volts, driven from the alternating current source by a direct connected induction motor. The direct current equipment includes a 50 kilowatt 250 volt General Electric generator; two similar 5 kilowatt 125 volt Western Electric generators with commutating poles, either flat or over-compounded, for parallel operation; a 5 kilowatt 110 volt Commercial shunt generator; a 3½ kilowatt 125 volt Westinghouse flat compounded generator; a 1 kilowatt 500 volt Commercial generator; a 4½ kilowatt Westinghouse generator with interpoles flat compounded for 125 volts; a 5 kilowatt 110 volt Commercial shunt generator; a 5 horse-power 500
volt Crocker-Wheeler generator; and a 6 volt General Electric generator with Tirrill voltage regulator capable of delivering 500 amperes, driven by a direct connected induction motor. A 7½ horse-power Western Electric motor and a 2 horse-power Roth motor are both shunt wound for 220 volts; a 3 horse-power 230 volt General Electric variable speed shunt motor with commutating poles; a 10 horse-power Robbins and Myers motor, and two similar 13 horse-power Crocker-Wheeler motors, all three shunt wound for 230 volts; and a 4 horse-power 220 volt Sprague series motor. The equipment of alternating current machinery includes: two similar 7½ kilowatt 220 volt General Electric 1-2-3-6 phase synchronous generators which may be direct connected as a frequency-changer set, or, by means of shifting stators, as a phase-displacement set, or used without mechanical connection for parallel and other operation; a 5 kilowatt 220 volt General Electric 3 phase synchronous generator with distributed field (round rotor); a 7½ horse-power 220 volt Fairbanks-Morse 3 phase squirrel cage induction motor; a 5 horse-power 220 volt Westinghouse 3 phase slip-ring induction motor; a 10 horse-power 220 volt General Electric 3 phase induction motor with internal starting resistance; a 7½ horse-power 220 volt Wagner unity power factor single-phase motor. Among the rather special alternating current machines may be mentioned, a dynamotor which when operating from a 110 volt direct current supply line is capable of delivering up to 18 amperes of current at 110 volts at a frequency of 500 cycles; an 8 kilowatt 110 volt General Electric 2-3-6 phase synchronous converter of the split or regulating pole type
which may be driven by the direct current winding or by belt from an external source; and a 10 kilovolt-ampere General Electric 220 volt 3 phase induction regulator for raising or lowering voltage 100%. Other equipment includes: three 2 kilovolt-ampere Kuhlman 110/220:110/220 volt transformers; three 5 kilovolt-ampere General Electric transformers with taps for Scott and other connections; six 3 kilovolt-ampere Western Electric 110/220:110/220 volt transformers, reactances, both air and iron core; condensers; rheostats; and starting devices. Loads for testing purposes may be obtained by lamp banks, rheostats, or by three large iron water-boxes. The supply of meters consists of volt-meters (a.-c. and d.-c.), ammeters (a.-c. and d.-c.), watt-meters (single phase and polyphase), current and voltage transformers, power-factor meters, frequency meters, watt-hour meters, tachometers, synchronoscope, and several precision instruments for checking those used in the laboratory. An oscillograph is completely equipped for taking and developing both rectangular and circular records. Through a gift of Mr. Howard E. Hughes, of Houston, Texas, to the Institute, the electrical engineering department has a completely equipped radio communicating set. The gift of this apparatus promptly stimulated the organization, on the initiative of students of this department, of an intercollegiate radio association for the dissemination of news among the several colleges of this section.

The mechanical engineering laboratory equipment falls into four general classes: steam machinery, internal combustion engines, hydraulic machinery, and apparatus for
THE RICE INSTITUTE

testing fuels and lubricants. The first class contains an 8 x 18 Murray-Corliss engine equipped with rope brake; a 7 x 7 vertical Wachs slide valve engine with Stephenson reversing gear, and a 7 x 10 horizontal slide-valve engine, both with Prony brakes; a 6 x 4 x 6 duplex boiler feed pump; a 20 kilowatt direct current De Laval turbo-generator set, nozzled for condensing and non-condensing operation and fitted with a brake-pulley which may be substituted for the generator; a steam turbine nozzle arranged for experimental work; a Westinghouse locomotive type air-compressor; a 205 cubic foot Ingersoll-Rand 2 stage steam driven air compressor; and a 6 x 10 x 6 vertical compound Sturtevant engine. The machines are piped to exhaust either into the power-house stack or into three Wheeler surface condensers served by circulating and wet vacuum pumps. Internal combustion engines are represented by a 20 horse-power fuel oil engine (Chicago Pneumatic Tool Co.); a 15 horse-power Foos oil engine equipped with two types of governors giving opportunity for engine tests using either kerosene or gasoline as fuel; a 3 horse-power Mietz and Weiss two-stroke cycle unit; and a Ford automobile engine with water-brake load. The hydraulic machinery consists of a 3 inch centrifugal pump and a 4 x 6 triplex pump, both driven by variable speed D. C. motor; a calibrated overhead tank; a concrete storage cistern; three Venturi meters; a single tube manometer; a steam pulsometer; a hydraulic ram; two weir boxes and notches; a Pelton-Doble water wheel with plate glass sides; orifices, water meters, weighing tanks and scales, gauges, and the usual small accessories. In a separate fuel laboratory room is the equipment for testing
fuels and oils. It includes complete Atwater and Parr coal-calorimeter outfits; analytical balances; two types of Orsat flue-gas apparatus; Scott and Saybolt viscosimeters; a Thurston coefficient of friction machine; Bureau of Mines flash-point tester; hydrometers and specific gravity apparatus; a Junker type gas calorimeter; platinum ware, drying oven, ball mill, etc. In another small room is a 20 horse-power vertical fire-tube boiler with the pumps and weighing equipment necessary for boiler tests. Tests of heat-treated steel may be made with the aid of the electric and gas furnaces, electric and optical pyrometers, scleroscope, and Brinnel ball machine.

In addition, the laboratory contains a Sirocco blower driven by calibrated D. C. motor, Pitot tubes, air Venturi meters, anemeter, injectors, dead weight pressure gauge tester, thermometer calibration apparatus, hoists, tachometers, steam calorimeters, the most popular gas and steam engine indicators, planimeters, standard gauges and thermometers. For class-room demonstrations, a Cussons valve-setting model, an automobile engine, and a collection of lantern slides, blue-prints, curves, and sectioned models are available.

A standard moving picture machine permits the exhibition of the many films now loaned by manufacturers of engineering equipment.

The machine shop contains machine tools of quite varied character, each selected for its peculiar fitness to illustrate the principles and common details of modern shop tools and methods. The lathe equipment consists of nine machines: one 14×8 Le Blond cone-head lathe with
THE RICE INSTITUTE

taper attachment and double back gears; one 14×6 Hen- drey cone-head quick-change lathe; one 14×8 standard lathe; one 14×7 Prentice geared head quick-change lathe; one 14×6 geared head quick-change Lodge and Shipley lathe; one 14×6 motor-driven Lodge and Shipley selective head lathe; and two individual drive 14×6 American high duty geared head engine lathes, one of these with turret attachment. The planer type of machine is represented by a 16 inch back-gear-geared Rockford shaper with compound head, and a $22 \times 22 \times 8$ foot Gray planer. All kinds of plane surfaces can also be cut upon the two Kempsmith universal milling machines, which are fitted with dividing heads for gear cutting, differential indexing, spiral grooving, etc., as well as a good variety of cutters. A No. 12 Brown and Sharp motor-driven cutter and universal grinder serves as a practical example of a high-class precision machine tool. For miscellaneous work, a double-disc Gardner ball-bearing motor-driven disc grinder, a work bench with vises, a two-wheel hand-tool grinder, a power hacksaw, a forge, a 20-inch drill-press, a sensitive drill, an arbor press, an air hammer and air drill, portable electric grinders, and a complete oxy-acetylene welding outfit are available. A sufficient supply of small hand and machine tools, lathe sets, and precision measuring instruments is issued on checks from a separate tool-room. Most of the machines are driven through a line shaft by a 15 horse-power motor.

