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ABSTRACT

Transceiver Design for E cient Channel Estimation in
MIMO OFDM Systems

by

Feifei Lou

In this thesis, we rst compare the least squares (LS) channel estation perfor-
mance in terms of mean squared error (MSE) with the perfect kmdedge of channel
length L versus the estimation without the knowledge of. This comparison moti-
vates us to estimate the channel in two steps by exploiting thenstantaneous delay
spread. We show that the channel estimation performance can bmproved by 5
dB even in the presence of channel mismatch. Then we propose th#imal train-
ing sequence which achieves not only the minimum MSE of LS chraat estimation,
but also the minimum peak-to-average power ratio (PAPR) at trasmitter with a
low computational complexity. Finally we describe all the neessary synchronization
functions and FPGA implementation in the SISO OFDM receiver And this receiver

serves as the foundation to build up a wireless testbed to veriffie new algorithms.
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Chapter 1
Introduction

High speed internet over broadband wireless channels have heeoa key fea-
ture of emerging communications systems. Towards that end, newreless standards
are mostly based on multiple input multiple output (MIMO) orth ogonal frequency
division multiplexing (OFDM). MIMO techniques increase spectl e ciency by ex-
ploiting wireless multipath propagation. While OFDM has bea standardized for a
variety of applications such as WLAN and digital subscriber loap(DSL) o ers a low
complexity due to its simple equalization. Combining OFDM wth multiple antennas
has been shown to provide a signi cant increase in capacity [1hvariably all systems
rely on the knowledge of channel state information (CSI) at th receiver.

The demand for higher capacity has motivated the use of broadbd wireless chan-
nels in order to provide wider bandwidth and higher data rate. But as the channel
bandwidth becomes larger, it will have more resolvable pathshich in the channel
estimation means longer training sequences are needed foruaate estimation. The
longer training sequences incur higher overhead which as asul reduces spectral
e ciency. On the other hand, CSI is crucial for coherent detetion, hence a poor
estimate also reduces spectral e ciency.

Common methods for estimating the channel in MIMO OFDM systemsety on



knowing the instantaneous channel length and they assume thaté channel length
is known at the receiver [2], [3] and [4]. Conventionally théength of the channel

is preset to be the length of the cyclic pre x (CP). Making thisassumption, how-

ever, potentially increases the size of the matrix operationnmecessarily and results
in overall performance degradation since the actual lengthf @ wireless channel is
generally shorter than the length of CP. The knowledge of thectual channel length

would in principle reduce the size of the matrix operation andllow a more accurate
estimation.

It is, therefore, desirable to adapt the conventional estimats to the real channel
length. The minimum description length (MDL) principle [5] has been widely used
[6], [7] in applications where the unknown parameter dimermi is also unknown. A
direct application of the MDL principle requires estimatingthe maximum likelihood
(ML) estimates of all hypothesized models, which is generallyeky computationally
intensive. So we choose to use Wald statistic [8], which estimatearameters for
maximum model order to determine the correct model order, toeduce complexity.

To analyze the performance of the proposed two-step channel isstion algo-
rithm, we will look into the channel mismatch problem where tk estimated channel
length is di erent from the actual channel length.

In OFDM framework, one challenging problem is that the transntted signal ex-

hibits a very high peak-to-average power ratio (PAPR) at the tansmitter. High



PAPR requires a transmitter with greater linearity, larger dynamic range, and higher
peak power delivery, thus greatly increasing the cost and theoprer consumption of
the transmitter. Therefore, it is highly desirable to reduce he peak-to-average power
ratio of the OFDM transmitted signal.

Another well-known problem of OFDM is its vulnerability to carier frequency
o set (CFO) and sampling clock frequency o set (SCFO). The e et of carrier and
sampling clock frequency o sets is thoroughly analyzed in [@hd the overall e ect on
SNR is given in [10]. So these e ects bring many challenging symonization tasks
to address in an OFDM-based communication system.

In this thesis, we will address all the above challenging probfes in OFDM sys-
tems. The remainder of this thesis is organized as follows. In @pter 2 we propose
to estimate the channel in two steps by exploiting the instantagous delay spread. In
Chapter 3 the optimal training sequence is designed in terms lbbth MSE of channel
estimation and PAPR. Chapter 4 describes all the necessary synchization func-
tions and FPGA implementation prior to channel equalizatio and demodulation at

the receiver. Finally conclusions are drawn in Chapter 5.



Chapter 2
E cient Channel Estimation in MIMO OFDM
Systems

Least squares (LS) criteria is often for channel estimation siadt leads to a low
complexity simple architecture while maintaining reasonabl performance even with
short training symbols [2], [4]. The LS channel estimator can béesigned in two
ways: one needs the information about the number of tags in the channel impulse
response (CIR), while the other one does not need. Often in OFD&§stems, channel
estimation is done either without the knowledge of channel hgth or by assuming
the channel length is a xed priori known. In this chapter we popose to estimate
the channel in two steps by exploiting the instantaneous delagpread. The channel
is rst estimated without the channel length information, which is used for channel
length estimation, and then estimated with the channel lengthinformation. The
Wald statistic algorithm is applied for the channel length estnation. We show that
the performance can be improved by this side information even the presence of
channel mismatch.

Throughout this chapter and next, variables in frequency dmain are represented
by upper case, variables in time domain are represented by lowease and the per-

formance of channel estimation is measured by the mean squaretbe (MSE).



