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ABSTRACT

Transceiver Design for E�cient Channel Estimation in
MIMO OFDM Systems

by

Feifei Lou

In this thesis, we �rst compare the least squares (LS) channel estimation perfor-

mance in terms of mean squared error (MSE) with the perfect knowledge of channel

length L versus the estimation without the knowledge ofL. This comparison moti-

vates us to estimate the channel in two steps by exploiting the instantaneous delay

spread. We show that the channel estimation performance can be improved by 5

dB even in the presence of channel mismatch. Then we propose the optimal train-

ing sequence which achieves not only the minimum MSE of LS channel estimation,

but also the minimum peak-to-average power ratio (PAPR) at transmitter with a

low computational complexity. Finally we describe all the necessary synchronization

functions and FPGA implementation in the SISO OFDM receiver. And this receiver

serves as the foundation to build up a wireless testbed to verifythe new algorithms.
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Chapter 1
Introduction

High speed internet over broadband wireless channels have become a key fea-

ture of emerging communications systems. Towards that end, newwireless standards

are mostly based on multiple input multiple output (MIMO) orth ogonal frequency

division multiplexing (OFDM). MIMO techniques increase spectral e�ciency by ex-

ploiting wireless multipath propagation. While OFDM has been standardized for a

variety of applications such as WLAN and digital subscriber loops (DSL) o�ers a low

complexity due to its simple equalization. Combining OFDM with multiple antennas

has been shown to provide a signi�cant increase in capacity [1].Invariably all systems

rely on the knowledge of channel state information (CSI) at the receiver.

The demand for higher capacity has motivated the use of broadband wireless chan-

nels in order to provide wider bandwidth and higher data rates. But as the channel

bandwidth becomes larger, it will have more resolvable paths,which in the channel

estimation means longer training sequences are needed for accurate estimation. The

longer training sequences incur higher overhead which as a result reduces spectral

e�ciency. On the other hand, CSI is crucial for coherent detection, hence a poor

estimate also reduces spectral e�ciency.

Common methods for estimating the channel in MIMO OFDM systems rely on
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knowing the instantaneous channel length and they assume that the channel length

is known at the receiver [2], [3] and [4]. Conventionally thelength of the channel

is preset to be the length of the cyclic pre�x (CP). Making thisassumption, how-

ever, potentially increases the size of the matrix operation unnecessarily and results

in overall performance degradation since the actual length of a wireless channel is

generally shorter than the length of CP. The knowledge of the actual channel length

would in principle reduce the size of the matrix operation andallow a more accurate

estimation.

It is, therefore, desirable to adapt the conventional estimators to the real channel

length. The minimum description length (MDL) principle [5] has been widely used

[6], [7] in applications where the unknown parameter dimension is also unknown. A

direct application of the MDL principle requires estimatingthe maximum likelihood

(ML) estimates of all hypothesized models, which is generally very computationally

intensive. So we choose to use Wald statistic [8], which estimates parameters for

maximum model order to determine the correct model order, toreduce complexity.

To analyze the performance of the proposed two-step channel estimation algo-

rithm, we will look into the channel mismatch problem where the estimated channel

length is di�erent from the actual channel length.

In OFDM framework, one challenging problem is that the transmitted signal ex-

hibits a very high peak-to-average power ratio (PAPR) at the transmitter. High
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PAPR requires a transmitter with greater linearity, larger dynamic range, and higher

peak power delivery, thus greatly increasing the cost and the power consumption of

the transmitter. Therefore, it is highly desirable to reduce the peak-to-average power

ratio of the OFDM transmitted signal.

Another well-known problem of OFDM is its vulnerability to carrier frequency

o�set (CFO) and sampling clock frequency o�set (ScFO). The e�ect of carrier and

sampling clock frequency o�sets is thoroughly analyzed in [9]and the overall e�ect on

SNR is given in [10]. So these e�ects bring many challenging synchronization tasks

to address in an OFDM-based communication system.

In this thesis, we will address all the above challenging problems in OFDM sys-

tems. The remainder of this thesis is organized as follows. In Chapter 2 we propose

to estimate the channel in two steps by exploiting the instantaneous delay spread. In

Chapter 3 the optimal training sequence is designed in terms ofboth MSE of channel

estimation and PAPR. Chapter 4 describes all the necessary synchronization func-

tions and FPGA implementation prior to channel equalization and demodulation at

the receiver. Finally conclusions are drawn in Chapter 5.



Chapter 2
E�cient Channel Estimation in MIMO OFDM

Systems

Least squares (LS) criteria is often for channel estimation since it leads to a low

complexity simple architecture while maintaining reasonable performance even with

short training symbols [2], [4]. The LS channel estimator can bedesigned in two

ways: one needs the information about the number of tapsL in the channel impulse

response (CIR), while the other one does not need. Often in OFDMsystems, channel

estimation is done either without the knowledge of channel length or by assuming

the channel length is a �xed priori known. In this chapter we propose to estimate

the channel in two steps by exploiting the instantaneous delayspread. The channel

is �rst estimated without the channel length information, which is used for channel

length estimation, and then estimated with the channel lengthinformation. The

Wald statistic algorithm is applied for the channel length estimation. We show that

the performance can be improved by this side information evenin the presence of

channel mismatch.

Throughout this chapter and next, variables in frequency domain are represented

by upper case, variables in time domain are represented by lower case and the per-

formance of channel estimation is measured by the mean squared error (MSE).
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2.1 System Model
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Figure 2.1 MIMO OFDM model.

Consider a cyclic pre�x based MIMO OFDM system in Figure 2.1 withM transmit

antennas,N receive antennas,K subcarriers andg consecutive OFDM symbols for

training. We assume that the length of cyclic pre�x� � L � 1, whereL is the length

of all channels. For simplicity we consider the case that all channels have the same

number of taps, but the algorithm and the analysis in this chapter can be applied to

the case of di�erent channel length. For a compact notation, we consider anM � 1
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subsystem for each receive antenna. First we consider the system model in time

domain. After removing the cyclic pre�x, the receivedg consecutive OFDM symbols

can be written as [11]

r = ah + n; (2.1)

wherer is a gK � 1 vector anda is a gK � ML block circulant matrix formed by

a =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

a0;0 � � � am;0 � � � aM � 1;0

...
...

...

a0;d � � � am;d � � � aM � 1;d

...
...

...

a0;g� 1 � � � am;g� 1 � � � aM � 1;g� 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

The K � L circulant matrix am;d is de�ned as

am;d =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

am;d;0 am;d;K � 1 � � � am;d;K � L +1

am;d;1 am;d;0 � � � am;d;K � L +2

...
...

. . .
...

am;d;K � 1 am;d;K � 2 � � � am;d;K � L

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

The �rst column of am;d , pm;d = [ am;d;0 am;d;1 : : : am;d;K � 1]T , corresponds to thed-th
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OFDM training symbol from the m-th transmit antenna, for m = 0; : : : ; M � 1 and

d = 0; : : : ; g � 1.

