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satisfying the equation [A(}) B()] UQ) = [1 0] s
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thus appears to be superior to any direct approach based on
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1. Introduction

Given the lTeft coprime polynomial matrices A(A) and B())
of order nxn and nxm respectively, it is well known [pg.14,33]

that there exists a unimodular matrix U()) such that

[AG) BOIUVG) = [i, 0] (r.n

n
The form [1 0] is obtained by a sequence of elementary
column operations on [A(}) B(\)], i.e., Gaussian elimination
without pivoting, which is undesirable for numerical computation.
Here a new method, composed of two steps, is proposed to
find the matrix U()) .
(a) Given P(O) = [AQ) B()], with Tinearly independent
rows for any ) , a matrix Q()) is determined, using state

feedback techniques, such that

POV
Qi)

ROV =

is unimodular, and
(b) A block Levinson recursion method [4] [12] [13] s

then used to find the inverse of R()) ,
Uy) = R

which is the solution of (1.1)
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2. Computation of Q())

Given the nxm (n £ m) polynomial matrix P(}) with
Tinearly independent rows for every ) , we will show how to

find a polynomial matrix Q()\) such that the matrix

P(OL)
RGQ) =
169
is unimodular,
Let
PO = Po+)\P1+...+)UPt

be the given polynomial matrix P(}) .
Since P()) has linearly independent rows for every ) ,
Po(= P(0)) has linearly independent rows., Therefore, there

exist constant non-singular matrices T, and T, such that

1

T, PTy = [In 0]

Then

PQ) = T,POT,

has linearly independent rows for every ) and if

_ POV
ROV = -
Qi)
is unimodular, then
[ P())
R(\) =
[ Q0T
[Tl 0 -1_
= ROOTS?
0 |
\, n—-nmn

is also unimodular.
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Hence there is no loss of generality to assume that

has the form
PO) = [1, O] +xP,+...+ x‘Pt .@.un
The following Lemma is now in order.

Lemma 2.1. Let P()) be given by (2.1) with linearly

independent rows for every ) . There exists an  (m=n)xm

polynomial matrix

Q) = [0 1 1 +aQ+... 190 (2.2)

such that the matrix

PO
R\ = (2.3)
QQ)

is unimodular.

Proof. The existence of a polynomial matrix Q0O) such t

R(\) is unimodular is shown in [8, pg.71] .
Let
QM) = Qo+ AT+ .+ N

be such that

= |
i
ol
]
ol
o
-
OD
o)
+
o4
prv)
+

is unimodular,

That implies that Qyp s invertible and

(1, 0 L 0 ) _
ROV ROV

~ 0 Qajé QOI ln—n
(1, o P,

= + ) +...
L O e n Q,

is unimodular and the proof is complete.

POV

hat




In the remainder of this section we construct such a Q)
The matrix R(1/%) is a proper rational matrix and has the

obvious controllable representation [9]

S = (A, B, C, D) with
(01 0 o ) (0 )
A = , B =
I 0
‘-0 0 J \. Im J
’
) 0.. 0P..P ) (2.4)
c = if ¢ >
L Q - Q)
or
' 3
_ Pt . P1
C = if o1t
[ 0 0Q-.q |
and
D = |
n
Since 5 = 1, > g has an inverse which we call
S = (AB,C,D) = (A-BC,B,-C,D) (2.5)
An useful characterization of a unimodular matrix is the
following.

Lemma 2.2. All the eigenvalues of A are equal to zero

(i.e., ‘A is nilpotent), if and only if RQ) is unimodular,

~ -1
Proof. (if) The transfer function of S is R (%) and, since
R(\) s unimodular, R*l(%) is a polynomial in 1/y .

The realization (A,B,C,D) is a controllable one and the

fact that R—1(;) has all its poles at zero shows that the




~n A

observable modes of the pair (A,C) correspond to zero eigenvalues

~

of A .
The unobservable modes correspond to eigenvalues ) that
reduce the

Al - A - A
rank = rank

c

[ 2

Therefore, if there are any unobservable modes they correspond to
eigenvalues of K which are all zero.

