
ASYMPTOTIC RATES OF THE INFORMATION TRANSFER RATIO

Sinan Sinanović and Don H. Johnson

Computer and Information Technology Institute
Department of Electrical and Computer Engineering

Rice University
Houston, Texas 77005–1892

sinan@rice.edu, dhj@rice.edu

ABSTRACT

Information processing is performed when a system
preserves aspects of the input related to what the input
represents while it removes other aspects. To describe
a system’s information processing capability, input and
output need to be compared in a way invariant to the
way signals represent information. Kullback-Leibler
distance, information-theoretic measure which reflects
the data processing theorem, is calculated on the input
and output separately and compared to obtain informa-
tion transfer ratio. We consider the special case where
input serves several parallel systems and show that this
configuration has the capability to represent the input
information without loss. We also derive bounds for
asymptotic rates at which the loss decreases as more
parallel systems are added and show that the rate de-
pends on the input distribution.

1. INTRODUCTION

Signals represent information. By operating on its in-
put signal(s), systems perform information processing.
Most systems have an information loss and act as “in-
formation filters.” In quantifying the processing of ar-
bitrary systems, non-linearities and mixed signal va-
rieties means that classical methods, including using
mutual information, fail to capture all a system does.

In our earlier work [6, 10], we first described our
approach. We conceptually (or in reality, for empiri-
cal work) induce controlled changes of the information
represented by a system’s input and probe how well
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the system preserves these changes in its output. By
measuring how different the two inputs and the cor-
responding outputs are, we calculate the information
transfer ratio: the ratio of the distances between the
outputs and the inputs. Because of the Data Process-
ing Theorem (DPT), this ratio must be between zero
and one, with the maximum value meaning the input
change is entirely preserved in the output (no informa-
tion loss).

This paper concerns the special case wherein the
input signal serves as the input to several parallel sys-
tems (see Figure 1) each of which processes the signal
separately from the other. We assume that the systems
are stochastically identical: given the input, each out-
put has the same probability distribution. The output
signals do differ; they are members of the same en-
semble. This generic model describes MIMO commu-
nication systems and simple neural populations. This
paper determines how well the input information is
represented by the collective output. We show that
under very general conditions, this simple distributed,
non-cooperative (the systems do not interact with each
other) processing system will asymptotically preserve
the input’s information in the collective output. We ex-
plicitly determine bounds on the rate at which the in-
formation transfer ratio approaches one, and show that
the bounds depend on the probabilistic structure of the
input, not on that of the system’s output. Our approach
is to consider an optimal processing system that col-
lects the outputs to yield an estimate of the input (see
Figure 1). We then calculate the asymptotic distribu-
tion of the estimate, derive the distance between es-
timates that result from the two inputs, and find the
information transfer ratio between the input and the
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Figure 1: The left figure shows the set-up of our problem: systems transform input X in an arbitrary way to produce
outputs Y, which are conditionally iid. The figure to the right shows the set-up we use to find the asymptotic rate of the
information transfer ratio. In the discrete case, optimal processing is the likelihood ratio detector. In the continuous case,
optimal processing is the maximum likelihood estimator ofX.

estimate. Because of the DPT, this ratio forms a lower
bound on the information transfer ratio between the in-
put and the parallel system’s collective output.

2. QUANTIFYING INFORMATION
PROCESSING

We symbolically represent information by parameter
�. Let X represent a system’s input signal and Y its
output. The form of these signals is arbitrary but they
must have a probabilistic description. All Ali-Silvey
distances [1] satisfy the Data Processing Theorem by
construction. Expressed in terms of distances, this the-
orem [3] states that if �, X, and Y form a Markov
chain, then

d
�
X(�0);X(�1)

�
� d

�
Y(�0);Y(�1)

�
(1)

We use one particular Ali-Silvey distance, the
Kullback-Leibler (KL) distance, extensively because
of its convenience and importance.

d
�
X(�0);X(�1)

�
= E0 [log p(X(�0))=p(X(�1))]

We define the quantity , the information transfer ra-
tio, as the ratio of KL distances between the two output
distributions and the corresponding input distributions.

X;Y(�1; �0) =
d
�
Y(�1);Y(�0)

�
d
�
X(�1);X(�0)

�
The larger  is, the greater the fidelity with which the
output represents the change in the input. Note that
this quantity can be defined regardless of the nature
of the signals X and Y, and regardless of how � is
represented byX andY.