Finally, the ML � 1 vector h is the channel impulse response. Here, we assume

h is time-invariant within one burst which is veri�ed in a context of low mobility

environments. The gK � 1 vector n is zero-mean additive white Gaussian noise

(AWGN) with E
n
nnH

o
= � 2

n I K .

In order to compare the performance of LS channel estimation with the knowledge

of channel lengthL versus without the knowledge ofL, we derive the system model

in frequency domain as well.

First we de�ne the matricesFg and FL of sizegK � gK and MK � ML respectively

as

Fg = I g 
 F and FL = I M 
 ~F ;

whereF is the K � K unitary Fourier matrix given by

F =
1

p
K

2

6
6
6
6
6
6
6
6
4

W 00 � � � W 0(K � 1)

...
. . .

...

W (K � 1)0 � � � W (K � 1)(K � 1)

3

7
7
7
7
7
7
7
7
5

;

with W kl = exp( � |2�kl=K ), for k = 0; : : : ; K � 1 and l = 0; : : : ; K � 1. The K � L

matrix ~F denotes the leftL columns ofF . The operator 
 is the Kronecker product.
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We recall some well-known properties of the Fourier matrix and the truncated

Fourier matrix that we will use later. For Fg, we haveFgF H
g = F H

g Fg = I gK . For

FL , F H
L FL = I ML still holds, while FL F H

L is usually non-diagonal with main diagonal

elements being equal toL
K .

Taking the discrete Fourier transform (DFT) of Equation (2.1), we can write the

frequency domain system model as [11]

R = Fgr (2.2)

=
p

KAF L h + N =
p

KAH + N; (2.3)

where thegK � 1 vector R represents the receivedg consecutive OFDM symbols and

the gK � MK block diagonal matrix A is a priori known at the receiver given by

A =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

A0;0 � � � Am;0 � � � AM � 1;0

...
...

...

A0;d � � � Am;d � � � AM � 1;d

...
...

...

A0;g� 1 � � � Am;g� 1 � � � AM � 1;g� 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

where theK � K matrix Am;d = diag(Fpm;d ), for m = 0; : : : ; M � 1 andd = 0; : : : ; g�

1. The MK � 1 matrix H = FL h is the channel transfer function. Zero-mean white

Gaussian noise with the variance� 2
n is denoted byN . From Equation (2.2) to (2.3),
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we use the following property

Fga =
p

KAF L : (2.4)

2.2 A Two-step Estimator

In this section we propose a two-step LS estimator as illustrated in Figure 2.2. The

channel is �rst estimated without the channel length information, which is used for

channel length estimation, and then estimated with the channel length information.

The idea behind is, with the side information of the channel length, the channel

estimation can be improved, which is shown in 2.2.1. The algorithm proposed in [12]

is applied for the channel length estimation, which is described in 2.2.2.

Figure 2.2 Proposed channel estimation algorithm structure.
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2.2.1 Motivation for Order Estimation

From (2.1) and (2.3), ĥL , the LS channel estimation with the knowledge ofL and

ĤK , the estimation without the knowledge ofL can be obtained in time domain and

frequency domain respectively as

ĥL = ( aH a)� 1aH r = h + ( aH a)� 1aH n; (2.5)

ĤK =
1

p
K

(AH A)� 1AH R = H +
1

p
K

(AH A)� 1AH N: (2.6)

Here, we assume that the training sequence is designed such that both aH a and

AH A are invertible which means botha and A are of full column rank and this requires

gK � LM and g � M respectively.

The LS estimation of channel frequency response with the knowledge ofL can be

obtained by taking DFT of ĥL

ĤL =
1

p
K

FL (F H
L AH AFL )� 1F H

L AH R: (2.7)

We assume the estimator knows the channel length perfectly here, and we will

explore the e�ects of inaccurate knowledge of channel length in Section 2.3.

From (2.5), the MSE of the estimation with the knowledge ofL can be obtained

as
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MSEL = E
n
kĤL � H k2

o

= E
n
kFL (ĥL � h)k2

o

= � 2
nTr

n
FL (aH a)� 1F H

L

o
(2.8)

= � 2
nTr

n
(aH a)� 1

o
(2.9)

= � 2
nTr

n
(aH F H

g Fga)� 1
o

=
� 2

n

K
Tr

n
(F H

L AH AFL )� 1
o

(2.10)

where Ef :g denotes the expectation and the operator Trf :g is equal to the sum of

the diagonal elements by de�nition.

From (2.6), the MSE of the estimation without knowledge ofL can be obtained

as

MSEK = E
n
kĤK � H k2

o

= E

(

k
1

p
K

(AH A)� 1AH N k2

)

=
� 2

n

K
Tr

n
(AH A)� 1

o
: (2.11)

Theorem 1 : For any training sequenceA, MSEL � MSEK .

Proof : From (2.10) and (2.11), we can see this is equivalent to prove

Tr f
�
F H

L AH AFL

� � 1
g � Tr

� �
AH A

� � 1
�

for any matrix A.
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First, let us de�ne the matrix formed by the right K � L columns ofF by �F .

Then the matricesFM and �FL of sizeMK � MK and MK � M (K � L) are de�ned

as

FM = I M 
 F and �FL = I M 
 �F :

SinceFM is a unitary matrix ( F H
M = F � 1

M ), we have

Tr
� �

AH A
� � 1

�

= Tr
�

F H
M

�
AH A

� � 1
FM

�

: (2.12)

By using the partition FM = [ FL j �FL ], we have

F H
M

�
AH A

� � 1
FM =

2

6
6
6
4

F H
L

�
AH A

� � 1
FL F H

L

�
AH A

� � 1 �FL

�F H
L

�
AH A

� � 1
FL

�F H
L

�
AH A

� � 1 �FL

3

7
7
7
5

: (2.13)

Thus

Tr
�

F H
M

�
AH A

� � 1
FM

�

= Tr
�

F H
L

�
AH A

� � 1
FL

�

+

Tr
�

�F H
L

�
AH A

� � 1 �FL

�

:

(2.14)

Since the matrix �F H
L

�
AH A

� � 1 �FL is Hermitian, Tr
�

�F H
L

�
AH A

� � 1 �FL

�

� 0 and there-

fore
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Tr
�

F H
L

�
AH A

� � 1
FL

�

� Tr
�

F H
M

�
AH A

� � 1
FM

�

: (2.15)

By adopting Matlab notations, we have

F H
L

�
AH A

� � 1
FL =

�

F H
M

�
AH A

� � 1
FM

�

1:ML; 1:ML

=
� �

F H
M AH AFM

� � 1
�

1:ML; 1:ML
;

(2.16)

and thus,

Tr
�

F H
L

�
AH A

� � 1
FL

�

= Tr

( � �
F H

M AH AFM

� � 1
�

1:ML; 1:ML

)

: (2.17)

By combining Equations (2.12), (2.15) and (2.17), we have

Tr

( � �
F H

M AH AFM

� � 1
�

1:ML; 1:ML

)

� Tr
� �

AH A
� � 1

�

: (2.18)

By using Th.7.7.8, p. 478 [13], we have

Tr
� �

F H
L AH AFL

� � 1
�

� Tr

( � �
F H

M AH AFM

� � 1
�

1:ML; 1:ML

)

: (2.19)

Equations (2.18) and (2.19) lead to

Tr
� �

F H
L AH AFL

� � 1
�

� Tr
� �

AH A
� � 1

�

: (2.20)
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If we chooseAH A = gP
MK I MK as an example, the gain is

MSEL

MSEK
=

L
K

: (2.21)

2.2.2 Channel Length Estimator

We just showed in Theorem 1 that channel estimation is improved by incorporating

the channel length into the channel estimator. However, in practice, the channel

length is unknown and needs to be estimated.