2.1 System Model
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Figure 2.1  MIMO OFDM model.

Consider a cyclic pre x based MIMO OFDM system in Figure 2.1 withM transmit
antennas,N receive antennasK subcarriers andg consecutive OFDM symbols for
training. We assume that the length of cyclic pre x L 1, whereL is the length
of all channels. For simplicity we consider the case that all chaels have the same
number of taps, but the algorithm and the analysis in this chapr can be applied to

the case of di erent channel length. For a compact notation, & consider anM 1



subsystem for each receive antenna. First we consider the system mlooh time
domain. After removing the cyclic pre x, the receivedg consecutive OFDM symbols

can be written as [11]

r=ah+n; (2.1)

wherer isagK 1 vector andais agK ML block circulant matrix formed by

2 3
Q0,0 aAm:o av 1,0
a= Ao;d Am;d av 1d )
aO;g 1 am;g 1 aw 1,9 1

The K L circulant matrix an.q is de ned as

2 3
am;d;O am;d;K 1 am;d;K L+1
am;d;l am;d;O am;d;K L+2

Amd = ;
am;d;K 1 am;d;K 2 am;d;K L

The rst column of amg, Pmd = [@m:d:0 @nd:1 ::: @mdk 1], corresponds to thed-th



Finally, the ML 1 vector h is the channel impulse response. Here, we assume
h is time-invariant within one burst which is veried in a context of low mobility
environments. ThegK 1 vector n is zero-mean additive white Gaussian noise

n 0

(AWGN) with E nnH? = 2|,

In order to compare the performance of LS channel estimationitiv the knowledge
of channel lengthL versus without the knowledge ot., we derive the system model
in frequency domain as well.

First we de ne the matricesFy and F_ of sizegk gK andMK ML respectively

as
Fg=l, FandF =1y F;

whereF is the K K unitary Fourier matrix given by

W 00 WOk 1)

2
1
F = __ : . : ;

WK 10 WK DK 1)

with WK =exp( |2kl=K ),fork=0;:::;K 1andl=0;:::;K 1. TheK L

matrix F denotes the leftL columns ofF. The operator is the Kronecker product.



We recall some well-known properties of the Fourier matrix ahthe truncated
Fourier matrix that we will use later. For Fy, we haveF¢Fj' = F{'Fq = I . For
Fo, F'FL = Iy still holds, while F_F" is usually non-diagonal with main diagonal
elements being equal tg:.

Taking the discrete Fourier transform (DFT) of Equation (2.1) we can write the

frequency domain system model as [11]

R = Fyr (2.2)

IOKAFLh+ N = IOKAH +N; (2.3)

where thegK 1 vectorR represents the received consecutive OFDM symbols and

the gk MK block diagonal matrix A is a priori known at the receiver given by

2 3
A0;0 Am;O AM 1,0
A=8 Aog Amd AM 1d 1
AO;g 1 Am;g 1 AM 1,9 1

1. The MK 1 matrix H = F_h is the channel transfer function. Zero-mean white

Gaussian noise with the variance 2 is denoted byN. From Equation (2.2) to (2.3),



we use the following property

Fqa=

2.2 A Two-step Estimator

p_
KAF :

(2.4)

In this section we propose a two-step LS estimator as illustrated Figure 2.2. The

channel is rst estimated without the channel length informaton, which is used for

channel length estimation, and then estimated with the chanhdength information.

The idea behind is, with the side information of the channel lggth, the channel

estimation can be improved, which is shown in 2.2.1. The algtitm proposed in [12]

is applied for the channel length estimation, which is descrdal in 2.2.2.

Rx

frontend

Channel
estimation

Figure 2.2

h 4

Channel
estimation
with 7

Channel
length
estimation

F 3

Proposed channel estimation algorithm structure.
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2.2.1 Motivation for Order Estimation
From (2.1) and (2.3),ﬁL, the LS channel estimation with the knowledge of and

R« , the estimation without the knowledge ofL can be obtained in time domain and

frequency domain respectively as

fiL =(a"a) 'a"r=h+(aa) 'a'n; (2.5)
_ 1 H IAHp — 1 H 1AHN-
Hg = p?(A A) 'AFR=H + p?(A A) *APN: (2.6)

Here, we assume that the training sequence is designed such thattbat'a and
AH A are invertible which means botta and A are of full column rank and this requires
gK LM andg M respectively.

The LS estimation of channel frequency response with the knowlge ofL can be

obtained by taking DFT of fi_

1
A = p?FL(FLH ARAF) FMARR: (2.7)
We assume the estimator knows the channel length perfectly her@and we will
explore the e ects of inaccurate knowledge of channel lerigin Section 2.3.

From (2.5), the MSE of the estimation with the knowledge of. can be obtained

as
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n (0]
MSE, E kA3, HK?

n 0
E kF (AL  h)K?

= ﬁTrnFL(aHa) 1FLHO (2.8)
= 2Trn(aH a) 1° (2.9)
n
= Mr n(aHFHF a) 1
n g'd9

2. .n (¢
= T (FIATAFR) ¢ (2.10)

where Ef :g denotes the expectation and the operator Trg is equal to the sum of
the diagonal elements by de nition.
From (2.6), the MSE of the estimation without knowledge oL can be obtained

as

n 0
E kfx HK?

( 1 )
E kp?(AHA) TAHNK?

MSEk

2 n (0]
?”Tr (AHA) 1 (2.11)

Theorem 1 : For any training sequenceA, MSE, ¥ MSEk.
Proof: From (2.10) and (2.11), we can see this is equivalent to prove

HAaAH 1 H 1 H
Trf FTA"AFL g Tr ATA for any matrix A.
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First, let us de ne the matrix formed by the right K L columns ofF by F.
Then the matricesFy, and F_ of sizeMK MK andMK M(K L) are de ned

as
FMZIM FandFLle F:

SinceFy, is a unitary matrix (F}! = F,*), we have

1 1
T A"A =Tr F,, A"A "Fy : (2.12)

By using the partition Fy =[F_jF_], we have

2 3
1 1
L FP AHPA "FL FM AFA R
Fyi APA TFy = (2.13)
1 1
FP APA "F. F! AFA F_
Thus
H aH L — H aH !
T F APA Ry = Tr FP OA"A R+
T FY AMA TR
(2.14)