STUDENT ORGANIZATIONS

In the residential halls for men, students and instructors are already living in a common society a common life
under conditions the most democratic. They sit at a common table; they lounge in common club-rooms; they frequent the same cloisters; in games they meet again upon the same playing fields. The quadrangle is self-governed, with no other machinery of government than is necessary to conduct a gentleman's club. To the quadrangle, as to the college, the only possible passports are intellect and character. In the quadrangle, as on the campus, the business of life is regulated by no other code than the common understanding by which gentle folk determine their conduct of life, constantly under the good taste, the good manners, the enduring patience of gentle minds, among strong men who believe that he lives most who works most, labors longest, worries least.

From the very opening days of the new institution the students of the Rice Institute, irrevocably committed to canons of clean sport, have participated in the several forms of intercollegiate athletic contests. The first society of students to be organized at the new University was the Young Men's Christian Association. This step on the part of the young men was speedily followed by a similar step on the part of the young women in the organization of their branch of the college Young Women's Christian Association. The founding of these religious societies, both of which have contributed to the social life and the religious spirit of the new University, has been followed in the course of the early years by the forming of some four or five literary societies: two by the young women, the older society bearing the name of Elizabeth Baldwin, wife of the founder of the Institute, and a later organization known as the "Pallas Athene Literary So-
ciety," and three by the young men, known respectively as "The Owl Literary Society" and the "Riceonian Literary and Debating Society," and a later organization, "The Congressional Club," organized after the order of the House of Representatives and considering in debate the leading public issues as they arise before Congress. Under the auspices of the first societies mentioned was formed the first of the undergraduate periodical publications, namely, "The Thresher," which appeared fortnightly from its initial number in January, 1916, to the present year, during which it has been published weekly. Previous to the organization of the staff of "The Thresher," the Class of 1916 made arrangements for the publication of the first class annual of the Institute, "The Campanile," which appeared in the spring of 1916. The second and third volumes were issued by the classes of 1917 and 1918 respectively, and subsequent annual editions have been published by the representatives of the student body as a whole. In addition to the student organizations mentioned above, various departmental clubs and scientific societies have been contributing to the intellectual life of the Institute. The student body is organized into a Student Association which includes all students of the Institute and serves as the official organ for the expression of their views and for the promotion of student enterprises. In particular the undergraduate periodicals are now maintained under the auspices of this association. A Students' Council, elected by the Association, provides leadership in the Association. The President of the Students' Council is also President of the Association.
PRELIMINARY ANNOUNCEMENTS

The extra-curriculum academic and athletic activities of the Rice students have been stimulated by several prizes donated by friends of the Institute; namely, the Lechenger silver cup, the gift of Mr. L. Lechenger, for the winning debating team in the annual commencement contest of the literary societies; the Shotwell and Harris gold medal, the gift of Messrs. W. I. Shotwell and I. Harris, for the winner of the annual oratorical contest of the literary societies; the Wilson silver cup, the gift of Mrs. H. A. Wilson, for the winning team of the annual class debate of the young women's literary society; the Kalb basketball memorial silver cup, the gift of Mr. E. F. Kalb; and the Sweeney silver cup, the gift of the J. J. Sweeney Company, to be contested for annually in class track athletics. Mr. William M. Rice, Jr., has provided a cabinet for the preservation and exhibition of these and similar gifts and trophies of Rice local and intercollegiate contests. This elaborate cabinet, designed by Mr. R. A. Cram, supervising architect of the Institute, is a most beautiful example of wood carving. General Jacob F. Wolters has lately signified his intention of donating a medal to be awarded for excellence in public speaking.
FIFTH
ANNUAL COMMENCEMENT
FIFTH
ANNUAL COMMENCEMENT
DEGREES IN COURSE CONFERRED
JUNE 7, 1920

At the fifth annual commencement convocation of the Rice Institute held at the conclusion of the eighth academic session the baccalaureate sermon was preached by the Rev. Father James M. Kirwin, V.G., of Galveston, Texas, and the commencement address was delivered by Judge Joseph C. Hutcheson, Jr., of the United States District Court, Houston, Texas. On recommendation of the Faculty and by authority of the Trustees, the President of the Rice Institute, at the final ceremonies in the Academic Court on the morning of June 7, 1920, conferred the following degrees respectively:

BACHELOR OF ARTS

Vella Bates
Sadie Block
Paul Frederick Bobb
Lucille Agnes Brand—with distinction
Leon Bromberg
Louise Jane Béraud
 (as of 1918)
Julia Arthur Burrell—with distinction
Edwin Weisman Burton

Edgar Allen Cain
Georgia Whitsette Comfort—
 with distinction
Bertha Anita Downs
Nancy Sophia Dupré
Otto Hugo Eisenlohr
 (as of 1919)
Ernest Lominda Faber
Ellamarye Failor
Katherine Filson
Peter Osipovich Fleet
THE RICE INSTITUTE

Frances Ellen Foote
Martha Louise Foreman
Julian Elliott Fruit
Edith Catherine Gallaher
Abram Lewis Geller
Mildred Maurine Hilswick
Olive Grace Hubbell
Jay Frank Jungman
Thomas Mitchell Keiller
(as of 1918)
Jefferson Paul King—with honors in mathematics and economics
Loena King—with distinction
John Frederick Klotz
Lucius Mirabeau Lamar III
—with honors in mathematics and economics
Dorothy Lee
Adelaide Lovett
Kathryn Adair Lubbock
Edwin Nolan Lunn
Emmett Henry McFarland
Reba Mickelborough
Maurine Mills—with distinction
Helen Mims
Renée Marie Joséphine Moechel
Rita Morales
Edward Young Nelson
Lillian Louise Nicholson
Janie Ogilvie
Robert William Patten
(as of 1919)
Jesse Raymond Peterson
Mildred Armistead Porter
Morris Radoff
Helen Redfield—with distinction
Maynard William Robinson
Oscie Alice Sanders
Anna Gilliland Schirmer
Estelle Streetman
Maud Munden Terrell
Albert Langston Thomas
Thelma Thomas—with distinction
John William Waltrip, Jr.
Zuleika Ware
William Gladstone Whitehouse
Mary Clarke Wier
Mabel Virginia Wilson

BACHELOR OF SCIENCE

John Sherwood Ansley
(as of 1919)
Stewart Percy Coleman—with distinction
Emil H. Della Valle
(as of 1918)
Frederick William Fraley, Jr.
Charles Otto Garbrecht

[112]
PRELIMINARY ANNOUNCEMENTS

Milton Scott Heywood
Thomas Owen Heywood (as of 1919)
John Lewis Knapp
William Henry Moler
Willard Houghton Moore
John William McFarland (as of 1918)
Isbell Franklin McIlhenny
Hervin Wolfe Nussbaum

Samuel Anthony Russo
Joseph Robert Shannon—
with distinction
Clifton Raymond Shaw
William Malcolm Stratford
(as of 1919)
Talmage DeWitt Thomas
(as of 1919)
Henry Augustus Tillett, Jr.
(as of 1918)

BACHELOR OF SCIENCE IN ARCHITECTURE

Leland Allen Hodges (as of 1919)
John Thomas Rather, Jr.
Thomas Shirley Simons

MASTER OF ARTS

Andrew Bonnell Bryan
Laurice Laird Lockrow
Albert Grant Mallison

MASTER OF SCIENCE

Allen Darnaby Garrison
Edmund Burrus Middleton
Everett Ellis Porter

DOCTOR OF PHILOSOPHY

Norman Hurd Ricker
THE RICE INSTITUTE

SCHOLARSHIPS AWARDED FOR 1920–21

THE GRAHAM BAKER STUDENT
Tracy Yerkes Thomas, Class 1921, of Little Rock, Arkansas