Since the channel is uniformly sampled in this context, no location parameters are

in the superposition received signal any more, thus the model order selection algorithm

in [12] is simpli�ed. The channel length can be estimated from the following steps.

1) Estimate the channel impulse response amplitudêh for the maximum model

order K .

2) The generalized Wald statistic can be written as

Wk = ( Bk ĥ)T (B T
k I y(ĥ)Bk)y(Bk ĥ);

where Bk = [0 (K � k)� k I K � k ] and I (ĥ) is the Fisher information matrix (FIM)

of the amplitudesĥ.
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3) The order estimate is obtained as

L̂ = arg min
k=0 ;:::;K � 1

(Wk + k log(g)):

The net complexity of the proposed channel estimation is no more than twice

that of the regular channel estimation. Moreover, it is not necessary to estimate the

channel length for each OFDM symbol since we assume slow-time varying channels.

2.3 Impact of Channel Mismatch

From Theorem 1 we know that the estimator with the accurate knowledge of

channel length has a better performance than the one withoutthe knowledge ofL

for any training sequence. It is interesting to see if Theorem 1 still holds in case of

channel mismatch. For sake of clarity, we distinguish two cases: 1)the case for which

the estimated channel lengtĥL is larger thanL, i.e. the case of overestimation of the

channel length. 2) the case for whicĥL < L , i.e. the case of underestimation of the

channel length. In this section, we compare the performance of channel estimation

in these two cases with the performance of channel estimation for which no channel

length estimate is required.

2.3.1 Analysis

For the overestimation case, from (2.7) we can have the estimation



16

Ĥ L̂ + =
1

p
K

FL̂ + (F H
L̂ + AH AF L̂ + )� 1F H

L̂ + AH R

= FL̂ + (F H
L̂ + AH AF L̂ + )� 1F H

L̂ + AH AH

+
1

p
K

FL̂ + (F H
L̂ + AH AF L̂ + )� 1F H

L̂ + AH N

= FL̂ + (F H
L̂ + AH AF L̂ + )� 1F H

L̂ + AH AF L̂ +

2

6
6
6
4

h

0

3

7
7
7
5

+
1

p
K

FL̂ + (F H
L̂ + AH AF L̂ + )� 1F H

L̂ + AH N

= H +
1

p
K

FL̂ + (F H
L̂ + AH AF L̂ + )� 1F H

L̂ + AH N:

(2.22)

Then we can obtain MSE as

MSE L̂ + = E
n
kĤ L̂ + � H k2

o

= E

(

k
1

p
K

FL̂ + (F H
L̂ + AH AF L̂ + )� 1F H

L̂ + AH N k2

)

=
� 2

n

K
Tr

n
FL̂ + (F H

L̂ + AH AF L̂ + )� 1F H
L̂ +

o

=
� 2

n

K
Tr

8
>>><

>>>:

FM

2

6
6
6
4

(F H
L̂ + AH AF L̂ + )� 1 0

0 0

3

7
7
7
5

F H
M

9
>>>=

>>>;

=
� 2

n

K
Tr

n
(F H

L̂ + AH AF L̂ + )� 1
o

: (2.23)

Theorem 2 : For any training sequenceA, MSEL � MSE L̂ + � MSEK , for
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L � L̂+ � K .

Proof : From (2.10), (2.11) and (2.23), we can see this is equivalentto prove

Tr
n
(F H

L AH AFL )� 1
o

� Tr
n
(F H

L̂ + AH AF L̂ + )� 1
o

� Tr
� �

AH A
� � 1

�

for any matrix A

and L � L̂+ � K .

The detailed proof will not be given here since it is similar to the proof of Theorem

1.

For the underestimation case, from (2.7) we can have the estimation

Ĥ L̂ � = FL̂ � (F H
L̂ � AH AF L̂ � )� 1F H

L̂ � AH AH

+
1

p
K

FL̂ � (F H
L̂ � AH AF L̂ � )� 1F H

L̂ � AH N

= H + ( FL̂ � (F H
L̂ � AH AF L̂ � )� 1F H

L̂ � AH AH � H )
| {z }

D

+
1

p
K

FL̂ � (F H
L̂ � AH AF L̂ � )� 1F H

L̂ � AH N:

(2.24)

Then we can obtain MSE as

MSE L̂ � = E
n
kĤ L̂ � � H k2

o

= E
n

kD + 1p
K

FL̂ � (F H
L̂ � A H AF L̂ � ) � 1F H

L̂ � A H N k2
o

=
� 2

n

K
Tr

n
(F H

L AH AFL )� 1
o

| {z }
MSE L

+
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� 2
n

K (Tr f (F H
L̂ � A H AF L̂ � ) � 1g� Tr f (F H

L A H AF L ) � 1g)
| {z }

J< 0

+ E
n
kDk2

o

| {z }
� 0

(2.25)

=
� 2

n

K
Tr

n
(AH A)� 1

o

| {z }
MSE K

+

� 2
n

K
(Tr

n
(F H

L̂ � AH AF L̂ � )� 1
o

� Tr
n
(AH A)� 1

o
)

| {z }
Q< 0

+ E
n
kDk2

o

| {z }
� 0

: (2.26)

Theorem 3 : For any training sequenceA, MSE L̂ � � MSEL , if � 2
n

K J+ E fk Dk2g �

0, for L̂ � � L .

The proof is straightforward from (2.25).

For some channel models, the performance knowing an underestimated channel

length can be even better than having the accurate knowledgeof L under some

circumstances. Whether it is better depends on the balance of the terms � 2
n

K J and

E fk Dk2g. � 2
n

K J represents the improvement due to the less parameters to estimate,

while E fk Dk2g represents the energy loss due to the underestimation.

Theorem 4 : For any training sequenceA, MSE L̂ � � MSEK , if � 2
n

K Q+ E fk Dk2g �

0, for L̂ � � L .

The proof is straightforward from (2.26).

The explanation is similar to the remark for Theorem 3. Notice that jJ j � j Qj

for any channel lengthL � K and for any training sequenceA, which means the
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condition � 2
n

K Q + E fk Dk2g � 0 is less strict than � 2
n

K J + E fk Dk2g � 0. The intuition

is to have the performance in the underestimation case better than the performance

without the knowledge ofL is easier than to be better than the performance with the

accurate knowledge ofL.