1 1
Since the matrixF' AHA ~F_is Hermitian, Tr F' A"A "F_ 0 and there-

fore
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T FPOA"A TFL T B OAFA TRy (2.15)

By adopting Matlab notations, we have

FPARA 'FL = R A"A TRy
1:ML; 1:ML
= FHAMAR, :
1:ML; 1:ML
(2.16)
and thus,
1 ( 1 )
T FY A"A TR =Tr Fii AH ARy, ; (2.17)
1:ML; 1:ML
By combining Equations (2.12), (2.15) and (2.17), we have
( 1 ) 1
Tr Fi AHAF), T AHA : (2.18)
1:ML; 1:ML
By using Th.7.7.8, p. 478 [13], we have
1 ( 1 )
T FA"AF, T FyA"AFRy ; (2.19)

1:ML; 1:ML

Equations (2.18) and (2.19) lead to

Tr FHARAF. © Tr ARA T (2.20)
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If we chooseA" A = %I Mk as an example, the gain is

MSE, L.

MSE. = K- (2.21)

2.2.2 Channel Length Estimator

We just showed in Theorem 1 that channel estimation is improvedy/bncorporating
the channel length into the channel estimator. However, in paiice, the channel
length is unknown and needs to be estimated.

Since the channel is uniformly sampled in this context, no lation parameters are
in the superposition received signal any more, thus the modeldar selection algorithm

in [12] is simpli ed. The channel length can be estimated fromhie following steps.

1) Estimate the channel impulse response amplitudg for the maximum model

orderK.

2) The generalized Wald statistic can be written as

Wi = (BT (BF 1Y(H)BL)Y(BKh);

whereBy =[Ok « « Ik «] and | (ﬁ) is the Fisher information matrix (FIM)

of the amplitudesf.
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3) The order estimate is obtained as

(= arg min - (Wi + klog(@)):

The net complexity of the proposed channel estimation is no merthan twice
that of the regular channel estimation. Moreover, it is not neessary to estimate the

channel length for each OFDM symbol since we assume slow-time vagychannels.

2.3 Impact of Channel Mismatch

From Theorem 1 we know that the estimator with the accurate knwledge of
channel length has a better performance than the one withouhe knowledge ofL
for any training sequence. It is interesting to see if Theorem Lliktholds in case of
channel mismatch. For sake of clarity, we distinguish two cases: the case for which
the estimated channel lengtt’ is larger thanL, i.e. the case of overestimation of the
channel length. 2) the case for whiclt < L , i.e. the case of underestimation of the
channel length. In this section, we compare the performancé channel estimation
in these two cases with the performance of channel estimatiorr f@hich no channel

length estimate is required.

2.3.1 Analysis

For the overestimation case, from (2.7) we can have the estimatti



16

1
R = p7FC+(FF+AHAFC+) 'FLAPR
= Fp. (FELA"AF.) 'R AT AH

1
P Fr (FR AMAF,, ) 'FELATN
2 3

h
= Fp. (FLATAFL) 1FF+AHAFC+§ z
0

1
+p=Fp. (FRATAF,, ) 'FELATN

1
= H+ p—Fp (FLATAF.) TFELATN:

(2.22)
Then we can obtain MSE as
n (0]
MSE,. = E kHp. HEK
( 1 )
= E kp=Fp. (FRATAFL,) TR ATNK?
r% n H AH 1en ©
- ?TI’ FC+ (FC+A AFI’_\+) FC+
8 2 3 9
, 3 (FAARAF) T O 2
—_ n C H
= ?Tr § FM § 2 FM §
: 0 0 ;
r% n H H 1o

Theorem 2 : For any training sequenceA, MSE MSE . MSE , for
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L (* K.

Proof: From (2.10), (2.11) and (2.23), we can see this is equivaleiat prove

n o n 0 1
Tr (FIARAFL) 1 Tr (FRLATAFe,) b Tr AA for any matrix A
and L [* K.

The detailed proof will not be given here since it is similar tolte proof of Theorem

For the underestimation case, from (2.7) we can have the estimai

He = Fp (FF APAF: ) RS AR AH
1
+p=F (F& A"AF, ) *FAARN

= H+ﬁ|:C (F& A" AR, ?71FF A" AH H}
D

1
+p=Fy (Ff A"AF, ) 'FE APN:

(2.24)

Then we can obtain MSE as

n 0
MSE, E kA, HK

n o
1 H aAH 1EH AH N K2
E kD+plFp (Ff AMAF, ) IFHT AMNK

2 n [0}
ST (FUAMAR) * o+
| {z }

MSE o
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2
L (Trf(FH AfAF, ) 1g Trf(FHARAF) !
K ¢ L
J<g0 gf
n o
+ E kDK? (2.25)
| —{z—}
0
2

n 0o
= AT (A"A) '+

K¢ }
MSE ¢
2 n (0] n (0]
AT (FF ARAF. ) Y Tr (ATA) 1)
K| {z }
n o] Q<0
+E kDk? : (2.26)

| —{z—1}
0

Theorem 3 : For any training sequencé\, MSE MSE,, if rﬁ\] +E fk Dk?g
0, for [ L.

The proof is straightforward from (2.25).

For some channel models, the performance knowing an underesitsd channel
length can be even better than having the accurate knowledge L under some
circumstances. Whether it is better depends on the balance did terms %J and
E fk DKk?g. é\] represents the improvement due to the less parameters to estima
while E fk Dk?g represents the energy loss due to the underestimation.

Theorem 4 : For any training sequencé\, MSE MSEk, if éQ+ E fk Dk?g
0, for [ L.

The proof is straightforward from (2.26).

The explanation is similar to the remark for Theorem 3. Noticehlat jJj | Qj

for any channel lengthL K and for any training sequenceA, which means the
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condition %Q+ E fk Dk?’g O is less strict than%\] + EfkDk?g 0. The intuition
is to have the performance in the underestimation case bettehdan the performance
without the knowledge ofL is easier than to be better than the performance with the
accurate knowledge oL..