(only if). Let A be nilpotent. There exists a positive
finite integer ¢ such that Ag = 0, and Ak = 0 for xx¢

It follows that

1 ~ ~ ~ ~
R-l(i—) = D+C (I -A)1B
or .
~ ~ l ~ "~
RI(\) = D+¢C (II - A)-1B

= D+ ®)kCA-1p
k=1

= D+ ¥ )kCAx-1B
k=1
which is a polynomial.

Therefore R(3)) is unimodular.

Q.E.D.
Now define

B = : (2.6)




Lemma 2.3. Uncontrollable modes of the pair (A,B) correspond

to zero eigenvalues of A .

Proof. From (2.4) and (2.5) we have

(0 | ] [0 ]
A 10 [-Q -Q, 1
A = 0 I 0 + 0 q 1
if a >4
\ o A V4 \BJ
or
A = A+ B[0...-0 - Q_q ----- Q1] if 4 <1

In each case eigenvalues of A corresponding to uncontrollable
modes of (A,B) must be eigenvalues of A which by assumption

are zero.

Q.E.D.

The main result follows immediately.

Theorem 2.4. Let A and B be defined in (2.6) . There

exists a matrix

Fo= [-q - - --qI (2.7)

M 1SN

such that the matrix A+BF is nilpotent. Furthermore, if RGO

is defined through (2.3), (2.2) and (2.7), then R(y) s

unimodular,

Proof. Follows from Lemmas 2.2 and 2.3 .
Notice that the pair (A,B) 1is controllable if and only if
P, (as defined in 2.1 ) has full row rank. If it is not

controllable we can find a non-singular matrix T such that

TAT-1 =

and




and

and (A1’B1) is a controllable pair.

After that we can use a pole placement algorithm to find F
as in theorem 2.4 . This is a straightforward procedure that
takes no advantage of the special structure of A .

In the rest of this section we will show how to take
advantage of the fact that A already has some eigenvalues
equal to zero.

With A and B as defined in (2.6), define the system
S : X = Ax + Bu (2.8)
Define the sequence of systems S, as follows

S : 2 = Aozo + Bou (2.92a)
where

X (2.9b)

The rest of the sequence is defined inductively. For the

induction step, let

Sem1 b Zyeq T Am 1%y B, ,u (2.9¢)

A is an r xr, matrix of rank S & A

k=1 =17 k-1 Py~ 1 k-1 Px-1

define a = -1 and S‘ is the last member of the sequence

(it may be r, =0 .

If M1 = Py » then there exist matrices L, and M,

of order and Ppm 1 X ey respectively, and rank

M- 1%Px=1

Prm 1 such that

A = LM . (2.94d)




Define

z, = Mkzk_1 (2.9e)
then

2 = MkLkMkzk—l t Mk x-1Y

= MkLka MkBk_lu

or

S 1z, = Az +B.u (2.9f)
where

A, 2 MkLk , B = MkBk_1 . (2.9q)
Notice that M = Pyeq Fe-1 @and since we start with a finite

order system the process described above is going to terminate

in a finite number of steps.

Lemma 2.5, if r, >0 the pair (Aa,Ba) is controllable.

Proof. It is easy to see that
z = MaMa_1 M, x
é Mx (2.10a)
Az = M (LM)M M. x
a 8 a 8
= Ma( a—1 a—1)Ma--1 Mlx
= M M LM x
2 1711
= MAx (2.10b)
and
B, = MB (2.10¢)
where
M = MuMa~1"'M1 (2.11)
I f xTM = 0 for some vector x , then
xTMn...M2‘= 0 , since M1 has full row rank,
or
xTM Moo= 0




or

x =0
that is, M has fuil row rank. Let
M
N
be square and non-singular for some matrix N .