THE HOHENTHAL SCHOLARS (*Alphabetical*)
Emmett Finley Carter, Class 1922, of Elgin, Texas
Emily Burns Gard, Class 1923, of Houston, Texas
Hugh Raleigh McKean, Class 1922, of Mykawa, Texas
Tannie Lee Oliphint, Class 1923, of Houston, Texas
Kenneth Thorpe Rowe, Class 1922, of McAllen, Texas
Norrie Austin West, Class 1921, of Lufkin, Texas

THE SHARP SCHOLARS IN CIVICS AND PHILANTHROPY
Nellie Opal Porter, B.A. (Texas), 1919, of Tyler, Texas
Elizabeth Snoddy, B.A. (Rice), 1919, of Houston, Texas
Kathleen Helena Gemmer, Class 1921, of Houston, Texas
Helen South, Class 1921, of San Marcos, Texas

THE SCHOLAR OF THE JOHN MCKNITT ALEXANDER CHAPTER, DAUGHTERS OF THE AMERICAN REVOLUTION
Genevieve Friedenthal, Class 1923, of Houston, Texas
LIST OF STUDENTS
1920–1921
LIST OF STUDENTS

GRADUATE STUDENTS

Boucher, Paul Edward* . . . Woodmen, Colorado
B.A., Colorado College, 1918

Depenbrock, Juanita Swope . . Houston, Texas
B.A., Rice Institute, 1919

Dickson, John Leslie . . . Houston, Texas
B.A., George Peabody College
for Teachers, 1910

Fинфrock, Elizabeth Hope . . Houston, Texas
B.A., James Milliken University
M.A., James Milliken University, 1908

Garrison, Allen Darnaby* . . . Austin, Texas
B.A., Rice Institute, 1918
M.A., Rice Institute, 1920

Hathorn, John Broadus* . . . Sonora, Texas
B.A., Rice Institute, 1918

John, Marguerite Eleanor* . . . Houston, Texas
B.A., Rice Institute, 1919

Klotz, John Frederick . . . Mexia, Texas
B.A., Rice Institute, 1920

Lee, Lenoir Valentine* . . . Houston, Texas
B.A., Richmond College, 1913
B.D., Theological Seminary of
Virginia, 1916

* Candidacy for advanced degree approved.

[117]
THE RICE INSTITUTE

Mallison, Albert Grant Houston, Texas
 B.A., Western Reserve, 1909
 M.A., Rice Institute, 1920
Morris, Nell Houston, Texas
 B.A., University of Texas, 1914
Pilot, Nadine Dorothy Houston, Texas
 B.A., Randolph-Macon, 1920
Porter, Nellie Opal* Tyler, Texas
 B.A., University of Texas, 1919
Robinson, Louise Crabb Georgetown, Kentucky
 B.A., Georgetown College
 (Kentucky), 1920
Schultz, Christine Olivia . . . Houston, Texas
 B.A., Rice Institute, 1918
Snoddy, Elizabeth* Houston, Texas
 B.A., Rice Institute, 1919
Somers, Russell Ivan* Saint Joseph, Illinois
 B.A., University of Illinois,
 1919
 M.A., University of Illinois,
 1920
Staggs, Drew Black Houston, Texas
 B.A., University of Texas, 1911
Turnbull, Euphemia Pender . . Houston, Texas
 B.A., Rice Institute, 1919
Weinberg, Helen Celestine . . Houston, Texas
 B.A., Rice Institute, 1917
Woods, Maud Lee* Houston, Texas
 B.A., Drury College, 1909

* Candidacy for advanced degree approved.
PRELIMINARY ANNOUNCEMENTS

SENIORS*

Almeras, Pierre Numa Galveston, Texas
Atkinson, Charles Harold . . Del Rio, Texas
Atkinson, Marguerette Hoover . Houston, Texas
Autry, James Lockhart, Jr. . Houston, Texas
Batjer, Helen Huntington . . Rodgers, Arkansas
Beaumont, Patricia Houston, Texas
Benson, Joseph Chaffin . . . Mart, Texas
Beshara, John Joseph . . . Port Arthur, Texas
Boxley, Gertrude Harrisburg, Texas
Bradley, Chester Eaves . . . Baileyville, Texas
Brown, Edward Vandiver . . . Waco, Texas
Bush, William Nathaniel . . . Waxahachie, Texas
Cabaniss, Nora Louise . . . Lockhart, Texas
Campbell, Maude Terry . . . Galveston, Texas
Caranagnostis, Helene Demetrios . Galveston, Texas
Carson, Clarence Leon . . . Texarkana, Texas
Cason, Dick Kendall, Jr. . . Nacogdoches, Texas
Coghlan, Margaret Beatrice . Houston, Texas
Cornelison, Jesse Ions . . . San Angelo, Texas
Cunningham, Walter Bart . . . Beaumont, Texas
Dowell, Cleoy Lafoy Port Arthur, Texas
Drouilhet, Henry Adrien Renshaw . Galveston, Texas
Dutton, Daniel Fleming . . . Houston, Texas
Ehrenfeld, Louis Houston, Texas
Freyer, Helen Bessie Houston, Texas
Gaines, George Conklin, Jr. . Jasper, Texas
Gemmer, Kathleen Helena . . Houston, Texas
Goodman, Inez Houston, Texas
Greenhill, Norma Ruth . . . Houston, Texas
Harder, Hanna Marie . . . Houston, Texas
Harlan, Rudolph Keener . . . Bartlett, Texas

*As classified October 1st, 1920.
Hemphill, Rosalee Houston, Texas
Hogg, Marie Louise Houston, Texas
Howard, Idawynne Houston, Texas
Hurley, Sue Roselle Houston, Texas
Hyndman, Olan Robert . . . Houston, Texas
Jarvis, Dudley Crawford . . . Terrell, Texas
Johnson, Gaylord . . . Houston, Texas
Jones, Daniel Le Roy . . Houston, Texas
Kennerly, Lola Taylor . . Houston, Texas
Lottman, Otto John . . . Houston, Texas
Lovett, Henry Malcolm . . Houston, Texas
McFaddin, James Lewis Caldwell Beaumont, Texas
McPhillips, Mildred Elizabeth . Houston, Texas
McWhorter, Albert William . Kansas City, Missouri
Maddrey, Robert Kennedy . Bonham, Texas
Mutersbaugh, Bert Marsh . . Lake Charles, Louisiana
Norvell, Gloria Irene . . . Houston, Texas
Nunn, Addison Stayton . . Saint Jo, Texas
Overcash, Joseph Tryon . . Houston, Texas
Peterson, Melvin Raymond . Eastland, Texas
Powell, George Blanton . Smithville, Texas
Ragland, William Shaw . . Mercedes, Texas
Rice, Minnie Houston, Texas
Roney, Helen Marie . . Houston, Texas
Roos, Charles Frederick . Houston, Texas
Rose, Volney James . . Edna, Texas
Schlom, Louis Henry . . Houston, Texas
Schram, Charles Bernard . Houston, Texas
Secor, Ottis Pearson . . Houston, Texas
Shriner, Helen Emma . . Houston, Texas
Smidth, Leonard . . . Houston, Texas
South, Helen San Marcos, Texas
Still, Ben Ivor . . . Houston, Texas
PRELIMINARY ANNOUNCEMENTS

Suttles, Charles Lowery Houston, Texas
Taylor, Roy Alfred Houston, Texas
Thomas, Emily Otway Houston, Texas
Thomas, Tracy Yerkes Little Rock, Arkansas
Timmons, Henry Davis Houston, Texas
Tipton, Roy Bartlett, Texas
Upshaw, Reginald Banks Dallas, Texas
Wademan, Clarence Edwin Temple, Texas
West, Norrie Austin Keltys, Texas
Wilford, Robert Oliver, Jr. Mayfield, Kentucky
Wilson, Charles Patton, Jr. Houston, Texas
Wilson, Willett, Jr Houston, Texas
Zimmer, Lucy Madalyn Houston, Texas

