ELEC 599 Project:
Handset Algorithms & Architectures
for Blind Channel Estimation &
Detection

Frank Livingston
May 1, 2000
Project Objectives

• Investigate enhancements to existing algorithms & architectures to improve performance while maintaining BER.

• Investigate implementation on DSP’s.
 – Study performance & real-time constraints.
 – Study fixed-point math issues = required dynamic range & precision.
Algorithms

• Channel estimation = estimate attenuation & delay introduced by wireless channel.
 – Sliding correlator.
 – Maximum likelihood (ML).

• Detection = estimate information bits.
 – Code-matched filter.
 – Minimum mean squared error (MMSE).
Sliding Correlator

- Simplest option for blind channel estimation.
- Used in current systems.
- Received signal correlated with locally generated copies of spreading code spaced by fraction of chip.
Sliding Correlator (cont.)

\[r(t) \]
\[c(t) \]
\[c(t - jT_c) \]
\[c(t - (2N_c - 1)T_c/2) \]

Integrate & dump

\[\int_0^{\lambda T_c} dt \]

\[(1 + \lambda T_c) \int_{jT_c}^{\lambda T_c} dt \]

\[\left[\frac{(2N_c - 1)T_c}{2} + \lambda \right] T_c \int_{(2N_c - 1)T_c/2}^{(2N_c - 1)T_c} dt \]

Comparator
Code-Matched Filter

- Simplest way of estimating bits using minimum information/processing.

- Success hinges on orthogonality of codes.

- Chip-matched filter output correlated with locally generated copy of code.
Code-Matched Filter (cont.)

Received signal $r(t)$

T_c

T_b

$\frac{>}{<} 0$

Estimate of symbol
Implementation

• Implementing algorithms on TI ‘5410 DSP.
 – Hoping to gain insight into algorithm/architecture combination.

 – Using ‘5410 because realistic DSP for handset architecture: small size, low power, low cost.
Implementation: ‘5410 DSP

- Three data busses & one program bus.
- 40-bit ALU, 2 40-bit ACC’s & 40-bit barrel shifter.
- 17x17 MAC unit.
- 8 data address registers, 2 address arithmetic units.
- Exponent encoder.
- 64 K x 16-Bit On-chip RAM.
- On-chip software (e.g. FFT, companding, …).
Implementation: AMIDALA

- '5410 DSP.
- Two flash ports.
- LCD display.
- Keyboard input.
- High-quality stereo codec.
- JTAG interface.
Implementation: DSP Software Design Flow

1. Synthesize test data in Matlab/Simulink.
2. Implement algorithm in Matlab/Simulink.
3. Implement algorithm in floating-point C on host.
4. Implement algorithm in fixed-point C on host.
5. Compile floating/fixed-point C on target.
6. Implement fixed-point algorithm core in C-callable assembly language on target.
Implementation: Data Synthesis

• Matlab script generates handset receiver data.
 – Input command file; output data for DSP.
 – Synchronous & equal transmit powers.
 – Walsh spreading codes.

• Can band limit transmit signal

• FIR filter used for channel attenuation & delay.

• Can quantize receive signal to any word length.
Data Synthesis: Input/Output Files

Example command file.

1e3 # data rate
8 # chips/symbol
32e3 # samp. freq.
1.0 # xmit power of user k
1000 # num. bits to xmit
4 # num. of users
FALSE # band limit xmit
1.0 # channel gain
7.8125e-5 # channel delay
0.1 # channel AWGN
TRUE # scale/quantize

CODES:

1 -1 1 -1 1 -1 1 -1

BITS:

1 0 1 0 1 1 0 0 1 0

TRANSMIT SIGNAL: (320 points)

1.000000
1.000000
1.000000
-1.000000
Data Synthesis: Band limiting transmit signal

- \(f_{cut} = f_{chip} + 0.1 f_{N} \)
- 50th order filter = remez()
- zero-pad input to remove delay (25 samples)
Data Synthesis: Channel Delay

- Delay spec’d seconds in command file.

- Delay generated w/ FIR filter: generate desired frequency resp. & estimate coefs.
 - Unit magnitude response.
 - Linear phase w/ slope $-\tau$.
Data Synthesis: Channel Delay (cont.)

- \(H(e^{j\omega}) = |H(e^{j\omega})| e^{\Phi(e^{j\omega})} \)
- `inv_freqz()`
- \(7.5 \times 10^{-4} \text{ sec.} \Rightarrow 24 \) samples @ 32 kHz
Data Synthesis: Channel Delay (cont.)
Data Synthesis: Quantization

\[1 \times s = 2^{N-1} - 1 \]
\[-1 \times s = -2^{N-1} \]

\[\Rightarrow s = \frac{2^{N-1} - 1}{2^{N-1}} + \delta \]

& take floor
Data Synthesis: Quantization (cont.)

\[\delta = \frac{1}{2^N} \]

\[\alpha = \frac{\left(2^{N-1} - 1\right)}{2^{N-1}} + \delta \]

\[s_{\text{tmp}} = \frac{\alpha s}{\max(|s|)} \]

\[s_{\text{fix}} = \left\lfloor 2^{N-1} s_{\text{tmp}} \right\rfloor \]

\[N = \text{word length} \]
Implementation: Sliding Correlator

• Implemented in floating-point C on host.
 – Can accommodate any delay resolution to within single sample period.

• Have compiled on target: init. does not operate correctly.
 – Floating-point inaccuracies in ’54x RTS.
 – Solutions: move code to host, rewrite init. routine, rewrite RTS.
Implementation: Code-Matched Filter

• Implemented in floating-point C on host.

• Have compiled on target: operates correctly.
 – Host/target communications operate.
 – Init. routines operate.
Short-Term Goals

• Repair FltPt-SC on target.

• Implement algorithm cores in FxdPt C/assembly.
 – Take MIP’s counts.
 – Investigate quantization.

• Add optional pulse shaping to data-generation script.
Long-Term Goals

• Understand/implement ML algorithm for channel estimation.
• Understand/implement MMSE algorithm for detection.
• Continue investigating real-time constraints & quantization error issues.