The transformation

Zl
= Wx
Y
transforms the system S , according to (2.10) , to the form
_ z, A‘ 0 z, Bu
S = + u
y Hy H y R

for some H1’H2 and R |
From Lemma 2.3 we know that the uncontrollable modes of S

correspond to zero eigenvalues and the same is true for S

’

which implies that the matrix

has full rank for every 340 , and
[xI-A‘ B, ]

has full rank for every 3 £0 . Since A, is non-singular
we conclude that
[ -A, B, ]

has full rank also,
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P

I I-A, Ba]

has full rank for every 3 .

Q.E.D.
Lemma 2.6.
I\t - (A+BF)| = Xdk+1lxg = Ayt B F D) (2.12)
where
k=0,1,2,
Fe = FeriMheny and  dis, T My Teag

Proof. If follows that

A1 - (A + B .F )] At - Loy Moy + Bka+1Mk+1)|

ro.=p
)\ k+1 k+1')\| - M

(Lt *+ BF o) |*

k+1 Tkt x kt

d
X k+1lkl - (Ak+1+ Bk+1Fk+1)|

We are now ready to present the following.

Theorem 2.7. Let A,B be defined by (2.6) , A, ,B, be

defined by (2.9) and M be defined by (2.11)

Then

(i) 1f r >0 there exists a matrix F, such that

(A, + BaF‘) is nilpotent, and with F = F,M, A+ BF s

nilpotent.
(ii) 1f r =0 , then A s nilpotent.

a ————

Proof.

(i) The existence of Fa is implied directly by the

controllability of the pair (Aa,Ba)

* This is because
At - LMl = A, It - ML |
where L and M are mxn and nxm (m>n) constant matrices,

respectively.

10
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Applying (2.12) for k = 0,1,*--,a, we have

?

A1 - (A +BF)|

d
XA - A+ BF)|

d
’xl - (A+ 81F1)| A 2|x| ~ (At 82F2)|

It - (A_ +8_ F_)|

d
1 a—-1 8-] A al)“l - (Aa+ BaFa)l

Multiplying all the above equalities, we get

d_ +°° 44
[x1 - (A+BF)] = 1 =Ial - (A+BF)|
where A (2.13)
F = Fp = FM
= F MM,
= FM

Now choose F. such that

A= (A+BF)| = 3o
Then from (2.13) we have
Xl - (A+BF)] = yr
(i) If r, = 0 , the same argument as above shows that A s

nilpotent.

Q.E.D.

In this section we have shown how, given P(y) as in (2.2)

we can find Q()) such that R(}) = [ ggi; ] is unimodular,

The method is illustrated with the following example.

Example
Let PO = 1 +a)x® gr2l
where o and B are nonzero real numbers. Using the procedure

given above

11
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A = -
Since rog = 4
Ay = LM
Ay = M1L1
Here r,= 3,
AL = LM,
Ay = ML,
Since rp=2= Py »
with F, = [-20]
M = Mle
F o= FM
Therefore
Q@) =
and
RQ) =

is unimodular.

Remark

O OO —

(A2+ BF2

o R

=[-

o111

o

In the previous example M1

rows of Ay, and then

responding columns,

- 43
5 A

i2

oo —o0
—_—o oo

, it follows that

-

? 8 0 01 0
0 1 0 0 0 1

-2 -8 0 0
0 oj L>-8B
0 1) 0
0 0 B. = MB_ = ]
-B OJ 1 10 0

SO we continue
0 J [‘o 0 1 ]
0
- -8 0
1
1 a 0
o) e 3]

and (Az’Bz) is controllable.