To illustrate the conditions in Theorem 3 and Theorem 4 with respect to SNR,

we chooseA to be

A =

s
P

MK
~F 
 I K ; (2.27)

where ~F represent the leftg � M sub-matrix of a g � g DFT matrix. Then we can

write the conditions respectively as

SNR �
M 2(L � L̂ � )
gE fk Dk2g

; (2.28)

SNR �
M 2(K � L̂ � )
gE fk Dk2g

; (2.29)

whereE fk Dk2g = E
n
H H H � H H FL̂ � F H

L̂ � H
o

and SNR = P
� 2

n
. SNR conditions from

(26) and (27) are plotted as a function of estimated channel length, L̂ = 1; :::; L � 1 for

several training sequence lengthsg. Results are averaged over 10000 6-taps channel

realizations (L = 6). From Figure 2.3, we can see that both conditions monotonously

increase withL̂ � and more training symbols improve the estimation.
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Figure 2.3 SNR condition as a function of estimated channel length.

2.3.2 Numerical Results

Simulations have been carried out in a MIMO OFDM system with 4 transmit

antennas, 64 subcarriers, 16 cyclic pre�x, 4 training symbols and 6 taps for all chan-

nels. The taps are simulated as i.i.d. Gaussian distributed random variables and the

results have been averaged over 10000 random channels. Training sequenceA is con-

structed from some form of DFT matrix. The performance is evaluated for di�erent

SNR which is de�ned asSNR = P
� 2

n
.

In Figure 2.4, for di�erent SNR the performance in the case of overestimation is
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always better than the case assuming channel length be the length of cyclic pre�x,

but worse than the case knowing the exactL, which is consistent with Theorem 2.

When SNR is of 0 dB, the performance in the case of underestimation is better than

the case with the accurate knowledge ofL, which according to Theorem 3 is because

� 2
n

K J is dominant in the determination factor due to a small SNR. WhenSNR is of

10 dB and 20 dB, the performance in the case of underestimation is worse than the

case with the accurate knowledge ofL, which is because the energy lossE fk Dk2g is

dominant. For 0 dB and 10 dB case, the performance in the case of underestimation

is better than the case assuming channel length be the length of cyclic pre�x, which

according to Theorem 4 is because�
2
n

K Q is dominant in the determination factor due

to a small SNR. While for 20 dB, the performance in the case of underestimation is

worse, which is because the energy lossE fk Dk2g becomes dominant.

Figure 2.5 shows the performance of the channel length estimator. For low SNR,

the underestimation dominates the estimation error. As SNR getshigher, the esti-

mator has a greater chance to pick the exact channel length.

Figure 2.6 shows the performance improvement of the proposed two-step channel

estimator over the conventional estimator at both low SNR and high SNR regime.

The proposed algorithm performs even better than the case knowing the exact chan-

nel length at low SNR, the reason of which is the dominated error, underestimation,

leads to a better performance at very low SNR. At high SNR, as thechannel length
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estimator tends to estimate the exact channel length, the performance of the pro-

posed algorithm converges to the case with perfect knowledge of L. Compared to the

conventional estimator, the proposed algorithm o�ers about 5dB gain overall.



Chapter 3
Optimal Training Design in MIMO OFDM

Systems

One of the principle drawback of OFDM systems is that the transmitted signal

exhibits a very high peak-to-average power ratio (PAPR) as the number of subcarriers

increases, which is caused by the approximately Gaussian-distributed output samples.

For a K subcarrier OFDM system PAPR can be as high asK . A large PAPR leads

to saturation in transmit power ampli�er. The analog hardwareat the transmitter

requires an expensive high-power ampli�er (HPA) to avoid clipping that causes non-

linear output. Therefore, it is highly desirable to reduce the peak-to-average power

ratio of the OFDM transmitted signal.

Considering that channel estimation is an important factor for the receiver per-

formance. It is desirable to design the training sequence minimizing both the channel

estimation error and PAPR.

In this chapter, we will design training sequences to �rst minimize MSE, then we

will �nd a subset of the set MSE minimizing training sequences suchthat PAPR is

minimized as well.
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3.1 MSE Minimizing Training Sequences Design

In this section, the optimal training sequence with respect to the MSE of the

estimate with the accurate knowledge of channel length is derived.

In order to obtain the minimum MSE subject to a �xed powerP, from (2.9) using

a similar argument in [4] we require

aH a =
gP
M

I ML ; (3.1)

whereP =
P M

m=1
P K

k=1 Pm
k . Pm

k denotes the power on thekth subcarrier of the mth

transmit antenna.

To construct a training sequence directly from (3.1), it needsthe priori knowledge

of channel length. To avoid this, we want to �nd the optimal training sequence for

as much possible values ofL as possible. Using (2.4), we can get

aH a = aH F H
g Fga = KF H

L AH AFL : (3.2)

From (3.2), we can see if

AH A =
gP

MK
I MK ; (3.3)

then (3.1) holds such that the MSE of the estimate with the accurate knowledge of

channel length is minimized and similarly from Equations (2.11) and (2.23), the MSE
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of the estimate without the knowledge ofL as well as the MSE in the overmodeling

case are also minimized. So, by constructing the training sequence satisfying Condi-

tion (3.3), we work in a subspace without the priori information about channel length.

Let F represent theg � g DFT matrix, ~F represent the leftg � M sub-matrix of F .

In order to satisfy Condition (3.3) the optimal training sequence can be designed as

A =

s
P

MK
~F 
 I K : (3.4)

It is straightforward to see that wheng = M = 2; 4; 8, etc. we can also use Hadamard

matrix to construct A. From Equations (3.1) and (3.3), we can see that the proposed

optimal training sequences above satis�es the full column rankconditions gK � LM

and g � M as we mentioned in Section 2.2.1.

Using the optimal training sequence, from Equation (2.7), the estimator with the

knowledge ofL is given by

Ĥ (opt:)
L =

p
KM
gP

FL F H
L AH R: (3.5)

From Equation (2.6) the estimator without the knowledge ofL is given by

Ĥ (opt:) =

p
KM
gP

AH R = H +

p
KM
gP

AH N: (3.6)

We can see that no matrix inversion is required for proposed channel estimation.

Otherwise anMK � MK matrix inversion is required. For example, for a 2 transmit
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antenna with 64 subcarrier OFDM system, by using the proposed training sequence,

a 128� 128 matrix inversion is avoided. Hence the receiver complexity is greatly

reduced. From Equation (2.10), we can get the MSE of the estimate with the accurate

knowledge ofL as

MSE (opt:)
L =

LM 2� 2
n

gP
: (3.7)

From Equation (2.11), we can get the MSE of the estimate without the knowledge of

L as

MSE (opt:) =
KM 2� 2

n

gP
: (3.8)

Comparing Equation (3.7) with Equation (3.8), we can get thegain of knowing the

accurate information ofL over without knowing L as

MSE (opt:)

MSE (opt:)
L

=
K
L

: (3.9)

Here we quantify the improvement of the channel estimation by knowing the accurate

information of L.