Juniors*

Adams, Magele Ennis, Texas
Attwell, Martha Virginia Houston, Texas
Barrett, Chester Arthur Gainesville, Texas
Batsch, Frank Ferdeline Houston, Texas
Berleth, Francis Hancock Houston, Texas
Blackwell, Margaret Outhwaite La Porte, Texas
Breed, Augusta Uglow Houston, Texas
Brown, Ila Cloyce Galveston, Texas
Bushong, Paul Donner Port Arthur, Texas
Bybee, Charles Lewis Houston, Texas
Calvin, Dea Bailey Houston, Texas
Carson, Robert Baker Houston, Texas
Carter, Emmett Finley Elgin, Texas
Chrisman, Wilma Lena Onalaska, Texas
Conger, Harvey H. China Springs, Texas
Cooperman, Eva Ella Houston, Texas
Cunyus, George Grady Longview, Texas

*As classified October 1st, 1920.
THE RICE INSTITUTE

Dain, James Warren Smithville, Texas
Damiani, Caesar Andrew . . . Dallas, Texas
Dargan, Alfred Neal Houston, Texas
Davis, James Ludwell Livingston, Texas
Davis, William Owen Gainesville, Texas
Davison, Sarah Evelyn Williams . . . Hubbard, Texas
De Prato, Edwin William . . . Texarkana, Texas
Doehring, Carl Frederic . . . Houston, Texas
Dutton, James Richard Houston, Texas
Eaton, Marion Lois Houston, Texas
Filson, Martha Houston, Texas
Franklin, John Leslie Bastrop, Louisiana
Gemmer, Carolyn Lydia . . . Houston, Texas
Giezendanner, Stuart Sawyer . . . Houston, Texas
Gresham, Hill Campbell . . . Temple, Texas
Hager, Harold James Houston, Texas
Hargis, Fred D. Dallas, Texas
Henry, Jake, Jr. Denison, Texas
Heyck, Theodore Richard . . . Houston, Texas
Higgins, Lula Reagan, Texas
Hilswick, Moselle Houston, Texas
Hirsch, Marvin Lister . . . Houston, Texas
Hodges, Dan Littleton . . . Austin, Texas
Hughes, James Hearne . . . Sherman, Texas
Humason, Lawrence Wilfred . . . Houston, Texas
Humber, Jason Houston, Texas
Hunt, Helen Mar Houston, Texas
Jones, Herbert Sennigson . . . Houston, Texas
Keilin, Louis Richard Wharton, Texas
Kropp, Richard Houston, Texas
Lane, Gessner Houston, Texas
Lee, Robert Woodson . . . Houston, Texas
Lehman, Clay Hughey Texarkana, Texas
PRELIMINARY ANNOUNCEMENTS

Leland, Anah Marie Houston, Texas
Lindsey, Marion Lee Beaumont, Texas
MacDonald, Barbara Miriam Houston, Texas
McCorquodale, Malcolm Scott Beaumont, Texas
McElroy, Bertholde Bracken Belton, Texas
McKean, Hugh Raleigh Houston, Texas
Marshall, William Beatty Houston, Texas
Mathieu, Henry Philip Houston, Texas
Mayer, Benjamin Foster Bartlesville, Oklahoma
Mellinger, John Sweeney Houston, Texas
Merritt, William Edward, Jr. Houston, Texas
Meyer, John Nicholas Dallas, Texas
Miller, Lucille Marie Bellville, Texas
Moore, Louise Gillespie Houston, Texas
Moore, Ruth Houston, Texas
Moore, Thomas William Houston, Texas
Morrison, George Lyon El Paso, Texas
Nash, Paul Edward Dallas, Texas
Nemir, Alma Waco, Texas
Payne, Brittain Ford Dayton, Texas
Pellettere, Joseph Anton Houston, Texas
Peterson, Fendell Bernard Bellaire, Texas
Pleasants, Julia Houston, Texas
Pollard, Albert Harrison Temple, Texas
Randall, La Baume Elliott Dallas, Texas
Reeves, George Dewey Jonah, Texas
Reinhardt, John Caspar, Jr. Texarkana, Texas
Remmel, Marie Rose Houston, Texas
Rowe, Kenneth Thorpe McAllen, Texas
Rudersdorf, William Houston, Texas
Scharnberg, Lester Nathan Houston, Texas
Sewall, Blanche Harding Houston, Texas
Shacklett, John Wilson Houston, Texas
THE RICE INSTITUTE

Shaw, John Feary Canyon, Texas
Shelburne, Samuel Ainslie . . . Sherman, Texas
Smith, Grace Crawford . . . Houston, Texas
South, Dudley Pritchett . . . San Marcos, Texas
Streusand, Bernard . . . Houston, Texas
Stuart, James Blair . . . Houston, Texas
Swinford, Jerome Kenneth . . Houston, Texas
Tatum, Fernley Asbury . . . Palacios, Texas
Tidwell, Wyatt Rodney . . . Mexia, Texas
Trussell, Hughie Dunn . . . Mount Calm, Texas
Wagner, Virginia Aubrey . . Bryan, Texas
Wall, Hilda Joyce . . . Houston, Texas
Waters, William Alpheus . . Galveston, Texas
Wear, Hally Rosalie . . . Brownwood, Texas
Webb, Charles Galloway . . Dallas, Texas
Williams, Robert Parks . . . Leesburg, Florida
Winsborough, Robb Mauzy . . St. Louis, Missouri
Woodruff, Kate Hooper . . . Houston, Texas

SOPHOMORES*

Abernathy, Louis Randolph . . Houston, Texas
Aitken, Melvin Nicol . . . Houston, Texas
Alexander, Herbert Lloyd . . Houston, Texas
Alexander, Miller Hutchins . . Decatur, Georgia
Arnold, E. Oren . . . Henderson, Texas
Baring, Arnaldo William . . Houston, Texas
Barnes, Peyton . . . Houston, Texas
Barrick, Dale Larimore . . Houston, Texas
Bartlett, Henry Leigh . . . South Houston, Texas
Batjer, Arch Dunbar . . . Abilene, Texas
Beard, Bernice . . . Houston, Texas
Bell, Burnice . . . Houston, Texas

* As classified October 1st, 1920.
PRELIMINARY ANNOUNCEMENTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell, Morris B.</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Berry, James Howard</td>
<td>Crockett, Texas</td>
</tr>
<tr>
<td>Best, Frances Lenita</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Bickford, Reginald Scott</td>
<td>Boston, Massachusetts</td>
</tr>
<tr>
<td>Black, Fanny Hamlin</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Bloxsom, Allan Penny</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Boettcher, Fred Charles</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Bradshaw, Dorothy Stutzman</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Bradshaw, Margaret Naomi</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Brenner, Henry</td>
<td>San Antonio, Texas</td>
</tr>
<tr>
<td>Briggs, Robert Curtis</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Brogniez, Frantz Philip</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Brown, Charles Ewing</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Burch, Bernard Owen</td>
<td>Port Arthur, Texas</td>
</tr>
<tr>
<td>Bybee, John Clinton</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Byers, Evelyne</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Cain, Arthur Benton</td>
<td>Yoakum, Texas</td>
</tr>
<tr>
<td>Carson, William Clarence</td>
<td>Sierra Blanca, Texas</td>
</tr>
<tr>
<td>Cashion, Martin Henry Lyle</td>
<td>Texarkana, Texas</td>
</tr>
<tr>
<td>Cecil, Lamar Ryan</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Coleman, Walter Leslie</td>
<td>Corpus Christi, Texas</td>
</tr>
<tr>
<td>Cook, Alfred Adolphus</td>
<td>New Waverly, Texas</td>
</tr>
<tr>
<td>Crofton, Walter Montgomery</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Darling, William McKinley</td>
<td>Temple, Texas</td>
</tr>
<tr>
<td>Dawson, Dorothy Dixie</td>
<td>Logansport, Louisiana</td>
</tr>
<tr>
<td>Duggan, Earnest Russell</td>
<td>Belton, Texas</td>
</tr>
<tr>
<td>Duquette, Louis Borgella</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Durham, Harry Eugene</td>
<td>Texarkana, Texas</td>
</tr>
<tr>
<td>Dutton, Catherine Elizabeth</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Dutton, Clinton Leroy</td>
<td>Grandfield, Oklahoma</td>
</tr>
<tr>
<td>Dyer, Edwin Hawley</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Earthman, Addie May</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Elliott, Joseph Evans</td>
<td>Waco, Texas</td>
</tr>
</tbody>
</table>
THE RICE INSTITUTE