) is nilpotent and

-B 0 O
0 ~o -

-[oo:u-[%gal;@

- o A®

1T + 2 2
¢ A B A }

can be obtained by deleting the zero

A, can be obtained by deleting the cor-

2

M, and A, can be obtained from A1 by




o

deleting the zero rows and columns, and so on. This observation
can be used to save some computation time and storage. More

specifically, these trivial operations can be performed at least
t(m=n) times, and result to an A matrix of order at the most

th X ¢(n

3. lInverse of a Unimodular Matrix

For any nxn wunimodular matrix

RO = I+ AR+ e+ )\‘Rt (3.1)
there is an inverse U(\) = R-1()) of the form

UQ) = 1= AU ~-.- AU, (3.2)
for some finite integer d . Obviously

ROV = 1 (3.3)

or, by equating the coefficients of the powers of A

4 b ( ~ 3
I I (ln
R1 In ) -Ul 0
R
1l
. 1 =
n
R R1
1
-y
RT« . dJ
R J Q
. 1 9§ J

It should be mentioned here that d cannot be determined

from |y and n only, as is shown in

Example:
(a)
0 1 ]
R1(X) =+ 0 1




It

and

and

Uz

O = RIQ) =
1"—'], n=3, d=

R,V =
AW = RIQ) =
=1, n=3, d=

In both cases we have

in the two cases.

Lemma

Proof

The next Lemma provides an upper bound on d .

3.1, d < tn

From the proof of

R (3

) =

- 0 0 1
b+ x { O -1 ] +32 (O 0
0 0 o 6 0 -0

4 ]W
Is+l 0 0 0

\ 0 7/

f 0 0 -1)
I,b+x | O

- J

1 and n=3 but d is different

Lemma 2;2 it follows that

~ Q/ AN ~
U(N) = D+ 3 )kCAk-18B (3.5)

for some positive integer

k=1

o such that AY = 0 . Since A s

(tn) x (yn) , we conclude that 4 < th . Let d=qao-1 , then

and from (2.4) and

Therefore € Ad = 0

and

with

dgtn-l

uin)

ACY

~

:Ad=0

(2.5)

~ d A~ ~
D+ ¥ )k CAk-1B
k=1

Q.E.D.

14




As is shown in the first example preceeding this Lemma, the bound
given by Lemma 3.1 s tight (d= ¢n - 1) |,

We now return to the equation (3.4) . We will solve (3.4)
by induction on d , i.e., we will assume that d = 1 (denote
this U, as U§1) to show that is the first element of a length

one solution) and we will minimize some norm of

4 9 r h
: N
Rl
E1 = . -
0 R
1
L) L)

If the norm of E, is not small enough, using Ul we will

find a length two solution

(2)
yczy 8 Ui

Ug=)
and so on until for some length k

(k)
U1
ydk) :

ugx)

a suitably small norm can be obtained for

r 1 o 3 4
k
R1 L U§ )1
RB Rl 'n
L] Rl
. I .
g = | R |- : R U G
' .
R
1
\ 7/ \ Rl

15




Notice that for k=d and Ek=0 (3.6) is equivalent to (3.4)

We now focus our attention on (3.6) which we write as

[e‘; e»;] - (bl...bn] -Ag;[ux;...ug] (3.7)
where
[e‘{...eﬁ] = Ek
r 3
R1
Ra
[b b] - & |
1 n
R
1
0
\ P
ulx)
[uk. uk] = Uty = | 2t
1 n :
e
and
4 l \
n
R
1
|
n
Ak = Rl
1
. R
\ 11}

«k blocks-

clearly A, has full column rank. The equation (3.7) is

equivalent to the system of equations

e = b, - Au i=1,2,...,n (3.8)




»

We will find u i=1,2,...,n so that “efuz is minimized
(e llo=veTe) -

This is equivalent to minimizing ekl + leklIZ +- -+ |lek)|2
since the e¥ i=1,2,...,n are independent. With
IR = lleklz + o+ etz lE e s the well known
norm.