To illustrate the conditions in Theorem 3 and Theorem 4 with rgpect to SNR,

we choos@A to be

A= ——F g (2.27)

where F represent the leftg M sub-matrix of ag g DFT matrix. Then we can

write the conditions respectively as

ML C).

SNR - EfDkeg (2.28)
M2K [ )

SNR = EfkDKg (2.29)

whereE fk Dk?g = E nH "H H"F, FfH ° and SNR = . SNR conditions from
(26) and (27) are plotted as a function of estimated channelngth, ' = 1;:::;L 1 for
several training sequence lengthg. Results are averaged over 10000 6-taps channel
realizations L = 6). From Figure 2.3, we can see that both conditions monotonusly

increase with and more training symbols improve the estimation.
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Figure 2.3  SNR condition as a function of estimated channel length.

2.3.2 Numerical Results

Simulations have been carried out in a MIMO OFDM system with 4 @nsmit
antennas, 64 subcarriers, 16 cyclic pre x, 4 training symbols dr6 taps for all chan-
nels. The taps are simulated as i.i.d. Gaussian distributed randovariables and the
results have been averaged over 10000 random channels. Tragnsequence\ is con-
structed from some form of DFT matrix. The performance is evahted for di erent
SNR which is de ned asSNR = %.

In Figure 2.4, for di erent SNR the performance in the case of @restimation is
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I T I T

—&— SNR=0dB
—+— SNR=10 dB
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Figure 2.4  MSE as a function of estimated channel length.
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always better than the case assuming channel length be the lehgtf cyclic pre x,
but worse than the case knowing the exadt, which is consistent with Theorem 2.
When SNR is of 0 dB, the performance in the case of underestimatics better than
the case with the accurate knowledge df, which according to Theorem 3 is because
%J is dominant in the determination factor due to a small SNR. WherSNR is of
10 dB and 20 dB, the performance in the case of underestimatiosworse than the
case with the accurate knowledge df, which is because the energy logsfk Dk?g is
dominant. For O dB and 10 dB case, the performance in the case afderestimation
is better than the case assuming channel length be the length gfctic pre x, which
according to Theorem 4 is becauséQ is dominant in the determination factor due
to a small SNR. While for 20 dB, the performance in the case of un@stimation is
worse, which is because the energy lo&sk D k?g becomes dominant.

Figure 2.5 shows the performance of the channel length estirat For low SNR,
the underestimation dominates the estimation error. As SNR getsigher, the esti-
mator has a greater chance to pick the exact channel length.

Figure 2.6 shows the performance improvement of the proposemdotstep channel
estimator over the conventional estimator at both low SNR and lgh SNR regime.
The proposed algorithm performs even better than the case knimg the exact chan-
nel length at low SNR, the reason of which is the dominated errounderestimation,

leads to a better performance at very low SNR. At high SNR, as thehannel length
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estimator tends to estimate the exact channel length, the penfmance of the pro-
posed algorithm converges to the case with perfect knowledgeLo Compared to the

conventional estimator, the proposed algorithm o ers about 5B gain overall.



Chapter 3
Optimal Training Design in MIMO OFDM
Systems

One of the principle drawback of OFDM systems is that the transrnted signal
exhibits a very high peak-to-average power ratio (PAPR) as tnnumber of subcarriers
increases, which is caused by the approximately Gaussian-distribd output samples.
For a K subcarrier OFDM system PAPR can be as high als . A large PAPR leads
to saturation in transmit power ampli er. The analog hardwareat the transmitter
requires an expensive high-power ampli er (HPA) to avoid clipjmg that causes non-
linear output. Therefore, it is highly desirable to reduce te peak-to-average power
ratio of the OFDM transmitted signal.

Considering that channel estimation is an important factor fothe receiver per-
formance. It is desirable to design the training sequence minimng both the channel
estimation error and PAPR.

In this chapter, we will design training sequences to rst mininze MSE, then we
will nd a subset of the set MSE minimizing training sequences sudtat PAPR is

minimized as well.
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3.1 MSE Minimizing Training Sequences Design

In this section, the optimal training sequence with respect tohte MSE of the
estimate with the accurate knowledge of channel length is deed.
In order to obtain the minimum MSE subject to a xed powerP, from (2.9) using
a similar argument in [4] we require
., _ 9P )
a‘a= —Iu.; 3.1
e (3.1)

Py P :
M k& P P denotes the power on théth subcarrier of the mth

whereP =
transmit antenna.
To construct a training sequence directly from (3.1), it needthe priori knowledge

of channel length. To avoid this, we want to nd the optimal training sequence for

as much possible values df as possible. Using (2.4), we can get

a"a= a"Fj'Fja= KFTATAF,: (3.2)

From (3.2), we can see if

gP

AP A = MK vk

(3.3)

then (3.1) holds such that the MSE of the estimate with the accate knowledge of

channel length is minimized and similarly from Equations (A1) and (2.23), the MSE
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of the estimate without the knowledge oL as well as the MSE in the overmodeling
case are also minimized. So, by constructing the training sequensatisfying Condi-
tion (3.3), we work in a subspace without the priori informatim about channel length.
Let F represent theg g DFT matrix, F represent the leftg M sub-matrix of F.

In order to satisfy Condition (3.3) the optimal training sequere can be designed as

P
A= —F Ik: 4
TP I (3.4

It is straightforward to see that wheng= M = 2;4; 8, etc. we can also use Hadamard
matrix to construct A. From Equations (3.1) and (3.3), we can see that the proposed
optimal training sequences above satis es the full column rantonditionsgK LM
andg M as we mentioned in Section 2.2.1.