Ellis, Athna Bryan Palestine, Texas
Etchison, Roy Pardo Waco, Texas
Farrar, Ellen Taylor Houston, Texas
Fincher, Annie Sophia . . . Houston, Texas
Fischl, Gladys Ardmore, Oklahoma
Fitzgerald, William James . . Houston, Texas
Flaxman, Theodore Alexander . Houston, Texas
Francisco, George Carl, Jr. . . Dallas, Texas
Friedenthal, Genevieve . . . Houston, Texas
Fulmer, Harry Wilbur Billings, Montana
Galbreath, William Aubrey . . Wharton, Texas
Gallegley, Joseph Stephen, Jr. . San Antonio, Texas
Gard, Emily Burns Houston, Texas
Giddings, Harold Dewitt . . . Brenham, Texas
Goldberg, Eli Houston, Texas
Goodwin, James Buford . . . Houston, Texas
Goss, Henry Frank, Jr. . . . Abilene, Texas
Greer, Oden Searcy Houston, Texas
Guffy, Fred Hudson Belton, Texas
Hair, William Wilbern, Jr. . Temple, Texas
Harris, Raphael Clarence . . Beaumont, Texas
Harrison, Elizabeth Houston, Texas
Hornbuckle, John Spence . . Houston, Texas
Janes, Hugh Paul Houston, Texas
Johnson, Fred W. El Campo, Texas
Johnson, Ruben Houston, Texas
Johnson, Tresmer De Ridder, Louisiana
Jordan, Pauline Houston, Texas
Kennedy, Alson Rankin . . . Sabinal, Texas
Killingsworth, Mary Louison . Houston, Texas
King, Allie Houston, Texas
King, Geane Houston, Texas
King, Lloyd Allen Idabel, Oklahoma
King, Ruby Gordon Houston, Texas
Kingsland, Aline Houston, Texas
Kinnear, Reginald Augustus Beaumont, Texas
Kochan, Millie Houston, Texas
Lack, George Joseph Beaumont, Texas
Landram, Charles Scott Houston, Texas
Lange, Frederick William Dallas, Texas
Lay, Courtenay Mary Houston, Texas
Lay, Wolcott Edward Houston, Texas
Lee, Katheryn Houston, Texas
Leftwich, James Brooks Oklahoma City, Okla.
Letts, Bessie Lucille Houston, Texas
Lieb, Herbert James Houston, Texas
McCollough, Byron Godfrey Houston, Texas
McCollough, Edward Heron Houston, Texas
McFarland, Van Haile Eagle Pass, Texas
McGee, Graves Alphus Abilene, Texas
McKee, David Rice Saranac Lake, New York
Mackenzie, Mary Lee Houston, Texas
Manley, Maurice Foster Brazoria, Texas
Matthews, Dorothy Louise Houston, Texas
Mincey, Walter Melvin Waxahachie, Texas
Moore, Katherine Lucille Houston, Texas
Moore, Mary Terese Houston, Texas
Moore, Minnie Ella Anchor, Texas
Moore, Walter Parker Anchor, Texas
Mount, Allen Wade Corpus Christi, Texas
Muckleroy, Alexander David Nacogdoches, Texas
North, Marjorie Houston, Texas
Norton, Thelma Houston, Texas
Nye, Selden Spencer San Antonio, Texas
O’Brien, William Henry Dublin, Texas
Oliphint, Tannie Lee Houston, Texas
<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orr, Frances Anna</td>
<td>Livingston</td>
<td>Texas</td>
</tr>
<tr>
<td>Porter, Boyd, Jr.</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Randlett, Marion Randall</td>
<td>Lancaster</td>
<td>Texas</td>
</tr>
<tr>
<td>Raper, William Bryan</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Ratcliff, Dorothy</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Ratley, John William</td>
<td>Ardmore</td>
<td>Oklahoma</td>
</tr>
<tr>
<td>Riddick, Campbell Wiley</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Ritter, Joseph Crocker</td>
<td>Ferris</td>
<td>Texas</td>
</tr>
<tr>
<td>Robertson, Ernest Milton</td>
<td>Wichita Falls</td>
<td>Texas</td>
</tr>
<tr>
<td>Robertson, William Ernest</td>
<td>Mineral Wells</td>
<td>Texas</td>
</tr>
<tr>
<td>Ross, Herbert Pitts</td>
<td>Grandview</td>
<td>Texas</td>
</tr>
<tr>
<td>St. John, Ralph Vaughn</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Schneider, Werner Alexander</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Schwartz, Frances Louise</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Shacklett, Mary LeGrande</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Shands, Lalu Nobles</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Sherry, Frank Bertrom</td>
<td>Jonesboro</td>
<td>Arkansas</td>
</tr>
<tr>
<td>Shipman, Ida May</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Shult, Ernest Leonard</td>
<td>El Campo</td>
<td>Texas</td>
</tr>
<tr>
<td>Shult, Walter Rudolph</td>
<td>El Campo</td>
<td>Texas</td>
</tr>
<tr>
<td>Smith, Bessie Woodman</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Spencer, Carey Forbes</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Springall, Walter Forneret</td>
<td>San Antonio</td>
<td>Texas</td>
</tr>
<tr>
<td>Steele, Dan C., Jr.</td>
<td>Tampico</td>
<td>Mexico</td>
</tr>
<tr>
<td>Steen, Arthur Benjamin, Jr.</td>
<td>Hope</td>
<td>Arkansas</td>
</tr>
<tr>
<td>Stockard, Maude Ernestine</td>
<td>Santa Anna</td>
<td>Texas</td>
</tr>
<tr>
<td>Stockard, Mildred Estelle</td>
<td>Santa Anna</td>
<td>Texas</td>
</tr>
<tr>
<td>Stockbridge, Lodi</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Stricker, Katyruth</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Strobel, Elizabeth</td>
<td>Chenango</td>
<td>Texas</td>
</tr>
<tr>
<td>Supple, Charles M.</td>
<td>Waxahachie</td>
<td>Texas</td>
</tr>
<tr>
<td>Taylor, Eleanor Kendrick</td>
<td>Houston</td>
<td>Texas</td>
</tr>
<tr>
<td>Taylor, Harold Spencer</td>
<td>Orange</td>
<td>Texas</td>
</tr>
</tbody>
</table>
Preliminary Announcements

Thibodeaux, Janice Elizabeth . . Houston, Texas
Todd, Wallace Wainright . . Houston, Texas
Trevino-Garcia, Salvador . . Monterrey Nuevo-Leon, Mexico

Truhlar, John Crosby, Texas
Tryon, Joseph A. Port Arthur, Texas
Turnbull, Margaret Houston, Texas
Udoff, Abram Houston, Texas
Uhl, Alfred Wallace Dallas, Texas
Underwood, John Arthur Honey Grove, Texas
Underwood, John Nicholas Galveston, Texas
Wagner, Marjorie Edith Bryan, Texas
Walker, Henry Donald Denison, Texas
Walton, Gerard Ray Fort Worth, Texas
Warn, Richard Edward Pecos, Texas
Watt, James Silas El Campo, Texas
Wellborn, Christine Alvin, Texas
Wells, Edward Lytton Houston, Texas
Wells, Nicholas Weeks Galveston, Texas
Werlin, Reuben Houston, Texas
Wessendorf, Marguerite Richmond, Texas
West, Milton Austin San Antonio, Texas
White, Ernest Gordon Waco, Texas
Williams, George Guion Houston, Texas
Wilson, Florence Ray Houston, Texas
Wilson, Margaret Elizabeth .. Houston, Texas
Wilson, Roy Thomas Houston, Texas
Wink, Nathaniel Edwin Houston, Texas
Winn, W. H. Temple, Texas
Witt, Fred Louis Houston, Texas
Woods, Gorham Witter Appleby, Texas
Young, Ruth Gladys Houston, Texas
Zindler, Jerome Houston, Texas
THE RICE INSTITUTE