We also compare the channel estimation performance using the proposed opti-

mal training sequence with using the long preamble in IEEE 802.11a for the SISO

OFDM case. As illustrated in Figure 3.1, the optimal training sequence signi�cantly

outperforms the long preamble especially in the case of channel overmodeling.
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The main feature of the proposed training sequence is that the construction is

independent ofL and it is optimal for any estimated channel lengthL � L̂ � K .

As a special case, this training sequence is also optimal for LS channel estimation

without the knowledge ofL which is equivalent to assuming the estimated channel

length is K .

3.2 PAPR Minimizing Training Sequences Design

From Section 3.1, we know that the optimal training sequence with regard to the

MSE should be equipowered on the tones and be orthogonal acrossantennas. To

design an optimal training sequence which is also optimal to PAPR, we can focus

on the PAPR problem within one OFDM symbol with equal power constraint, since

PAPR is considered only for each antenna.

3.2.1 Two Patterns for Minimum PAPR

Let f A0; A1; � � � ; AK � 1g denote the training sequence in frequency domain and

f a0; a1; � � � ; aK � 1g denote the training sequence in time domain after taking IFFT,

whereK is the number of subcarriers. Then we can de�ne digital PAPR as

PAPR =
maxfj a0j2; ja1j2; � � � ; jaK � 1j2g

Pav
: (3.10)

Since we have some power constraint,Pav is �xed here. In Equation (3.10), it implic-

itly shows that PAPR is also a function of f A0; A1; � � � ; AK � 1g. We want to design
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the frequency domain training sequence to minimize PAPR.

Consider real constellations, Figure 3.2 gives the PAPR distribution for 2 subcar-

riers. Equal power corresponds to the worst PAPR, while using onlyone tone gives

the best PAPR. For more subcarriers, the distribution is similar. Now we move to

the complex space.

Let f � 0; � 1; � � � ; � K � 1g represent the phase off A0; A1; � � � ; AK � 1g, then PAPR is



33

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

A0
phase

A
1 ph

as
e

PAPR=1  

PAPR=1  

PAPR=2 

PAPR=2 

pi/2 

pi 

3/2*pi 

Figure 3.3 PAPR distribution for K = 2 with equal power

only a function of f � 0; � 1; � � � ; � K � 1g under equal power constraint. Now our objective

is to choose a set of phases to minimize PAPR. We restrict our search by � m 2

n
l�
K ; l = 0; � � � ; 2K � 1

o
, for m = 0; � � � ; K � 1. Notice that if a constant phase shift

is added to each element of the set, the magnitude of the signal won't change, thus

PAPR won't change. So for certain PAPR, it corresponds to multiple lines in the

complex space as shown in Figure 3.3 and 3.4.
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From numerous simulations, we discovered two patterns that canachieve the min-

imum PAPR. One is f � 0 = 0; � K � n = � n ; 8n 2 f 1; � � � ; K � 1gg for any K , the other

is f � 0 = � 1 = 0; � K � n+1 = � n ; 8n 2 f 2; � � � ; K � 1gg for odd K .

The exhaustive search was done up to 9 subcarriers. To verify our conjecture, we

also found two sets forK = 16. For itemized list, please refer to the appendix. We

do not have a proof of the existence for large number of subcarriers.

Note that these two patterns are not the only patterns that can achievePAPR = 1

and even within these two patterns it is possible to get higher PAPR. But with this

discovery, the complexity of the exhaustive search is reduced from O(2K 2) to O(K 2).

3.2.2 Properties of the Discovered Pattern

Next we will show four useful properties for the above two patterns. As shown

in Table 3.1, we calculate the corresponding phase in time domain given the phase

in frequency domain. Letf � 0; � 1; � 2; � 3g denote the phase in frequency domain and

f � 0; � 1; � 2; � 3g denote the phase in time domain.

� By symmetry property of DFT, if the phase in frequency domain isan even

sequence, then the phase in time domain is also an even sequence.

� Since if we perform DFT twice on a functionf (t), then we obtain the rotated

function f (� t) and DFT of an even sequence is also even, once the phase in

frequency domain is an even sequence, the phase in time domain is also even
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Table 3.1 Phase in frequency domain vs phase in time domain

� 0 � 1 � 2 � 3 � 0 � 1 � 2 � 3

0 0 � 0 0 0 � 0

0 5�
4 � 5�

4
5�
4 0 �

4 0

0 3�
2 � 3�

2
3�
2 0 �

2 0

0 7�
4 � 7�

4
7�
4 0 3�

4 0

and it can achieve the same PAPR as the frequency domain sequencedoes.

� By shift property of DFT, all sequences in frequency domain areshift-invariant.

� A constant phase shift of a sequence does not change PAPR.

Although Table 3.1 is an example ofK = 4, the properties mentioned here can

be generalized to arbitrary number of subcarriers.

We also discover the stacking property as shown in Table 3.2. Stacking the phase

results in doubling the PAPR. This can help to construct the training sequence with

PAPR though not 1, but still low enough, for high order OFDM systemwithout

exhaustive search. The stacking property can be generalized toarbitrary number

of subcarriers and is not limited by any pattern of phase value.The proof of this

property is, stacking vectors in frequency domain is equivalent to introducing zeros in

time-domain. Introducing K=2 zeros means the average power is half reduced. Since
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the peak is same, PAPR is doubled.

3.3 Construction of the Optimal Training Sequence

After discussing the structure of optimal training sequences in terms of both MSE

and PAPR, we propose the following procedure to construct such a training sequence.

1. Find equal amplitude orthogonal sequences whose phases are
n
� (0)

0 ; � (0)
1 ; � � � ; � (0)

g� 1

o
,

n
� (1)

0 ; � (1)
1 ; � � � ; � (1)

g� 1

o
, � � � ,

n
� (M � 1)

0 ; � (M � 1)
1 ; � � � ; � (M � 1)

g� 1

o
for M transmit antennas and

g training symbols;

2. Choose one possible phase setf � 0; � 1; � � � ; � K � 1g which can achievePAPR = 1

for K subcarriers;

3. Give the above set a constant phase shift according to the orthogonal sequence.

To illustrate this process, we give an example for an OFDM system with 2 transmit

antennas, 4 subcarriers and using 2 training symbols.