3. ASYMPTOTIC RATES OF THE
INFORMATION TRANSFER RATIO

3.1. Discrete input distribution case

Let X be drawn from a set and have discrete proba-
bility distribution. We are interested in the asymptotic
(in N , the number of parallel systems) behavior of the
information transfer ratio:


X;Y(N)(�1; �0) =

d
�
Y

(N)(�1);Y(N)(�0)
�

d
�
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Consider a categorization problem where the output
Y

(N) = fY1;Y2; : : : ;YNg is observed to determine
which letter of the input alphabet occured. We use an
optimal classifier for this purpose. Let M = jXj and
let Z be the output decision (see Figure 1). The proba-
bilistic relation between the input set and the decision
set can be expressed by an M -ary crossover diagram.
Since we will consider asymptotics in N , we know that
the error probabilities in this crossover diagram do not
depend on the a priori symbol probabilities so long as
they are non-zero. Let �im denote the a priori probabil-
ity ofXm under �i and �jm = Pr[ZmjXj] the crossover
probability. Then, the output symbol probabilities are

Pr[Zmj�i] = �im(1�
X
j 6=m

�mj ) +
X
k 6=m

�ik�
k
m

Note that �mm ! 1 as N ! 1. This expression for
Pr[Zmj�i] is written in terms of the crossover probabil-
ities �ji , i 6= j that tend to 0 with increasing N . Now,
we compute the output Kullback-Leibler distance for



Z and approximate it for small crossover probabilities.
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�1j (1� am=aj + log(am=aj)) �
j
m + o(�max) (2)

where aj = �1j =�
0
j and

�max = f(N) exp

�
�N min

i6=j
C(p(YjXi); p(YjXj))

�

withY representing one system’s output, f(�) a slowly
varying function in the sense that

lim
N!1

[ln f(N)]=N = 0

and C(�; �) denoting Chernoff infomation [8]. Since
1 � x + log x � 0 8x > 0, the term inside the paren-
theses (2) is non-positive. Therefore, we have that
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X
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�1j (1� am=aj + log(am=aj)) � 0

Since according to the DPT (see (1)),
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, we have:
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:

We conclude that for the case of discrete input distribu-
tion with the finite support, the asymptotic increase in
the information transfer ratio (as we increase number
of parallel outputs) is exponential (or greater) and that
the information transfer ratio reaches 1 as N !1.

3.2. Continuous input distribution case

Let the probability distribution of the input, X, be
continuous. To determine the rate of increase of the
information transfer ratio, we use the same approach
but with Z being the maximum likelihood estimator
(MLE) of X. Under certain regularity conditions [4]
and because the Yi’s are conditionally independent

and identically distributed, we know that the MLE is
asymptotically Gaussian. We can now obtain proba-
bility density of Z:

pZ(z) =

Z
pX(x)

�
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�
�
N(z� x)0FYjX(�)(z� x)
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where FYjX(�) is the conditional Fisher information.
If the third derivative of the input probability density
function, pX(�), is bounded, we can expand pX(�) in a
Taylor series around z, up to the third-order term and
then perform term-by-term integration. This amounts
to the Laplace approximation for an integral. The
probability density of Z can be then expressed as

pZ(z) = pX(z)+
1

2
trfH(z)F�1

YjX
(�)g
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whereH(z) is the Hessian of pX(�) evaluated at z. For
two input densities, governed by �0 and �1, the two
corresponding output densities, pZ0(z) and pZ1(z), are
obtained. Letting the coefficients of 1=N be ri(z) =
1
2 trfH(z)F�1

YjX(�)g for i = 0; 1, the Kullback-Leibler
distance between those two output distributions can be
calculated as:
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Because of the data processing theorem, we know that
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. Finally, we

conclude that the information transfer ratio asymptoti-
cally approaches 1 at (at least) the rate proportional to
1=N when N !1 :
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4. CONCLUSION

We investigated the behavior of the information trans-
fer ratio for a particularly interesting distributed pro-
cessing system. Here each system processes its input
in stochastically identical ways and the systems do not
interact with each other. Our results show that regard-
less of the information encoding strategy or the nature
of the input and output signals, this processing struc-
ture asymptotically yields a perfect representation of
the input’s information. The only assumption made is
that the input information change does elicit a change
in each system’s output. Therefore, parallel systems
need not “cooperate” to achieve perfect reproduction
of the input.

Interestingly, how the information transfer ratio in-
creases depends on whether the input distribution is
discrete or continuous. In the discrete case, the infor-
mation transfer ratio increases exponentially or faster,
and in the continuous case it increases as 1=N . Ex-
amples confirm this behavior. For instance, if the
input is a Gaussian random variable with � affect-
ing the mean and each system simply adds a sta-
tistically independent Gaussian random variable hav-
ing variance �2, the information transfer ratio equals
(1 + �2=(�2xN))�1 � 1 � �2=(N�2x). Our results
also mean that regardless of the system that processes
the information-bearing signalX(�), encoding the in-
formation in signals that have a discrete distribution
requires fewer non-cooperative systems to achieve a
given level of fidelity (setting  equal a criterion value)
than would having a continuous distribution. In fig-
ure 2, a factor of two fewer systems are needed in the
discrete case to satisfy the preformance criterion.
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[10] S. Sinanović and D.H. Johnson, Toward a theory
of information processing. International Sym-
posium on Information Theory, Sorento, Italy,
2000.

[11] H.L. Van Trees, Detection, Estimation, and Mod-
ulation Theory, Part I, John Wiley and Sons, New
York, 1968.