Using the optimal training sequence, from Equation (2.7), thestimator with the

knowledge ofL is given by

Pp—
. KM
1 (oPt) = g—PFLFLH ARR: (3.5)

From Equation (2.6) the estimator without the knowledge ofL is given by

P P
Aony — KM KM

gTAH R=H+ ATN: (3.6)

We can see that no matrix inversion is required for proposed chael estimation.

Otherwise anMK MK matrix inversion is required. For example, for a 2 transmit
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antenna with 64 subcarrier OFDM system, by using the proposed traing sequence,
a 128 128 matrix inversion is avoided. Hence the receiver complexits greatly
reduced. From Equation (2.10), we can get the MSE of the estintegawith the accurate

knowledge ofL as

LMzﬁ:

MSE [°P) =
L gP

(3.7)

From Equation (2.11), we can get the MSE of the estimate withduhe knowledge of

L as

KM 2 2

MSE (°PY) =
gP

(3.8)

Comparing Equation (3.7) with Equation (3.8), we can get thegain of knowing the

accurate information ofL over without knowing L as

MSE ) K
MSE®™ ~ L

(3.9)

Here we quantify the improvement of the channel estimation byrlowing the accurate
information of L.

We also compare the channel estimation performance using theoposed opti-
mal training sequence with using the long preamble in IEEE 8QPla for the SISO
OFDM case. As illustrated in Figure 3.1, the optimal training segence signi cantly

outperforms the long preamble especially in the case of chahogermodeling.
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Figure 3.1 MSE comparison of using the optimal training sequence versal the long
preamble in IEEE 802.11a
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The main feature of the proposed training sequence is that theomstruction is
independent ofL and it is optimal for any estimated channel length. [ K.
As a special case, this training sequence is also optimal for LS ©heal estimation
without the knowledge ofL which is equivalent to assuming the estimated channel

length isK.

3.2 PAPR Minimizing Training Sequences Design

From Section 3.1, we know that the optimal training sequenceith regard to the
MSE should be equipowered on the tones and be orthogonal acresgennas. To
design an optimal training sequence which is also optimal to PARRve can focus
on the PAPR problem within one OFDM symbol with equal power consaint, since

PAPR is considered only for each antenna.

3.2.1 Two Patterns for Minimum PAPR

Let fAq;A1;  ;Ax 10 denote the training sequence in frequency domain and
fag;a;; ;ax 10 denote the training sequence in time domain after taking IFFT

whereK is the number of subcarriers. Then we can de ne digital PAPR as

maxfj aj?;jasj?  ;jak 1j°0.

PAPR =
Pav

(3.10)

Since we have some power constrair,, is xed here. In Equation (3.10), it implic-

itly shows that PAPR is also a function off Ag; A;; ;Ax 19. We want to design
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Figure 3.2  PAPR distribution for K =2 with A3+ A2=1

the frequency domain training sequence to minimize PAPR.

Consider real constellations, Figure 3.2 gives the PAPR distriltion for 2 subcar-
riers. Equal power corresponds to the worst PAPR, while using onlgne tone gives
the best PAPR. For more subcarriers, the distribution is similar. N we move to
the complex space.

Letf o; 1; ; k 10 represent the phase of Ag; A;; ;A 10, then PAPR is
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phase
Figure 3.3 PAPR distribution for K =2 with equal power
only a function off ¢; 1; ; k 1gunder equal power constraint. Now our objective

is to choose a set of phases to minimize PAPR. We restrict our searchi b, 2
n [0}

I?;I =0; ;2K 1 ,form=0; ;K 1. Notice that if a constant phase shift
is added to each element of the set, the magnitude of the signabmit change, thus

PAPR won't change. So for certain PAPR, it corresponds to multife lines in the

complex space as shown in Figure 3.3 and 3.4.



A2

phase

Figure 3.4

PAPR distribution for K = 3 with equal power
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From numerous simulations, we discovered two patterns that caachieve the min-
imum PAPR. Oneisf ¢=0; « n= n;8n2f1, ;K 1ggforany K, the other
isf o= 1=0; Kk ns1 = n;8n2f2, ;K 1ggfor oddK.

The exhaustive search was done up to 9 subcarriers. To verify owngecture, we
also found two sets folK = 16. For itemized list, please refer to the appendix. We
do not have a proof of the existence for large number of subcams.

Note that these two patterns are not the only patterns that can ehieveP APR =1
and even within these two patterns it is possible to get higher PAR. But with this

discovery, the complexity of the exhaustive search is reducedi O(2K 2) to O(K 2).

3.2.2 Properties of the Discovered Pattern

Next we will show four useful properties for the above two pattes. As shown
in Table 3.1, we calculate the corresponding phase in time domagiven the phase
in frequency domain. Letf o; 1; 2; 39 denote the phase in frequency domain and

f o, 1; 2; 39 denote the phase in time domain.

By symmetry property of DFT, if the phase in frequency domain isan even

sequence, then the phase in time domain is also an even sequence.

Since if we perform DFT twice on a functionf (t), then we obtain the rotated
function f ( t) and DFT of an even sequence is also even, once the phase in

frequency domain is an even sequence, the phase in time domairaliso even
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Table 3.1  Phase in frequency domain vs phase in time domain

o 12 2| 34y O 1| 2| 3
0|0 0010 0
o5 | |%|% 0|40
o3| |33 0|0
o %] %% 0]x]o

and it can achieve the same PAPR as the frequency domain sequedoes.

By shift property of DFT, all sequences in frequency domain aghift-invariant.

A constant phase shift of a sequence does not change PAPR.

Although Table 3.1 is an example oK = 4, the properties mentioned here can
be generalized to arbitrary number of subcarriers.

We also discover the stacking property as shown in Table 3.2. Skaing the phase
results in doubling the PAPR. This can help to construct the traning sequence with
PAPR though not 1, but still low enough, for high order OFDM systemwithout
exhaustive search. The stacking property can be generalized aobitrary number
of subcarriers and is not limited by any pattern of phase valueThe proof of this
property is, stacking vectors in frequency domain is equivaieto introducing zeros in

time-domain. Introducing K=2 zeros means the average power is half reduced. Since
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the peak is same, PAPR is doubled.

3.3 Construction of the Optimal Training Sequence

After discussing the structure of optimal training sequences in s of both MSE

and PAPR, we propose the following procedure to construct such eatning sequence.

n (0]
1. Find equal amplitude orthogonal sequences whose phasesarg; ©; ; 1,
n (0] n (0]
81); (11); ; él)l v SM l); (1M l); X éMll) for M transmit antennas and

g training symbols;

2. Choose one possible phase $ety; 1; ; k 19which can achievd® APR =1

for K subcarriers;

3. Give the above set a constant phase shift according to the oritpanal sequence.

To illustrate this process, we give an example for an OFDM systemlvi2 transmit

antennas, 4 subcarriers and using 2 training symbols.

1. Usefl;1g, f1, 1g as the orthogonal sequences, so the corresponding phases

aref0;0g, fO; g;

2. From Table A.2, we choos&O0; 0; ; Og as one possible set to achieWeAPR = 1;

3. Let i(m) denote the phases of all subcarriers ath training symbol for mth

antenna. Then (()O) = f0;0; ; Og, §°> = f0;0; ; Og, él) = f0;0; ; Og, &1) =

f;; 0 0



Table 3.2  Stacking Property
1 2 3 4 5 6 7 | PAPR
s | NIA | N/A | N/A | N/A [N/A [N/A | 1
s 0 | 5 |NA|NA [NA |NA | 2
s 0o s 0] 5 | 0] 3 4
N/A | N/A | N/A | N/A | N/A [ N/A | 2
0 N/A | N/A | N/A | N/A | 4
0 0 0 8
0| 0 5 | N/A [ N/A | N/A | N/A 2
0| 0| 5 | 0| 0| 0] 3 5
0| % | 5 |[NA | NA |NA | NA 3
o 2 |5 | 0| 0| Z |5 3
0 N/A | N/A | N/A | N/A |NIA | 4
0 0| O N/A |[N/A | 8
0| 5 |N/A|NA |[NA [NA |NA | 1
o| 5 | 0| 0| 5 |[NA|NA | ¥
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Chapter 4
Implementation of SISO OFDM Receiver

A well-known problem of OFDM is its vulnerability to carrier frequency o set
(CFO) and sampling clock frequency o set (ScFO) which can causeter carrier
interference (ICI) and a rotation of the symbol. The e ect of arrier and sampling
clock frequency o sets is thoroughly analyzed in [9] and theverall e ect on SNR is
given in [10]. So these e ects bring many challenging synchiiaation tasks to address
in an OFDM-based communication system.

In fact, synchronization algorithms are so challenging thathtey are the major
design problems that have to be solved in a digital communicat system on the
implementation aspect. Hence, in this chapter, we focus on #fle necessary synchro-
nization functions prior to channel equalization and demadation.

The frame structure we are using is the standard IEEE 802.11a strure as shown
in Figure 4.1 except that we have cyclic su x instead of cyclic pe x for the payload.
The 10 short preambles are identical 16-sample symbols and thdahdg preambles
are identical 64-sample symbols with 32-sample cyclic pre x. Here are 64 samples
in each OFDM symbol with 16-sample cyclic su x and 2 symmetrical distributed
pilot tones. The preambles and pilot tones are mainly used for sghronization at

the receiver.
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Figure 4.1  Frame structure

The receiver does not know when a packet starts, so the rst synchmization task
is packet detection. Once a packet has been detected the reniag synchronization
functions include ne timing and carrier recovery in time denain and frequency and

timing tracking in frequency domain as illustrated in Figure4.2.

4.1 Packet Detection

Packet detection uses the algorithm proposed in [14] which itustrated in Figure
4.3. The algorithm has a cross-correlator and an auto-corréte. The former exploits
the periodicity of short preamble. The latter is used to normate the decision statistic
so that the decision will be less a ected by the uctuations of tle signal power level.

The function P computes a cross-correlation between the received signal amtedayed
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Packet Detection

—» A/D
A 4
Coarse CFO »  Symbol » Gl Removal
Estimate Timing
Channel Sampling & Carrier F
Demodulation Equalization Offset Tracking ) .FI.

Figure 4.2  OFDM receiver block diagram

version of the received signal. The functioR is used to compute the received signal
energy in the cross-correlation interval. The cross-correlam function P(n) and

autocorrelation function R(n) are calculated as

1

P(n): rn+krn+k+D; (41)
k=0

I;( 1
R(n) = M+k+DlMp+k+D - (4.2)
k=0

where the correlation intervalD = 16 is the number of samples in short preamble as
de ned in IEEE 802.11a. The functionsP (n) and R(n) are calculated iteratively in

a sliding window as shown in Figure 4.4 according to
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Figure 4.3  Schimdl and Cox algorithm
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Figure 4.4  Sliding window implementation

P(n+1): P(n)+(rn+Drn+2D rnrn+D); (43)

R(n+1)= R(n)+(Tn+20fni2p  M+blnep): (4.4)

Cascaded integrator-comb (CIC) Iter could be an alternate dation to the delay
and accumulator in the sliding window. But which solution is mee e cient need to
be veri ed.

Then the best estimated timing is the indexn which maximizes the decision

statistic
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Figure 4.5  Packet detection implementation

_ P2,
(R(n)?’

To computeM (n) an obvious implementation might use a CORDIC divider. Since

M (n) (4.5)

CORDIC is very resource intensive, we use an empirical threshdiol multiply R(n)?
and then compare the result withjP (n)j2 instead.

To avoid misdetecting a packet when the signal power level isryelow, we use
another threshold for the energy detector.

Figure 4.5 is an upper level view of the packet detection imginentation.