1. Usef 1; 1g, f 1; � 1g as the orthogonal sequences, so the corresponding phases

are f 0; 0g, f 0; � g;

2. From Table A.2, we choosef 0; 0; �; 0g as one possible set to achievePAPR = 1;

3. Let  (m)
i denote the phases of all subcarriers ati th training symbol for mth

antenna. Then  (0)
0 = f 0; 0; �; 0g,  (0)

1 = f 0; 0; �; 0g,  (1)
0 = f 0; 0; �; 0g,  (1)

1 =

f �; �; 0; � g.
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Table 3.2 Stacking Property

K � 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 PAPR

2 0 �
2 N/A N/A N/A N/A N/A N/A 1

4 0 �
2 0 �

2 N/A N/A N/A N/A 2

8 0 �
2 0 �

2 0 �
2 0 �

2 4

2 0 � N/A N/A N/A N/A N/A N/A 2

4 0 � 0 � N/A N/A N/A N/A 4

8 0 � 0 � 0 � 0 � 8

4 0 0 0 �
2 N/A N/A N/A N/A 5

2

8 0 0 0 �
2 0 0 0 �

2 5

4 0 0 7�
4

5�
4 N/A N/A N/A N/A 3

2

8 0 0 7�
4

5�
4 0 0 7�

4
5�
4 3

3 0 0 � N/A N/A N/A N/A N/A 4
3

6 0 0 � 0 0 � N/A N/A 8
3

3 0 0 �
3 N/A N/A N/A N/A N/A 7

3

6 0 0 �
3 0 0 �

3 N/A N/A 14
3



Chapter 4
Implementation of SISO OFDM Receiver

A well-known problem of OFDM is its vulnerability to carrier frequency o�set

(CFO) and sampling clock frequency o�set (ScFO) which can causeinter carrier

interference (ICI) and a rotation of the symbol. The e�ect of carrier and sampling

clock frequency o�sets is thoroughly analyzed in [9] and the overall e�ect on SNR is

given in [10]. So these e�ects bring many challenging synchronization tasks to address

in an OFDM-based communication system.

In fact, synchronization algorithms are so challenging that they are the major

design problems that have to be solved in a digital communication system on the

implementation aspect. Hence, in this chapter, we focus on allthe necessary synchro-

nization functions prior to channel equalization and demodulation.

The frame structure we are using is the standard IEEE 802.11a structure as shown

in Figure 4.1 except that we have cyclic su�x instead of cyclic pre�x for the payload.

The 10 short preambles are identical 16-sample symbols and the 2long preambles

are identical 64-sample symbols with 32-sample cyclic pre�x. There are 64 samples

in each OFDM symbol with 16-sample cyclic su�x and 2 symmetrically distributed

pilot tones. The preambles and pilot tones are mainly used for synchronization at

the receiver.
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Figure 4.1 Frame structure

The receiver does not know when a packet starts, so the �rst synchronization task

is packet detection. Once a packet has been detected the remaining synchronization

functions include �ne timing and carrier recovery in time domain and frequency and

timing tracking in frequency domain as illustrated in Figure4.2.

4.1 Packet Detection

Packet detection uses the algorithm proposed in [14] which is illustrated in Figure

4.3. The algorithm has a cross-correlator and an auto-correlator. The former exploits

the periodicity of short preamble. The latter is used to normalize the decision statistic

so that the decision will be less a�ected by the uctuations of the signal power level.

The function P computes a cross-correlation between the received signal and adelayed
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Figure 4.2 OFDM receiver block diagram

version of the received signal. The functionR is used to compute the received signal

energy in the cross-correlation interval. The cross-correlation function P(n) and

autocorrelation function R(n) are calculated as

P(n) =
D � 1X

k=0

rn+ kr �
n+ k+ D ; (4.1)

R(n) =
D � 1X

k=0

rn+ k+ D r �
n+ k+ D : (4.2)

where the correlation intervalD = 16 is the number of samples in short preamble as

de�ned in IEEE 802.11a. The functionsP(n) and R(n) are calculated iteratively in

a sliding window as shown in Figure 4.4 according to
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Figure 4.3 Schimdl and Cox algorithm

Figure 4.4 Sliding window implementation

P(n + 1) = P(n) + ( rn+ D r �
n+2 D � rn r �

n+ D ); (4.3)

R(n + 1) = R(n) + ( rn+2 D r �
n+2 D � rn+ D r �

n+ D ): (4.4)

Cascaded integrator-comb (CIC) �lter could be an alternate solution to the delay

and accumulator in the sliding window. But which solution is more e�cient need to

be veri�ed.

Then the best estimated timing is the indexn which maximizes the decision

statistic
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Figure 4.5 Packet detection implementation

M (n) =
jP(n)j2

(R(n))2
: (4.5)

To computeM (n) an obvious implementation might use a CORDIC divider. Since

CORDIC is very resource intensive, we use an empirical thresholdto multiply R(n)2

and then compare the result withjP(n)j2 instead.

To avoid misdetecting a packet when the signal power level is very low, we use

another threshold for the energy detector.

Figure 4.5 is an upper level view of the packet detection implementation.

As shown in Figure 4.6 packet is detected sometime during the second short sym-

bol.
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Figure 4.6 Packet detection simulation result
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As SNR becomes smaller, the packet detection rising edge shifts which will �rst af-

fect the performance of coarse frequency synchronization andthereafter a�ect the per-

formance of the whole receiver. For example, when the noise variance index changes

from 500 to 800, the packet detection rising edge shifts from sample index 141 to

142. But we also notice that if we use the non-delayed received signals to do the

auto-correlation, the detection is more robust to SNR. The rising edge won't shift

when the noise variance index changes from 500 to 800.

The complete packet detection consumes 432 slices and 17 embedded multipli-

ers. The number of embedded multipliers can be reduced by usingthe upsampled

multipliers.

4.2 Symbol Timing

To �nd precisely when an OFDM symbol starts and ends, i.e., to de�ne the FFT

window, we use a simple cross-correlation algorithm which exploits the correlation

property of long preamble. The cross-correlation is done between the received signal

and a local copy of the long preamble which is known at the receiver.

Instead of using any of the FPGA embedded multipliers, a clippedcross-correlation

is implemented using the sign of both the received signal and thelocally stored ref-

erence to make the hardware cost substantially less. As shown in Figure 4.7, the

clipped cross-correlation o�ers clear enough peaks for acquiring �ne timing.

To make our design even more e�cient, the correlation is decomposed into a
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Figure 4.7 Long preamble correlator di�erent implementation perform ance comparison

number of shorter length sub-correlations running at 50 MHz clock rate which is �ve

times faster than the signaling rate. That is, each sub-correlator is responsible for 5

terms of the �nal result. Therefore, d64=5e = 13 sub-correlators are required. As to

the detail of the structure of the sub-correlator, please referto [15].

Since both the received signal and the long preamble are complex numbers, there

are 4 real number correlators needed for a complex correlation. Figure 4.8 is an upper

level view of the implementation.

As shown in Figure 4.9, the two big peaks indicate the two long preambles and

the small peak is due to the cyclic pre�x of the long preamble.

The complete long preamble correlator consumes 1232 slices and 2 embedded

multipliers. The two multipliers are used to compute the magnitude-squared of the

complex correlation output which is subsequently processed by apeak detector.
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Figure 4.8 Long preamble correlator implementation

4.3 Frequency Synchronization

One of the main drawbacks of OFDM is its sensitivity to carrier frequency o�set

which brings two e�ects: inter carrier interference (ICI) and a rotation of the symbol

constellation on each subcarrier.