It is well known (see for example [10]) that ”Gfuz is
minimized if

T x

Ak ef, = O (3.9)
Applying (3.9) for i=1,2,...,n we obtain
T
A E, = O (3.10)
which implies
T T
A, B = A, A, ux) (3.11)
Define the non-singular matrix
L, = AI Ay
Also define
P, = ZRT i=0,1,2
;) = 1§0R1 R1+J Jj=0,1,2,...
with (3.12)
RO= In
1t follows that
¢ A
T T
Py P1 P 1
P
L, = . . (3.13)
T
P1
\Pk— 1 P1 Po )
and (3.11) is equivalent to
.
Py
LUt = . , k=1,2,... (3.14)
Py

17




Iy

Define G(X¥) through

( 3\
PT
k
L G(¥) = , k=1,2,...
Py
\ P,
and write G(k) asg
r \
G{x)
Glx) = , k=1,2...
Glx)
. )

18

(3.15)

(3.16)

We will now derive recursive formulae for the sequence (U(k) G(k))

and the error

using a block Levinson recursion method

Solution for U(k) apnd G(x)

From (3.14) , (3.15) ,and (3.13)

1)
PoUs

fl
o

and

i
-

P,G1)

Now, given U(k-1) and G(k=1)  we will find U(X)

without inverting L,

From (3.14)

( Y f 3
T
Pk_1 ng)
Lw—1
T
AN
P P P Ulk)
P onln )|

(41 [12] [13] .,

N
(¢
1
Pk__1
P
sk)

and

(3.17)

GCx)




which implies

- 3 r 3
T
(k)
U ( Pk_ J P1
k =
Loy + U](( )
T
ulkd P P
k=1) (1 ) L 1)

and

r ~
( Pl - P ] U§k> + Pouik) P,

ulx)
[ *=1)

Multiplying the first of these two formulas from the left by

L;}l and using the second, (3.14), and (3.15),

matter to check that, if

4
Dy = Po - [P P 1 GG
then
) = - -
Dk—1U( ) Pk [Pk_1 yeeas P1] UCk-1)
and
4 3 r ~ r )\
(k (k- X
U1 ) U1 o G£—11
= - . Ulsk)
ydx) Ulk-1) G{k-1)
-~ k_1) L k-1 J - b J
Starting from (3.15) , or
- e N (
T T T )
Po P1 . . Pu— 11 Gﬁk) pk
Py
L, .
T
P G{x) P
L = / ~ 1 J - 1 /

it is a simple

(3.18)

(3.19)

(3. 20)

19




we can find recursive formulae for G(X) | j.e., if

A (T T
Fk—l = P, - \Pl .. pk~1 ylk-1) (3.21)
then
S T )
Fk_le,((k) = Pk - P1 Pk-lj G{x-1) (3.22)
and
f )) ([ Gox-1)) ( )
-1 k-
G}(}l Gl((_l ug 1)
- . - . Gék) (3.23)
G(x) G(k-1) Ulk=-1)
1 J [ ! J [ 1)

The equations (3.18) - (3.23) give U(X) and G(X) . We need

only invert the matrices D, and Fem 1 which are nxn and as

it is shown in the following Lemma they are non-singular.

Lemma 3.2, Dk._1 and Fk_1 as given by (3.18) and (3.21)

respectively are both non-sinqular.

Proof. Let sT = [Pk—1""’P1] so that
L, S
L =
g ST Po
Then
le~1| = Py- [Pk_l,...,Pl]G(k-l)
= | Pom IPE L e P IR P YT
= [ py-sTias
] | L;}ls
0 p-s'izls

20
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k-1 k-1

o B N

Similarly,

| fy | # 0

Q.E.D.
We will now show that the right side of (3.19) s equal to
the transpose of the right side of (3.22) ("'Burg's Lemma'',

[1] [13]) , a result which can be used to simplify computation.

Lemma 3.3,

A _ K-1) = - -
W, P [Pk—l"'Pl] U2 [Pk, [Pl"'Pk—l] Gt l)]
(3.24)
Proof
T T T 1T - (ST T o7 4.0 [T Y17
[Pk - [P ---P TG 1)] [Pk alL LPRTRL A | L Py ]
T
S
= P - IP_,...PILg1 | P
Pk"‘l
= - cen k-1)
Pe = [P =++P 1 UC

Q.E.D.

So far we have shown how to obtain U(X) and G(X) , given

U¢k=1) and G(¥-1) jnverting two nxn matrices.
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We will next derive a recursive formula for e as defined

in (3.17) .

Solution for e,

From (2.17)

.
€ T Ek Ek
- [B-Aum]TE
k
T T T
= B E - U(X) A E,
T
- B'E,
= B'B - B'A_UK)
B TT
- - +P- [Pl...Pk] be)
_ T T ) T ok
= s [Pl ) [ugo) - ol uge
_ T T [ _ _ T
= -1+ P- [Pl...Pk_l] | ute-1)- e 1>u£k>] - PluCk)
~ T T T )
= e, - [Pk - (PP T 60y
= e . - W yo for x = 1.2 (3.25)
k1 X "k REERE .
and
eg = - I+ P (3.25)

where use was made of (3.10), (3.12), (3.20) and (3.24)

- Define || e, HT = || E, HF . Then clearly we must have
H e HT > H ey HT for «=1,2,... , and since R(}) is uni-
modular, there exists d < {n=1 such that I eq “T =0 , In

practice, however, due to round off errors, H e, HT almost
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always will be non-zer&. This suggests that in practice there
are no unimodular matrices.

The situation is similar to the singularity of a constant
square matrix, More specifically, a constant square matrix is
singular if its smallest singular value is zero. Using finite
precision conputations a singular matrix will usually have a non-
zero smallest singular value, although very close to zero.

We say that a matrix is singular if its smallest singular
value is smaller than some small positive number ¢ . This is
widely acceptable and it makes sense in several applications
[y 71 (31,

In the case of unimodular matrices we call a matrix uni-
modular if for some d < yn -1 | H e, HT is less than some

small positive number ¢ .

The following example illustrates the method.

Example.
0 1 0 1
R()\)=|2+)\ + )2
0 0 0 0
1 0 0 1 (0 1
Py = )P1= :P2= 9P3= =0
0 3 0 1 [ 0 0|
(0 1 (0 0 )
U(1)= e. =
1 1
\O% nO %A
fO ]‘
u2) =
1
(0 0 )
(0 1) 0 0
Ul = e, =
0 0 0 0




So

0 1 0 1
uGy) = 1 -y - A2
0 0 0 0O

4, Summary of Preceding Algorithms

We now summarize the algorithms described in this report.

APL implementations for these algorithms can be found in [2]

Algorithm 1. Given the polynomial matrix P(3) with linearly
independent rows for every ) , this algorithm finds a

polynomial matrix Q()\) , such that

POV
RGD) =
Q)

is unimodular,

1) Find constant non-singular matrices V., and V, such that

- 1
ViPQIV, = [1 O] + 3P 4.4y Pt

2)
¢
0O | 0 0 ) (0
m .
A A
A, A= 0 |, B, =8 =
I, 0
o[ e
\ 0 0 Y,
l"o = M
=0

3) Find py = rank (AJ)

4y If =r, , set a=] go to 7
Py

d

5) Find LJ+1(er py) MJ+1(PJX r,) , of full column and row

24
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rank, respectively, so that

A= L ..M %

J Jti+
6) Set ey = Mpiblis
Byey = My By
Fyey = P
1Tyt
go to 3
7y IF v, =0, QO =1[0, I _ 1w , stop.

8) Find F, such that A + B F is nilpotent (see Appendix).

Set
F = FMM oo oM

a a a—1 1

and partition

F [—Ft -Ft—l"“-Fl]

Q) [[0 o) FAF +o+ ﬂFt] V51

Algorithm 2. Given a square nxn polynomial matrix

= 1
ROV = R+ AR Fov ot ) R1

this algorithm checks if R()}) 1is unimodular and if so finds
the inverse

U@ = RO
1) Set V = Ral

and overwrite R()) = VR()

2) Find




Set

3)

4)

5)

6)

26

[o] n
k = 1 and U(o) = glo) = 0
x T .
Pk = ¥ R Rj+k if 1 =k
=0
= 0 if 1 <y
W= P - [P_ ...P] u(k-1)
= 1
U = o, W
( ) ( ) ]
(k-1 K-
b vy | [ e
. = - U}((k)
Lua) e e
T
e, = e ., = WU
¢x = sum of the square roots of the diagonal elements of e .