FRESHMEN*

Acheson, Marcus Alexander . . . Denison, Texas
Adams, Fisher Durham Houston, Texas
Adams, Walter Ennis, Texas
Alexander, William Thomas, Jr. Cade, Louisiana
Alpha, Emmet, Jr. Franklyn, Louisiana
Ander, Hans F. Houston, Texas
Anderson, Charles Harper . . . Galveston, Texas
Anderson, Frankie Pauline . . Houston, Texas
Anderson, John Lewis Jennings, Louisiana
Asbell, Virginia Beatrice . . . Houston, Texas
Babcock, Franklin Harold . . . Corpus Christi, Texas
Bacot, Aubrey May McComb, Mississippi
Baker, Clarence Franklin, Louisiana
Baker, Juston Allen Houston, Texas
Ballew, Homer Troup, Texas
Barnett, William Lockridge . . Karnes City, Texas
Bashara, Abe Mensour . . . Wichita Falls, Texas
Bates, Margaret Faye Alvin, Texas
Bauer, George El Campo, Texas
Bauer, Willie El Campo, Texas
Beadle, Herbert J. Houston, Texas
Bennett, Jack Gordon Houston, Texas
Bennett, Zuline Minyon . . . Houston, Texas
Bishkin, Sam Leon Houston, Texas
Blayney, Lindsey, Jr. Houston, Texas
Boatner, James Polk Timpson, Texas
Bowling, Leonard Chenoveth . Bonham, Texas
Brelsford, Mabel Alice . . . Houston, Texas
Bridgewater, Ann Danbury, Texas
Briggs, Lemuel Waterman . . Houston, Texas
Brinson, Floyd Britton Corpus Christi, Texas

*As classified October 1st, 1920.
<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brisbine, Margaret Mina</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Brown, Arthur Lee</td>
<td>Tyler, Texas</td>
</tr>
<tr>
<td>Brown, De La Motta</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Brown, Hannah</td>
<td>San Antonio, Texas</td>
</tr>
<tr>
<td>Brown, Hart</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Brown, Reuben Alec</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Brown, Sadie Ralston</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Buck, Dorothy</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Bush, Leonard Ewing</td>
<td>Huntsville, Texas</td>
</tr>
<tr>
<td>Cagle, Cecil Cobb</td>
<td>Greenville, Texas</td>
</tr>
<tr>
<td>Campbell, Douglas Alexander</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Campbell, James Ira</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Capell, Lida Margaret</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Carson, John Raymond</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Carson, Margan Steele</td>
<td>Texarkana, Texas</td>
</tr>
<tr>
<td>Cavender, Sterling Cunningham</td>
<td>Sabinal, Texas</td>
</tr>
<tr>
<td>Chambers, Roy Edward</td>
<td>Port Arthur, Texas</td>
</tr>
<tr>
<td>Chapman, Edwin Marion</td>
<td>Morgan City, Louisiana</td>
</tr>
<tr>
<td>Chavanne, Edward Faucett</td>
<td>Lake Charles, Louisiana</td>
</tr>
<tr>
<td>Christenson, Gladys</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Clark, Nolan J.</td>
<td>League City, Texas</td>
</tr>
<tr>
<td>Clarke, Louise</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Coe, Richard Oren</td>
<td>Goose Creek, Texas</td>
</tr>
<tr>
<td>Cohen, Chester</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Cohen, Ike</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Colley, Audrey Merle</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Collins, Joel Gilbert</td>
<td>Livingston, Texas</td>
</tr>
<tr>
<td>Cook, John Scurlock</td>
<td>Texarkana, Arkansas</td>
</tr>
<tr>
<td>Copeland, Harry Elbert</td>
<td>Leesville, Louisiana</td>
</tr>
<tr>
<td>Craine, Earl E.</td>
<td>Antigo, Wisconsin</td>
</tr>
<tr>
<td>Creekmore, Paul Caswell</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Crossland, Cullinan Alice</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Cummings, John William</td>
<td>Houston, Texas</td>
</tr>
</tbody>
</table>
Cunningham, Winifred Elizabeth
Cunyus, Oma Christine
Dannenbaum, Lucile
Dargan, Mildred Hale
Darnall, Beverly Smith
Davidson, Gladys
Davis, Marie Longino
Davis, Myra Weldon
Davis, William Dudley
Del Barto, Mary Antoinette
Delhomme, Daniel Locke
Denniston, Elinore Thaw
Denniston, Sybil Marie
Depew, Maxwell Vernon
Deutschman, Hannah
Dewey, Corinne
Diamond, Nathan
Digby-Roberts, Frederick William
Dippel, Alfred
Dissen, William Julius
Dixon, Katherine
Dodds, Olaf Herbert
Dodge, Ada Kemp
Doherty, Raymond
Donigan, V. Mesog
Dorsey, Henry, Jr.
Dryden, Allison
Du Bose, Charles Rains
Dudley, H. B.
Duggan, Benjamin Hardy
Dunkerley, Allen Keton
du Perier, Anna Marie
Dynes, Donald Le Grande
PRELIMINARY ANNOUNCEMENTS

Easterling, Hugh Cecil Dierks, Arkansas
Eastham, Lynn Albert Beaumont, Texas
Ebersole, Paul Blare La Porte, Texas
Eddleman, Richard Neat . . . Louisville, Kentucky
Edwards, Ivan Reo Houston, Texas
Edwards, Thomas Cook Alvin, Texas
Edwards, Thomas John Texarkana, Arkansas
Elliott, Charles Emmett, Jr. . Houston, Texas
Erickson, Julius Lyman Edward . Lake Charles, Louisiana
Feld, Jeanette Vivian Houston, Texas
Fielder, James Park, Jr. . . . Arlington, Texas
Fields, John Belcher Cristobal, Canal Zone
Ford, Anna Jo Houston, Texas
Forgy, Percy O'Dell Dierks, Arkansas
Fory, Frank Marion Timpson, Texas
Francklow, George D. Houston, Texas
Frosch, Alex Houston, Texas
Fulton, Elizabeth Lee Houston, Texas
Galindo, Homero J. Saltillo, Coahuila, Mex.
Garrett, Virginia Houston, Texas
Gaunt, Lester Harry Lake Charles, Louisiana
Geller, Goldie Rose Houston, Texas
Gerson, Gertrude Augusta . . Houston, Texas
Gibbs, Joe Houston, Texas
Gibson, Ethlyn Houston, Texas
Gillette, Frances Houston, Texas
Goalby, Roy Edward Herrin, Illinois
Godley, Edgar Bartlett Dallas, Texas
Gonzalez, Ernesto Ygnacio . . Monterrey, Nuevo Leon, Mexico
Gorman, Daniel Arthur . . . Houston, Texas
Goulden, Joseph Chestley . . . San Angelo, Texas
Grant, William Dewitt Fort Worth, Texas

[133]
THE RICE INSTITUTE

Haddon, Vernis Josephine . . . Houston, Texas
Hail, Ernest John Houston, Texas
Hammersmith, May Houston, Texas
Hammond, Janice Houston, Texas
Hampton, Aubrey Otis . . . Whitewright, Texas
Harlan, Rotzien Houston, Texas
Harper, Juvanta Houston, Texas
Harris, Joy Houston, Texas
Harris, Zelda Margaret . . Houston, Texas
Hart, Paul Bryan Pensacola, Florida
Hathaway, Margaret Eugenia . Houston, Texas
Heaner, William Ernest . . Laredo, Texas
Heard, Arthur Field . . . McKinney, Texas
Heisig, Doris Houston, Texas
Hellman, Bertha Louise . . Houston, Texas
Henderson, Joseph Calvin . Houston, Texas
Henning, Charles Herbert . Dallas, Texas
Henrichsen, Esther Alberta . Houston, Texas
Henry, Thomas, Jr. . . . Timpson, Texas
Herold, Victor Hugo . . . Corpus Christi, Texas
Hickey, Charles Middleton . Houston, Texas
Hill, Robert A. Houston, Texas
Hipp, William S., Jr. . . Houston, Texas
Holt, Elizabeth Victoria . . New Braunsfels, Texas
Hooks, Jesse Benjamin, Jr. . Kountze, Texas
House, John Ford, Jr. . . . Ferris, Texas
Huffman, William Curtis . . Kingsville, Texas
James, Gillian Janette . . Houston, Texas
James, Robert Judson . . Houston, Texas
Jantzen, Marius Julius . . Houston, Texas
Jaschke, Lillie Ellen . . . Houston, Texas
John, Edward Brooks . . . Houston, Texas
Johnson, Carrie-Mac . . . Richmond, Texas

[134]
<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson, G. T., Jr.</td>
<td>Waxahachie, Texas</td>
</tr>
<tr>
<td>Johnson, Lon Portivent</td>
<td>Kingsville, Texas</td>
</tr>
<tr>
<td>Jones, Augustus Charles</td>
<td>De Ridder, Louisiana</td>
</tr>
<tr>
<td>Jones, Esma Miriam</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Jones, Mrs. Minnie Jenkins</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Judd, Raymond Earl</td>
<td>Denison, Texas</td>
</tr>
<tr>
<td>Kalb, Elva Margaret</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Karcher, Charles Frederick</td>
<td>San Antonio, Texas</td>
</tr>
<tr>
<td>Kass, Paul</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Kaufman, Gus</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Keilin, Ida Gwen</td>
<td>Wharton, Texas</td>
</tr>
<tr>
<td>Kellog, Gertrude Agnes</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Kelly, Oscar</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Kelsey, Joseph Keeltalo</td>
<td>Salamanca, New York</td>
</tr>
<tr>
<td>Kemble, Ben Whitaker</td>
<td>Waxahachie, Texas</td>
</tr>
<tr>
<td>Kennedy, Jack</td>
<td>Palestine, Texas</td>
</tr>
<tr>
<td>Kennerly, Luddye</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Kenyon, Wilhelmina</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Kiibler, John Sheehan</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>King, Allen Dupree</td>
<td>Karnes City, Texas</td>
</tr>
<tr>
<td>King, John Joseph</td>
<td>Laredo, Texas</td>
</tr>
<tr>
<td>Kinser, Joe Harlan</td>
<td>Dallas, Texas</td>
</tr>
<tr>
<td>Klotz, Harry Leslie</td>
<td>Mexia, Texas</td>
</tr>
<tr>
<td>Koch, John Anton</td>
<td>Quannah, Texas</td>
</tr>
<tr>
<td>Kuykendall, Clyde</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>La Bauve, William Bernard</td>
<td>Edna, Texas</td>
</tr>
<tr>
<td>Lack, Richard Basil</td>
<td>Beaumont, Texas</td>
</tr>
<tr>
<td>Laird, Emmett Carlyle</td>
<td>Mart, Texas</td>
</tr>
<tr>
<td>Lawrence, Daniel Clarence</td>
<td>Loleta, Texas</td>
</tr>
<tr>
<td>Lea, Rudolph Elmo</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Lefkowitz, Lewis B.</td>
<td>Dallas, Texas</td>
</tr>
<tr>
<td>Leverkuhn, William Edward</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Levin, Abe</td>
<td>Houston, Texas</td>
</tr>
</tbody>
</table>

[135]
THE RICE INSTITUTE

Levy, Harry Herbert, Jr. ... Galveston, Texas
Levy, Jennie Lind ... Houston, Texas
Lewis, Marjorie Augusta ... Houston, Texas
Lichtenstein, Morris Levy ... Corpus Christi, Texas
Lighthouse, Teddy Fred ... Houston, Texas
Livingston, Lee Preston ... Temple, Texas
Locke, Jim C. ... Wharton, Texas
Lowman, Clift A. ... Staples, Texas
Loyd, Lucille Eloise ... Houston, Texas
Lyle, Thomas Howland ... Houston, Texas
McAshan, Sara ... Houston, Texas
McCaine, Walter Johnson ... Dallas, Texas
McCarthy, William Henry, Jr. ... Houston, Texas
McFarland, Clay ... Houston, Texas
McKaughan, Beulah Gertrude ... West Columbia, Texas
McKean, James Percival ... Houston, Texas
McKellar, Marion Sloan ... Elizabeth, Louisiana
McKenna, Helen Julia ... Houston, Texas
McKinney, Albert William ... Houston, Texas
McMichen, Charles Sylvester ... Hubbard, Texas
McMillan, Henry ... Houston, Texas
McNulty, Ruby Pearl ... Houston, Texas
Madsen, Alva ... Houston, Texas
Marett, Fred James, Jr. ... Houston, Texas
Maroney, Georgia ... Nacogdoches, Texas
Mathews, Mildred Alleen ... Houston, Texas
Matot, Neva Angela ... Houston, Texas
Maurin, Robert David ... Houston, Texas
Maury, Cora Hunton ... Houston, Texas
Melton, Henry Palmer ... Houston, Texas
Merritt, Harry Warner ... Houston, Texas
Meynier, Maurice Joseph ... Houston, Texas
MicZanko, Alfa Elizabeth ... Houston, Texas
PRELIMINARY ANNOUNCEMENTS

Miller, Guinevere Houston, Texas
Miller, Mildred Waco, Texas
Millican, Alma Elizabeth . . Beaumont, Texas
Mills, James Vernor Beaumont, Texas
Mills, Marie Houston, Texas
Mitchell, Ben H. Dallas, Texas
Montgomery, Jeff Ervin . . Welch, Louisiana
Moody, Fred M. Houston, Texas
Moore, Harold Shreveport, Louisiana
Moresi, Paul Jeanerette, Louisiana
Morgan, Edna Rebecca . . Houston, Texas
Morgan, George Oliver, Jr. . Denison, Texas
Morris, Mildred Louise . . Houston, Texas
Morrison, Leona Timpson, Texas
Muckleroy, Arnold Anthony . Nacogdoches, Texas
Mutersbaugh, Walter Grant . Lake Charles, Louisiana
Newman, Robert Lee Houston, Texas
Oakes, Roy Bludworth . . . Detroit, Michigan
O’Brien, Berwick C. Houston, Texas
O’Keefe, Alice Fort Worth, Texas
Otey, Carter Houston, Texas
Owen, Martha Irma Houston, Texas
Patton, Mayola Frances . . Houston, Texas
Payne, Frances Gordan . . Houston, Texas
Peddie, Thomas Holman . . Houston, Texas
Peine, Leon Houston, Texas
Penix, Henry Bennett Mineral Wells, Texas
Perkins, Myrtle Rosenberg, Texas
Perry, Robert Marvey Dallas, Texas
Pitzer, Harry Wade Abilene, Texas
Pollard, Evelyn Louise . . Houston, Texas
Pollard, John Patterson . . Alvin, Texas
Power, Thelma Marie Houston, Texas
THE RICE INSTITUTE

Pratt, Bruce . Herington, Kansas
Ransom, Sam Houston . Port Arthur, Texas
Ratcliff, Julia Woodward . Houston, Texas
Ratcliff, Medora Olive . Houston, Texas
Reagan, Cordelia Jack . Beaumont, Texas
Red, Elizabeth Stuart . Houston, Texas
Red, Richard Wallace . Houston, Texas
Reed, Robert Craig . Houston, Texas
Rhodes, Celeste Eleanor . Houston, Texas
Roach, Charles Noel . Denison, Texas
Roberts, Annie Laurie . Tupelo, Mississippi
Roberts, Clint . Duncan, Oklahoma
Robertson, Laura Elizabeth . Houston, Texas
Robinson, Edward Pilley . San Benito, Texas
Rodgers, Zerline . Houston, Texas
Roensch, Max Moss . Houston, Texas
Roos, Albert Ernest . Houston, Texas
Ross, Samuel Peter . Ennis, Texas
Rountree, Ray Lynch . Dallas, Texas
Rouse, Patrick Gordon . Houston, Texas
Rucker, Wallace Creed . Victoria, Texas
Rushing, John Bryon . Groveton, Texas
Ryan, Stephen Joseph . Ayer, Massachusetts
St. John, Rayward Powell . Houston, Texas
St. Louis, Sallie Lee . Houston, Texas
Sachs, Harry B. Houston, Texas
Salim, Nicholas Acy . Beaumont, Texas
Sammons, Bonnie Katherine . Palestine, Texas
Sanders, Dewitt Arthur . Houston, Texas
Schaler, Charlotte . Houston, Texas
Schellhardt, John Standish . Smithville, Texas
Schmidt, Rodney Albert . Houston, Texas
Scott, John Duncan . Marshall, Texas
Preliminary Announcements