The receiver needs to complete the frequency synchronization before the payload

starts. So a two-step process [16] proceeds in time domain by �rst acquiring a coarse

estimate of CFO from the last three short preambles to correct the long preamble,

and then acquiring a �ne estimate of CFO from the long preambleto improve the

estimate. This process is done by taking advantage of the periodicity of both short

and long preamble.

Let the transmitted signal besn , then the passband signalyn is
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Figure 4.9 Long preamble correlator simulation result
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yn = snej 2�f tx nTs ; (4.6)

where f tx is the transmitter carrier frequency, Ts is the sample period. After the

signal is downconverted with a carrier frequencyf rx , the received complex baseband

signal rn , ignoring sampling frequency error, channel e�ect and noise for the moment,

is

rn = snej 2�f � nTs ; (4.7)

wheref � = f tx � f rx is the carrier frequency o�set.

Let

z =
L � 1X

n=0

rn r �
n+ D = e� j 2�f � DT s

L � 1X

n=0

jsn j2; (4.8)

whereL is the number of samples in the sum andD is the delay between the identical

samples of the two repeated symbols.L = 32 D = 16 for coarse estimation and

L = 64, D = 64 for �ne estimation.

Then the estimate of the CFO can be calculated from the angle ofz as

f̂ � = �
1

2�DT s

6 z: (4.9)

Both coarse and �ne estimate are derived from the algorithm above. The dif-

ferences areL and D. The more samples in the sum, the better the quality of the
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Figure 4.10 Frequency o�set estimation implementation

estimator is. The smallerD is, the larger estimation range we can have. Hence we

use short preamble to estimate a larger range of o�set, while use long preamble to

re�ne the estimate.

Figure 4.10 shows the implementation of the frequency o�set estimation. Cordic

is used to calculate the angle ofz. Instead of divided by 2�DT s, the angel ofz is

divided by 2�D . Because we need a normalized phase increment in [0,1] in unitsof

cycles per sample to control a DDS to correct the frequency o�set.

The complete frequency synchronization consumes 1617 slices and 22 embedded

multipliers. The complexity is dominated by the cordic atan function and can be
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signi�cantly reduced by cutting down the precision. And the number of embedded

multipliers can be reduced by using the upsampled multipliers.

4.4 Carrier and Sampling Frequency O�set Tracking

Large CFO and ScFO has been corrected during receiver acquisition so that only

a small residual o�set remains in the tracking mode, which rotates the symbols on

each subcarrier. And the subcarrier symbol rotation can be expressed asf � + t � k

[9]. Exploiting the linearity of the phase increment versus subcarrier index k and the

availability of pilot tones, the estimate of CFO and ScFO can bederived as following

[16],[17].

Let the received pilot subcarriers after FFT, in a simpli�ed form, as

Rl;k = HkPl;k ej 2�l Ts
Tu

(f � + t � k) ; (4.10)

where Ts and Tu are the duration of the total OFDM symbol and the useful data

portion.

Then the tracking in frequency domain is based on the post-FFT temporal corre-

lation

Z l;k = Rl;k R�
l � 1;k

= jHk j2jPl;k j2ej 2� Ts
Tu

(f � + t � k) : (4.11)
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Let C1 denote the set of pilots on negative subcarriers, andC2 the set of pilots on

positive subcarriers. And the pilots are symmetrically distributed around a middle

subcarrier. Then the cumulative phases for the two sets are

� 1;l = 6

2

4
X

k2 C1

Z l;k

3

5 ; (4.12)

� 2;l = 6

2

4
X

k2 C2

Z l;k

3

5 : (4.13)

The CFO is estimated by

f̂ � =
1

2�
�

Tu

Ts
�

1
2

� (� 2;l + � 1;l ): (4.14)

The ScFO is estimated by

t̂ � =
1

2�
�

Tu

Ts
�

1
K=2

� (� 2;l � � 1;l ); (4.15)

whereK is the number of subcarriers. In our system,K = 64.

The implementation of the above estimation algorithm is shownin Figure 4.11.

In the current version, there are only two pilot tones in each OFDM symbol, but in

the future version, four pilot tones will be supported as in IEEE 802.11a.

The estimatesf � , t � are then processed by their own phase locked loops (PLL)

which are standard second-order loop �lters as illustrated in Figure 4.12. Finally
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Figure 4.11 Tracking of carrier frequency and sampling clock o�set implementation
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Figure 4.12 Tracking loop �lter

Figure 4.13 Tracking of carrier frequency and sampling clock o�set block diagram

the combined information provided by the two PLLs is fed intoDDS to correct the

symbol phase on each subcarrier as shown in Figure 4.13.

As the drift in sampling instant gets larger than the sampling period, i.e., the

OFDM symbol window shifts more than one sample, a \rob/stu�" block will be

required to either \rob" one sample from the signal or \stu�" a duplicate sample

before FFT, depending on whether the receiver clock is fasteror slower than the
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transmitter clock. We ignore this problem for the moment sinceour packet is not

long enough to cause this problem and the receiver is reset for each packet.

The complete tracking consumes 2832 slices and 35 embedded multipliers. The

dominant complexity comes again from the cordic. But considering the cordic in

frequency synchronization and in the tracking won't be used inthe same time, cordic

is shared between these two blocks so that the total cost is reduced.

4.5 Hardware Test

The methodology we use in the hardware test is to test the transceiver with

digital loop back �rst, then test on two separate boards. In the digital loop back test,

the algorithms described in this chapter are veri�ed and any implementation bugs

associated with the algorithms are found. In board to board tests, parameters were

set to count practical issues like attenuation and DC o�set. To make the transceiver

recon�gurable as well as to facilitate the debugging process,we kept a large number

of parameters open, i.e., we can change them in hardware co-simulation and see the

e�ect in real time.

Now the transceiver supports BPSK, QPSK, 16QAM, 64QAM up to 256QAM.

Figure 4.14 is a real constellation being processed by our receiver with the transmitter

on a separate board. running at 61 Mbps in 10MHz bandwidth whichleads to 6

b/s/Hz.

To evaluate the performance of the receiver, BER test is performed in real time.
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Figure 4.14 Real time 256QAM with transceiver separate on two boards
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Figure 4.15 Received signal on the board to board test

AWGN noise generator is integrated at the front end of the receiver. The BER oor

can reach 10� 8 for the digital loop back test, while in the board to board test,due to

the sampling clock o�set, only 1% BER is achieved. The e�ect of the sampling clock

o�set is illustrated in Figure 4.15 where signal energy goes down every hundreds of

packets.

The complete transceiver consumes 40% slices and 47% embedded multipliers of
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Virtex2 xc2v6000. We believe that the implementation can be optimized even further.

For example, the number of embedded multipliers can be reduced by using pipelined

complex multipliers.