If e, < ¢ (for some small o >0)

set d =k

uy = [ln S UALR P xdu§d>] v

Stop.

If kz;n

R(A) is not unimodular

Stop.
T
G{¥) = F2.W
[ s ]
)
: = G(k-1)- U(k"l)Gﬁk)
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7)* D, = Py = [P ...P. ] GO
and
_ T T
Fe = Py = [P ...P ] Ut
8) Go to 3
* In step 7 [Px""’Pll and G(X) are of order nx(nk) and
nkxn respectively.
We will now show an alternative way for step 7 that saves
some computation time. It is
= - )
D, = P, - [P...P ] Glx
- - [ co]
P0 [Pk—l"'P1] Gk_1 PkGﬁk)
k)
| 6"
= Pt (R eh] oo uteniggo ) - ggo
= - K- - -
Po = [Py e oP TG4 [P L P JUCK-1)GK) P G{F)
B - - | '
R A N RS R
= D, - WG(¥)
where W has already been computed in step 3. Similarly we get
- T
Fe = Foy = WU
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The two algorithms in Section 3 were implemented in APL on the

ITEL AS/6 system at Rice University. [2]

In the following examples a matrix P()) with linearly
independent rows is given. The matrices Q()) and U(\) are
found so that

PG |-

Q)

up)

P())

( is unimodular )

Q)

The results are checked as follows:

(a) The infinity norm of e, H e, Hm is tabulated for
k=1,2,.,. The infinity norm of a matrix A = [aij] is
defined by

| A Hw = max | ¥ la,,! l
H J
and

(b) The product P )U()) is formed. Recall that it

should be POOUQG) = {1 0]
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Example 1
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k|1 ] 2
lle,ll ! 4.282 l 2.522E-14

(1 0 0 0 0 0 0
010000 0
P(UA). = [0 01 0 0 0 0
oo 0100 0
0 0001 0 o
Example 2 : b
PV = [ .333 .667]
+ [ .000 .667] A
+ [1.667 =1.000] A2
+ [ .667 - .333] A2
+ [ .333 333] A%
Q) = [-.894 447]
+ [ .534 - .720] A
+ [-.656  .203] A2
C4 [-.173 .337] A3
+ [-.170 - .170] A%

.600 - .894
u) 1.200  .447)
-.966 - .894)
-.717 .000

2.236)

447) 3
.894

-.228 = J4L47) 4

N .273 1.342) .2
881
( .228 L447)




k

ot

2 f

> |

4

I]ek“ l 8.580 ' 3.099 I 2.688 ‘ 1.954E~14

PU

Example 3

P())

Q(x)

U(A):

=

(1 0]

[~ .466

[- .573

481
-.077
.062

~ .529

- .137
.362
.653

| .282

(-1.027
.715
- .114
.092
- .784

.600
- .760
.650
. 944
\ 1.038

.324

.227

.863
.022
-.018
.150

.054
-.143

-.259

~-.112

.481
.863
.022
-.018
.150

-.072

.091
-.078
-.113
-.125

-.052

.228

.022
.996
.003
- .024

.055
-.144
-.260
~.112

~-.077
.022
.996
.003
-.024

.190
-.240
.205
.299
.328

.042

.551

-.018
.003
.998
.019

.132
~.348
~.628
-.271

.062
-.018
.003
.998
.019

.343
~-.434
.371
.539
.593

.150
.024
.019
.835

.035
.093
.168
.072)

.529
.150
.024
.019
.835]

.148
.187
.160
.233
.256]

.356]

.147]
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K ’ 1

llek”w l 1.540E-15

PU = [1 0 0 0 0]
Example 4
PO = .991 - .689 ;110 - .089
1.217 - .482 - 485 -1.172
o[- -054 - .81 1.252 1.201 -
- .463 1.325 .312 1.166
N (- .504 - .240 . -1.161 - .935 -
| 1.099 - .415 .226 - .544 -1
[ .202 .389 .839 - .316 -
Q(y) = .566 .645 - .282 423 -
- .311 L4360 - L1467 - .229
-6.422  37.077 =26.672 -10.492 -4
+ .688 4.492 -3.187 -1.828 -2
| - .607 1.869 - .513 NATA
(32.946 ~5.622 23.541 2.457 =23
+ 5.054 ~1.212 2.752 - .585 -4
| 1.219 - .149 1.016 .253 ¢ -
[ .317 .187 .202 .566 -
- 402 .074 .389 .645
U(A) = .343 -~ .325 .839 - .282 -
499 - .609 - .316 423 -
| -549 - .202 - .070 - .063
( 9.234  -4.899 .971 -6.522 =3
17.403  -9.257 2.276 -12.298 -9
+ | 26.584 -13.737 4.663 -18.210 -16
-9.243 4.233  -1.735 7.035 7
| -2.955 2.067 .503 1.410
(-16.284 8.730 -2.530 10.931 8
-18.228 9.772 -2.832  12.236 9
+ | 13.803 ~7.400 2.145 -9.266 -7
~3.314 1.777 - .515 2.225 1
| -4.885 2.619 - .759 3.279 2

. 757
.312

.081)
.221)

.073)
.107|

.070
.063
.799)

.976)
990/
.633)

.992)
.152
.808

.311
436
.147
.229
.799

.652)
.199
423
.518
.864

462
472
.173
722
.539]

N\

3

N

N\
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P

k

LA

2

Heka l 1716.187 ’ 1.992E-07
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1.0E00 O0.0E00 0.0E00 0.0E 0.0EQO0
POOUG) = [ 00 ]

0.0E00

-9.5E~11

1.0e00 0.0E00 0.0E00 0.0E0O

+ (-5.6E—IO 3.0E-10

-2.1E-09

1.1E-09

-3.5E010

3.7E-10 3.05-10] N

1.4E-09

1.1E-09

As expected, the error Hekn

drops to a ''very sm

all't value. Als

decreases and at the point

o, it seems there is a

k=d

""discontinuity' in |le || at the point k=d , in the sense that the
number
[ lle. o1
K(d) = 4 Hedu =2
llea |l
lleall llee- 4l , d>2
\Hebl“ llea- 2l

is "'very small',

The decision of what a ''very small" number is depends upon the

particular problem,

Usually ''a quantity is very small, and may be

set to zero, if a perturbation of the same size can be tolerated in

the original data'.

(6]
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Appendix

In this appendix it will be shown how, given A(nxn) and
B(nxm) , a matrix F(mxn) can be found such that A+BF is
nilpotent. First let B, and L of column and row rank
respectively, such that B = B,L . It is shown in [5] that

a non-singular matrix T can be found* such that

A = TAT-1 = A1 + DG
and
B é TB. = DK
where
0O 1 0 0
A1 = 1
0 . . 0
D is a matrix of the form
4 3
Dl
D,
D ==
[ %)
with
(0 . 0. 0 )
DJ:: ’ J=]’2, :m
0 . 0. 0
o o10..0]|
1
b} column

* An APL program that computes the matrix T is given in [2]
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i.e., all elements of DJ are zero except the last element of
the Jth column which is 1

K is an mxm upper triangular matrix with 1's on the
diagonal, and

G is some mxn matrix.
Define E through

KF = -6

(Because of the special form of K , it is very easy to solve

for F ). Since L has full row rank, there exists a matrix

L+ such that

Define

Then

A + BF A+BLL FT

1

AT +T BF

i

.
1 [A + B(-K-1 G)]T
= (A1+ DG - D K K—lG]T

= T-IAT

which is nilpotent.
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