As shown in Figure 4.6 packet is detected sometime during the sadasshort sym-

bol.
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As SNR becomes smaller, the packet detection rising edge shiftsiethwill rst af-
fect the performance of coarse frequency synchronization athereafter a ect the per-
formance of the whole receiver. For example, when the noiseiaace index changes
from 500 to 800, the packet detection rising edge shifts from safa index 141 to
142. But we also notice that if we use the non-delayed receivedjsils to do the
auto-correlation, the detection is more robust to SNR. The rigig edge won't shift
when the noise variance index changes from 500 to 800.

The complete packet detection consumes 432 slices and 17 endeeldmultipli-
ers. The number of embedded multipliers can be reduced by usitige upsampled

multipliers.

4.2 Symbol Timing

To nd precisely when an OFDM symbol starts and ends, i.e., to de e the FFT
window, we use a simple cross-correlation algorithm which expkthe correlation
property of long preamble. The cross-correlation is done beten the received signal
and a local copy of the long preamble which is known at the rager.

Instead of using any of the FPGA embedded multipliers, a clippectoss-correlation
is implemented using the sign of both the received signal and tihecally stored ref-
erence to make the hardware cost substantially less. As shown in Figu.7, the
clipped cross-correlation o ers clear enough peaks for acgog ne timing.

To make our design even more e cient, the correlation is decoposed into a
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Figure 4.7 Long preamble correlator di erent implementation perform ance comparison

0

number of shorter length sub-correlations running at 50 MHz cti rate which is ve
times faster than the signaling rate. That is, each sub-correlat is responsible for 5
terms of the nal result. Therefore, d64=5e = 13 sub-correlators are required. As to
the detail of the structure of the sub-correlator, please refép [15].

Since both the received signal and the long preamble are compihumbers, there
are 4 real number correlators needed for a complex corretati Figure 4.8 is an upper
level view of the implementation.

As shown in Figure 4.9, the two big peaks indicate the two long pambles and
the small peak is due to the cyclic pre x of the long preamble.

The complete long preamble correlator consumes 1232 slicesl éh embedded
multipliers. The two multipliers are used to compute the magnude-squared of the

complex correlation output which is subsequently processed bypaak detector.
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Figure 4.8 Long preamble correlator implementation
4.3 Frequency Synchronization

One of the main drawbacks of OFDM is its sensitivity to carrierrfequency o set
which brings two e ects: inter carrier interference (ICl) ard a rotation of the symbol
constellation on each subcatrrier.

The receiver needs to complete the frequency synchronizatibefore the payload
starts. So a two-step process [16] proceeds in time domain by rstguiring a coarse
estimate of CFO from the last three short preambles to correct #hlong preamble,
and then acquiring a ne estimate of CFO from the long preambléo improve the
estimate. This process is done by taking advantage of the pedioity of both short
and long preamble.

Let the transmitted signal bes,, then the passband signay, is



Figure 4.9

Long preamble correlator simulation result
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Yn = Sp€ 20 unTs; (4.6)
where fy is the transmitter carrier frequency, Ts is the sample period. After the
signal is downconverted with a carrier frequency,y , the received complex baseband

signalr,, ignoring sampling frequency error, channel e ect and noiserfthe moment,

is

rh = spe2t s, (4.7)

wheref = fy f is the carrier frequency o set.

Let

b 1

. 1
z= rpro,p =12t PTs o jsij% (4.8)

n=0 n=0
wherelL is the number of samples in the sum anD is the delay between the identical
samples of the two repeated symbolsL = 32 D = 16 for coarse estimation and
L =64, D =64 for ne estimation.
Then the estimate of the CFO can be calculated from the angle afas
1

f* = 2DTSfiz: (4.9)

Both coarse and ne estimate are derived from the algorithm alve. The dif-

ferences ard. and D. The more samples in the sum, the better the quality of the
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Figure 4.10 Frequency o set estimation implementation

estimator is. The smallerD is, the larger estimation range we can have. Hence we
use short preamble to estimate a larger range of o set, while usentp preamble to
re ne the estimate.

Figure 4.10 shows the implementation of the frequency o set estation. Cordic
is used to calculate the angle ot. Instead of divided by 2DT ¢, the angel ofz is
divided by 2D . Because we need a normalized phase increment in [0,1] in urafs
cycles per sample to control a DDS to correct the frequency ose

The complete frequency synchronization consumes 1617 slicad 22 embedded

multipliers. The complexity is dominated by the cordic atan @inction and can be
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signi cantly reduced by cutting down the precision. And the nunber of embedded

multipliers can be reduced by using the upsampled multipliers.

4.4 Carrier and Sampling Frequency O set Tracking

Large CFO and ScFO has been corrected during receiver acqtiisi so that only
a small residual o set remains in the tracking mode, which rotas the symbols on
each subcarrier. And the subcarrier symbol rotation can be exmsed ad +t k
[9]. Exploiting the linearity of the phase increment versus sudarrier index k and the
availability of pilot tones, the estimate of CFO and ScFO can beéerived as following
[16],[17].

Let the received pilot subcarriers after FFT, in a simpli ed fom, as

Rix = HkPyd?! it *t 0, (4.10)

where Tg and T, are the duration of the total OFDM symbol and the useful data
portion.
Then the tracking in frequency domain is based on the post-FFTemporal corre-

lation

ZI;k R|;k RI 1;k

Hij2iPyj2e? 7o vt b; (4.11)



52

Let C; denote the set of pilots on negative subcarriers, ar@, the set of pilots on
positive subcarriers. And the pilots are symmetrically distribuéd around a middle

subcarrier. Then the cumulative phases for the two sets are

2 3
X
1 =64 ZyS; (4.12)
k2C1
2 3
X
k2C»
The CFO is estimated by
1 T, 1
== % = (n+ ) 4.14
2 T, 2 (21% 13) (4.14)
The ScFO is estimated by
1 7 1
£ = 5 = K=2 (20 ) (4.15)
s K=

whereK is the number of subcarriers. In our systenkK = 64.

The implementation of the above estimation algorithm is showin Figure 4.11.
In the current version, there are only two pilot tones in each DM symbol, but in
the future version, four pilot tones will be supported as in IEE 802.11a.

The estimatesf ,t are then processed by their own phase locked loops (PLL)

which are standard second-order loop Iters as illustrated in igure 4.12. Finally



Figure 4.11
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Tracking of carrier frequency and sampling clock o set implementation
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Figure 4.12  Tracking loop lter

Figure 4.13  Tracking of carrier frequency and sampling clock o set blok diagram

the combined information provided by the two PLLs is fed intoDDS to correct the
symbol phase on each subcarrier as shown in Figure 4.13.

As the drift in sampling instant gets larger than the sampling peod, i.e., the
OFDM symbol window shifts more than one sample, a \rob/stu " blodk will be
required to either \rob" one sample from the signal or \stu" a duplicate sample

before FFT, depending on whether the receiver clock is faster slower than the
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transmitter clock. We ignore this problem for the moment sinceur packet is not
long enough to cause this problem and the receiver is reset fach packet.

The complete tracking consumes 2832 slices and 35 embeddedtiplidrs. The
dominant complexity comes again from the cordic. But consid&g the cordic in
frequency synchronization and in the tracking won't be used ithe same time, cordic

is shared between these two blocks so that the total cost is reddce

45 Hardware Test

The methodology we use in the hardware test is to test the transeer with
digital loop back rst, then test on two separate boards. In the djital loop back test,
the algorithms described in this chapter are veri ed and anymplementation bugs
associated with the algorithms are found. In board to board test parameters were
set to count practical issues like attenuation and DC o set. To mke the transceiver
recon gurable as well as to facilitate the debugging processe kept a large number
of parameters open, i.e., we can change them in hardware cougiation and see the
e ect in real time.

Now the transceiver supports BPSK, QPSK, 16QAM, 64QAM up to 256QAM.
Figure 4.14 is a real constellation being processed by our reegiwith the transmitter
on a separate board. running at 61 Mbps in 10MHz bandwidth whicleads to 6
b/s/Hz.

To evaluate the performance of the receiver, BER test is perfoed in real time.



Figure 4.14

Real time 256QAM with transceiver separate on two boards
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Figure 4.15 Received signal on the board to board test

AWGN noise generator is integrated at the front end of the receer. The BER oor

can reach 108 for the digital loop back test, while in the board to board testdue to
the sampling clock o set, only 1% BER is achieved. The e ect oftte sampling clock
o set is illustrated in Figure 4.15 where signal energy goes dawevery hundreds of

packets.

The complete transceiver consumes 40% slices and 47% embeddetltiphers of
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Virtex2 xc2v6000. We believe that the implementation can beptimized even further.
For example, the number of embedded multipliers can be redeat by using pipelined

complex multipliers.



Chapter 5
Conclusions

In this thesis, we rst showed that the MSE performance of LS charat estimation
knowing the accurate channel length. is better than the estimation without knowing
L for any channel lengthL K and for any training sequence. Motivated by this
result, we proposed a two-step LS channel estimation algorithmybexploiting the
instantaneous delay spread. The channel is rst estimated witha the channel length
information, which is used for channel length estimation, anthen estimated with
the channel length information. We showed that the performase can be improved
by this side information even in the presence of channel mismhatcThe overall gain
over the conventional estimator is about 5 dB.

Next, we proposed optimal training sequences which not only dekies the min-
imum mean squared error (MSE) in LS channel estimation, but alsachieves the
minimum peak-to-average power ratio (PAPR) at transmitter wth a low computa-
tional complexity.

Finally, we describe all the necessary synchronization functis and FPGA imple-

mentation at the SISO OFDM receiver.
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Appendix A
OFDM Symbol Patterns for Minimum PAPR

Tables A.1to A.8illustrate the pattern: f ¢=0; « n= ,;8n2f1, ;K 1gg

Tables A.9 to A.11 illustrate the pattern: f ¢=0; « n= ;8n2f1l, ;K 1gg
forK iseven,f o= 1=0; x ns1 = n;8n2f2;, ;K 1ggfor K is odd. Since
for K is even, the two patterns are the same. So the examples are oglyen for K
is odd.



Table A.1

Table A.2

Table A.3

Table A.4

63

PAPR =1 for K =3 (2 possibilities)

[y

0
0
0

o] Bew|™
o] Beo|™ N

PAPR =1 for K =4 (4 possibilities)

o|o|o|o|s

=@ ol
Sl Ol

PAPR =1 for K =5 (4 possibilities)

[N

0
0
0
0
0

o || A
o M| M|l
o M| M| 4,
o | A

PAPR =1 for K =6 (4 possibilities)
0 1 2 3 4 5
4 9 4
O I O B O
O B I
6 6 6 6 6
I A B I I e
6 6 6 6 6
O I B
6 6 6 6 6
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1 for K =7 (6 possibilities)

PAPR

Table A.5

8 (32 possibilities)

PAPR =1 for K

Table A.6

ol

1 for K =9 (36 possibilities)

PAPR

Table A.7

92]

fol
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1for K =16

PAPR

Table A.8

15

14

13

12

11

10

1 for K =5 (the second pattern) (4 possibilities)

PAPR

Table A.9

1 for K =7 (the second pattern) (6 possibilities)

PAPR

Table A.10
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PAPR =1 for K =9 (the second pattern) (36 possibilities)

Table A.11

O |O| 100 10| || Pm|o
oloptolopotolottolory|
orolotyetolonyiotolonfoilo
O (O] 19 19| Pn| o]
04|40 Ry oo Ry ot Ry ot/
olotolony|otolop otoloty|o
O |O| 100 10| || Pm|o
OO0 |0 |0 |0
O 0000 |0 |0 |0