Scott, William Howard Houston, Texas
Sewell, David Walter Mexia, Texas
Shaner, Ryburn Cass Joplin, Missouri
Shields, Bessie Eleanor Trinity, Texas
Shipman, James Walker, Jr. Houston, Texas
Shirley, Vernon Robert Houston, Texas
Simmons, Carl Leland Vinton, Louisiana
Simmons, Roy Edmond Fullerton, Louisiana
Simpson, William Riley Denison, Texas
Smiley, Norma Mary Houston, Texas
Smith, Lydia Reese Houston, Texas
Smith, Marion Ewing Houston, Texas
Smith, Robert Wilbur Houston, Texas
Spivy, Douglas Baird Bonham, Texas
Sproule, Jean Denison, Texas
Stallings, Kenneth Houston, Texas
Steele, James Byrd Houston, Texas
Stevenson, Allan Henry Alvin, Texas
Stevenson, Homer Merle Wichita, Kansas
Stockbridge, Mildred Houston, Texas
Stokes, James Byron Lufkin, Texas
Stokes, Thelma Bertha Lufkin, Texas
Stoner, Charles Irvin Altoona, Pennsylvania
Stricker, Josephine Dorothy . . . Houston, Texas
Studdert, Leola Eileen Houston, Texas
Swartz, Charles Yancey San Antonio, Texas
Swett, Lillian Sidney Houston, Texas
Tadlock, Charles Pattillo Stamford, Texas
Thielepape, Menna Louise Austin, Texas
Thomas, Lonnie Abilene, Texas
Tidwell, Wilmer Thurmond Mexia, Texas
Tierney, John Taylor, Jr. Beaumont, Texas

[139]
THE RICE INSTITUTE

Tirado, Tom Allen Houston, Texas
Tisdale, Clayton Handley, Texas
Trotter, Ira Pelles Houston, Texas
Turner, Frank Ray Houston, Texas
Turner, Herbert Goss . . . Houston, Texas
Turney, Bobby Grace . . . Houston, Texas
Upchurch, Joseph Judd . . . Mart, Texas
Wagner, Clyde Leonard . . . Ranger, Texas
Ward, Fred E Fort Worth, Texas
Warden, William Andrew . . . Houston, Texas
Waterman, Robert Harold . . . Texarkana, Texas
Weil, Louis M Houston, Texas
Weir, Elise Houston, Texas
Welch, Roberta Margaret . . . Houston, Texas
Weldon, Edwin Summerfield . . . Wichita Falls, Texas
Werlin, Joseph Sidney . . . Houston, Texas
Werner, Winifred Louise . . . Houston, Texas
White, Cloyes Johnson . . . Houston, Texas
Whitefield, Franklin Wolcott . . . Midland, Texas
Whitehead, William Hooker . . . Houston, Texas
Whitehurst, Troy Newton . . . Beaumont, Texas
Whitesides, Hugh Longhorne . . . Houston, Texas
Wilkens, Werner Gustav, Jr. . . . Fort Worth, Texas
Williams, Muriel Constance . . . Bellaire, Texas
Williams, Willie Amalie . . . Houston, Texas
Willis, Noel Charles Hydro, Oklahoma
Willner, Samuel H Houston, Texas
Wilson, Guy Prescott, Arkansas
Withinton, William Doris . . . Houston, Texas
Witt, Arthur Lewis Gainesville, Texas
Wolf, Marion Lucile Houston, Texas
Wolf, Vivian Merlin Houston, Texas
Zuber, Max Houston, Texas

[140]
INDEX

Academic Course, 29
Administration, Officers of, 6
Admission, 24
Adviser to Women, 28
Advisers, 31
Advisory Committee, 10
Applied Mathematics, 46
Architecture
 Admission, 24
 Courses, 81
 Equipment, 97
 Tuition, 26
Architecture of the Institute, 9
Assistants and Fellows, 20
Athletics, 65
Biology
 Courses, 56
 Laboratory, 97
Board and Lodging, 27
Buildings, 10, 27, 94
Business Administration, 60
Calendar, 3
Catalogues, Application for, 25
Certificate
 Admission by, 24
 Teachers', 61
Chemical Engineering
 Admission, 24
 Courses, 69
Laboratories, 96
 Tuition, 26
Chemistry
 Courses, 51
 Laboratories, 96
Christian Associations, 105
Civil Engineering
 Admission, 24
 Courses, 66, 78
 Laboratory, 98
 Tuition, 26
 Classes, 119
Commemorative Volumes, 12, 90
Commencement, 111
Courses
 Academic, 29, 31, 38
 Architecture, 28, 81
 Engineering, 28, 66
 Graduate, 28, 34
 Honors, 33
 Degrees, 28, 34, 37, 66, 111
Deposit, 27
Dormitories, 27, 104
Economics, 60
Education, 61
Electrical Engineering
 Admission, 24
 Courses, 66, 77
 Laboratory, 99
 Tuition, 26
INDEX

Endowment, 8
Engineering, 66, 72; see also
 Chemical
English, 39
Entrance Requirements, 24, 35
Ethics, 64
Examinations
 Entrance, 24
 Physical, 65
 Term, 30
Expenses, 26
Extension Lectures, 88
Faculty, 13
Fees and Expenses, 26, 89
Fellows, 20
Fellowships, 23
Formal Opening, 11
Founder, 7
French, 40
Freshman Class, 130
German, 42
Graduate Courses, 28, 34
Graduate Students, 117
Graduates, 111
Historical Sketch, 7
History, 62
Honors Courses, 29, 33
Hygiene, 65
Inaugural Lecturers, 12
Inaugural Lectures, 90
Italian, 43
Junior Class, 121
Jurisprudence, 63
Laboratories
 Biology, 97
 Chemistry, 96
 Civil Engineering, 98
 Electrical Engineering, 99
 Machine Shop, 103
Mechanical Engineering, 101
 Physics, 94
Latin, 44
Lectures, Extension, 88
 Godwin, 90
Lectureship, Sharp, 22, 90
Library, 91
Literary Society, 105
Loan Fund, 24
Logic, 64
Machine Shop, 103
Mathematics
 Applied, 46
 Pure, 44
Mechanical Engineering
 Admission, 24
 Courses, 66, 73
 Laboratories, 101
 Tuition, 26
Mechanics, 46
Name, The, 7
Organizations, 104
Pamphlet, 90
Philanthropy
 Courses, 64
 Scholarships, 22
 Sharp Lectureship, 22
Philosophy, 64
Physical Training, 65
Physics
 Courses, 48
 Laboratories, 94
Probation, 36
Publications, 90, 106
Requirements for Admission, 24
Residential Halls, 27, 104
Scholarship, Standing in, 36
Scholarships
 Daughters of American Revolution, 22
 Graham Baker Studentship, 21
 Hohenthal, 21
 In Civics and Philanthropy, 22
Self-help, 23
Senior Class, 119
Shopwork, 67, 103
Societies, 105
Sophomore Class, 124
Spanish, 43
Student Association, 27, 106
Student Government, 104
Students, List of, 115
Subjects of Instruction, 38, 66, 81
Teachers' Certificates, 61
Trustees, 1, 7
Tuition, 26
Young Men's Christian Association, 105
Young Women's Christian Association, 105