Chapter 5
Conclusions

In this thesis, we �rst showed that the MSE performance of LS channel estimation

knowing the accurate channel lengthL is better than the estimation without knowing

L for any channel lengthL � K and for any training sequence. Motivated by this

result, we proposed a two-step LS channel estimation algorithm by exploiting the

instantaneous delay spread. The channel is �rst estimated without the channel length

information, which is used for channel length estimation, andthen estimated with

the channel length information. We showed that the performance can be improved

by this side information even in the presence of channel mismatch. The overall gain

over the conventional estimator is about 5 dB.

Next, we proposed optimal training sequences which not only achieves the min-

imum mean squared error (MSE) in LS channel estimation, but alsoachieves the

minimum peak-to-average power ratio (PAPR) at transmitter with a low computa-

tional complexity.

Finally, we describe all the necessary synchronization functions and FPGA imple-

mentation at the SISO OFDM receiver.
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Appendix A
OFDM Symbol Patterns for Minimum PAPR

Tables A.1 to A.8 illustrate the pattern: f � 0 = 0; � K � n = � n ; 8n 2 f 1; � � � ; K � 1gg.
Tables A.9 to A.11 illustrate the pattern: f � 0 = 0; � K � n = � n ; 8n 2 f 1; � � � ; K � 1gg

for K is even,f � 0 = � 1 = 0; � K � n+1 = � n ; 8n 2 f 2; � � � ; K � 1gg for K is odd. Since
for K is even, the two patterns are the same. So the examples are onlygiven for K
is odd.



63

Table A.1 PAPR = 1 for K = 3 (2 possibilities)

� 0 � 1 � 2

0 2�
3

2�
3

0 4�
3

4�
3

Table A.2 PAPR = 1 for K = 4 (4 possibilities)

� 0 � 1 � 2 � 3

0 0 � 0
0 5�

4 � 5�
4

0 3�
2 � 3�

2
0 7�

4 � 7�
4

Table A.3 PAPR = 1 for K = 5 (4 possibilities)

� 0 � 1 � 2 � 3 � 4

0 2�
5

8�
5

8�
5

2�
5

0 4�
5

6�
5

6�
5

4�
5

0 6�
5

4�
5

4�
5

6�
5

0 8�
5

2�
5

2�
5

8�
5

Table A.4 PAPR = 1 for K = 6 (4 possibilities)

� 0 � 1 � 2 � 3 � 4 � 5

0 �
6

4�
6

9�
6

4�
6

�
6

0 5�
6

8�
6

9�
6

8�
6

5�
6

0 7�
6

4�
6

3�
6

4�
6

7�
6

0 11�
6

8�
6

3�
6

8�
6

11�
6
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Table A.5 PAPR = 1 for K = 7 (6 possibilities)

� 0 � 1 � 2 � 3 � 4 � 5 � 6

0 2�
7

8�
7

4�
7

4�
7

8�
7

2�
7

0 4�
7

2�
7

8�
7

8�
7

2�
7

4�
7

0 6�
7

10�
7

12�
7

12�
7

10�
7

6�
7

0 8�
7

4�
7

2�
7

2�
7

4�
7

8�
7

0 10�
7

12�
7

6�
7

6�
7

12�
7

10�
7

0 12�
7

6�
7

10�
7

10�
7

6�
7

12�
7

Table A.6 PAPR = 1 for K = 8 (32 possibilities)

� 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7

0 0 �
2 � 0 � �

2 0
0 0 3�

2 � 0 � 3�
2 0

0 �
8

4�
8

9�
8 0 9�

8
4�
8

�
8

0 �
8

12�
8

9�
8 0 9�

8
12�

8
�
8

0 2�
8

4�
8

10�
8 0 10�

8
4�
8

2�
8

0 2�
8

12�
8

10�
8 0 10�

8
12�

8
2�
8

0 3�
8

4�
8

11�
8 0 11�

8
4�
8

3�
8

0 3�
8

12�
8

11�
8 0 11�

8
12�

8
3�
8

� � � � � � � � � � � � � � � � � � � � � � � �

Table A.7 PAPR = 1 for K = 9 (36 possibilities)

� 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8

0 0 6�
9 0 12�

9
12�

9 0 6�
9 0

0 0 12�
9 0 6�

9
6�
9 0 12�

9 0
0 �

9
7�
9 0 13�

9
13�

9 0 7�
9

�
9

0 �
9

13�
9 0 7�

9
7�
9 0 13�

9
�
9

0 2�
9

8�
9 0 14�

9
14�

9 0 8�
9

2�
9

0 2�
9

14�
9 0 8�

9
8�
9 0 14�

9
2�
9

0 3�
9 � 0 15�

9
15�

9 0 � 3�
9

0 3�
9

15�
9 0 � � 0 15�

9
3�
9

� � � � � � � � � � � � � � � � � � � � � � � � � � �
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Table A.8 PAPR = 1 for K = 16

� 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 11 � 12 � 13 � 14 � 15

0 0 0 �
2 � 3�

2 0 � 0 � 0 3�
2 � �

2 0 0
0 0 0 3�

2 � �
2 0 � 0 � 0 �

2 � 3�
2 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Table A.9 PAPR = 1 for K = 5 (the second pattern) (4 possibilities)

� 0 � 1 � 2 � 3 � 4

0 0 2�
5

6�
5

2�
5

0 0 4�
5

2�
5

4�
5

0 0 6�
5

8�
5

6�
5

0 0 8�
5

4�
5

8�
5

Table A.10 PAPR = 1 for K = 7 (the second pattern) (6 possibilities)

� 0 � 1 � 2 � 3 � 4 � 5 � 6

0 0 12�
7

8�
7

2�
7

8�
7

12�
7

0 0 10�
7

2�
7

4�
7

2�
7

10�
7

0 0 8�
7

10�
7

6�
7

10�
7

8�
7

0 0 6�
7

4�
7

8�
7

4�
7

6�
7

0 0 4�
7

12�
7

10�
7

12�
7

4�
7

0 0 2�
7

6�
7

12�
7

6�
7

2�
7
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Table A.11 PAPR = 1 for K = 9 (the second pattern) (36 possibilities)

� 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8

0 0 0 6�
9

12�
9 0 12�

9
6�
9 0

0 0 0 12�
9

6�
9 0 6�

9
12�

9 0
0 0 �

9
6�
9

12�
9

�
9

12�
9

6�
9

�
9

0 0 �
9

12�
9

6�
9

�
9

6�
9

12�
9

�
9

0 0 2�
9

6�
9

12�
9

2�
9

12�
9

6�
9

2�
9

0 0 2�
9

12�
9

6�
9

2�
9

6�
9

12�
9

2�
9

0 0 3�
9

6�
9

12�
9

3�
9

12�
9

6�
9

3�
9

0 0 3�
9

12�
9

6�
9

3�
9

6�
9

12�
9

3�
9

� � � � � � � � � � � � � � � � � � � � � � � � � � �


