
Robust Distributed Estimation in Sensor Networks 
using the Embedded Polygons Algorithm 

Veronique Delouille 
ECE Department 
Rice University 

Houston, Texas, USA 
veroOrice.edu 

ABSTRACT 

Ramesh Neelamani 
Upstream Research Company 

ExxonMobiI 
Houston, TX, USA 

ramesh.neelamani@exxonmobil.com 

Richard Baraniuk * 
ECE Department 
Rice University 

Houston, Texas, USA 
richb@rice.edu 

We propose a new iterative distributed algorithm for linear 
minimum mean-squared-error (LMMSE) estimation in sen- 
sor networks whose measurements follow a Gaussian hidden 
Markov graphical model with cycles. The embedded poly- 
gons algorithm decomposes a loopy graphical model into a 
number of linked embedded polygons and then applies a par- 
allel block Gauss-Seidel iteration comprising local LMMSE 
estimation on each polygon (involving inversion of a small 
matrix) followed by an information exchange between neigh- 
boring nodes and polygons. The algorithm is robust to tem- 
porary communication faults such as link failures and sleep- 
ing nodes and enjoys guaranteed convergence under mild 
conditions. A simulation study indicates that energy con- 
sumption for iterative estimation increases substantially as 
more links fail or nodes sleep. Thus, somewhat surpris- 
ingly, energy conservation strategies such as low-powered 
transmission and aggressive sleep schedules could actually 
be counterproductive. 

Categories and Subject Descriptors 
G.3 [Probability and Statistics]: Statistical computing; 
5.2 [Physical Sciences and Engineering]: Engineering 

General Terms 
Algorithms, Reliability, Theory 

Keywords 
Sensor networks, distributed estimation, graphical models, 
hidden Markov models, Wiener filter, matrix splitting 

*This work was supported by grants from NSF, DARPA, 
ONR, AFOSR, and the Texas Instruments Leadership Uni- 
versity Program. Web: dsp.rice.edu. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
IPSN’O4, April 26-27, 2004, Berkeley, California, USA. 
Copyright 2004 ACM 1-581 13-846-6/04/0004 ... $5.00. 

1. INTRODUCTION 
Sensors, signal processing, and wireless communication 

technologies have matured to the point where large networks 
of sensor nodes can now be easily deployed in a wide variety 
of environments, making them very attractive for large-scale 
applications like environmental monitoring, security surveil- 
lance, and disaster relief [l]. Often battery-powered, sensor 
nodes are capable of senszng, computzng, and communzcatzng 
information. 

In the setting considered here, we assume that N sensors 
each make noisy scalar measurements of their physical en- 
vironment, such as the local temperature, wind speed, or 
concentration of some substance. We model the vector of N 
measurements y as a Gaussian random field y = 2 + E ,  with 

(1) yz = X 2 f E z ,  2 = 1 ,  . . . ,  N. 
Here 5% is the true value of the random field at sensor 2 ,  and 
E ,  is sensor i’s measurement noise. We model the vector x as 
jointly Gaussian with zero mean and correlation matrix E, 
and we assume that the measurement noise E is independent 
of 2 and Gaussian with zero mean and diagonal correlation 
matrix R. Since the variables xz are Gaussian and unknown 
(that is, hidden), this model is often referred to as a Gaus- 
sian Hzdden Markov Model (HMM). 

A core sensor network problem involves producing accu- 
rate estimates of the true x,’s from the noisy yz’s. The linear 
minimum mean-squared-error (LMMSE) Wiener estimate of 
x is computed from the normal equatzons 

V 3  = R-ly (2) 
with V := E-’ + R-’. 

In a sensor network, a naive approach to obtain the 
LMMSE estimate would first transmit all of the measure- 
ments y to a central location and then compute and apply 
the N x N matrix inverse V-’ to R-’y to obtain 2. Unfor- 
tunately, since communication consumes significant energy 
and bandwidth [2], this naive centralized approach is ex- 
tremely wasteful. 

Thus, there is a great need for dzstnbuted estimation al- 
gorithms that replace global communication and centralized 
computation by parallel, local communication and computa- 
tion, effectively distributing the N x N matrix inverse com- 
putation across the network. Such distributed algorithms 
should also be resilient to communication failures caused by 
sleeping sensors and faulty transmissions. 

Graphzcal models (GMs) provide a natural foundation 
both for modeling the correlations amongst the sensors (the 

405 

http://veroOrice.edu
mailto:ramesh.neelamani@exxonmobil.com
mailto:richb@rice.edu
http://dsp.rice.edu


(a) Sensor nodes (b) Delaunay triangulated network 

(c) Minimum spanning tree (d) Independent embedded triangles 

Figure 1: (a) Example sensor network with 250 uniformly distributed sensor nodes. (b) Graphical model for 
the hidden variables zi based on the Delaunay triangulation of the sensor locations. (c) Minimum spanning 
tree embedded in the Delaunay graph. (d) A set of independent triangles and singleton nodes embedded in 
the Delaunay triangulation. Independence refers to the fact that no two triangles share a common node. 

matrix E) and for developing efficient distributed estima- 
tion algorithms [3]. In a sensor network GM, the nodes 
correspond to the variables zt, and the existence of an edge 
between nodes xi and xj indicates a conditional dependency 
or nonzero partial correlation P ~ J .  The correlation matrix 
is given by C = P-' [3]. 

The sparsity of the matrix P controls the efficiency of GM 
distributed algorithms. In a fully connected GM (which can 
exactly model any E), distributed algorithms involve inten- 
sive computation, communication, and energy consumption. 
Fortunately, for smoothly varying physical quantities such 
as temperature or gas concentration, sensor i 's  measurement 
can be assumed to be uncorrelated with the rest of the net- 
work given the measurements of all close-by sensors. In the 
associated GM, each node xi would be connected only to  its 
close spatial neighbors,' leading to  a sparse P and efficient 
algorithms. For example, Fig. l (b)  illustrates a GM based 
on a Delaunay triangulation [4] of the node locations from 
Fig. l(a).2 

'For example, a neighborhood can be defined as all nodes 
within a certain radius. 
2A Delaunay triangulation has the attractive property of 
linking together the closest nodes. 

Sensor network GMs in most practical situations will con- 
tain numerous loops or cycles (see Fig. l (b) ,  for exam- 
ple). Unfortunately, while there exist simple and efficient 
distributed estimation algorithms for GMs without loops 
(Markov chains, for example), the situation is anything 
but straightforward when loops are present. Proposed dis- 
tributed estimation approaches for loopy GMs include the 
non-iterative Gaussian elimination message passing [5] as 
well as iterative methods such as belief propagation (BP) 
[6], loopy BP [7], and embedded trees [8, 9). Each of these 
algorithms either lacks fault tolerance, lacks parallelism, or 
converges slowly, which limits their applicability to wireless 
sensor networks. 

In this paper, we develop the embedded polygons algorithm 
(EPA), a new iterative algorithm for distributed LMMSE 
estimation in GMs that is simple, local, scalable, fault- 
tolerant, and energy-efficient, and thus well-suited for wire- 
less sensor networks [lo]. 

Given a loopy sensor network GM, our core idea is to 
first decompose it in terms of a number of linked embedded 
polygons; see Fig. l(d) for an example of embedded trian- 
gles. Then, we compute the solution to  (2) via an iteration 
comprising local LMMSE estimation on each polygon (for 
example, a 3 x 3 matrix inverse computation for an embed- 
ded triangle) followed by an exchange of this information 
between neighboring nodes and polygons. 

406 



Paper overview: After defining GMs and our estimation 
problem more precisely in Section 2, wk review matrix split- 
ting algorithms in Section 3 and the EPA in Section 4. Sec- 
tion 5 overviews the EPA’s fault tolerance and convergence 
properties, while Section 6 compares its power consumption 
as a function of communication failure rate to the Jacobi 
algorithm in two simulation experiments. A central contri- 
bution is a guarantee that both the EPA and Jacobi algo- 
rithm converge when sensors and communication links fail 
temporarily. Moreover, we demonstrate that networks with 
nodes that sleep (ostensibly to save energy) can actually 
consume more total energy to converge to the LMMSE esti- 
mate due to many additional iterations. We conclude with 
a discussion and pointers to future work in Section 7. 

2. ESTIMATION IN SENSOR NETWORKS 
Our aim is to find the LMMSE estimate for the true sen- 

sor values 2% from the noisy measurements yi under the 
model (1). To do so efficiently, we approximate the cor- 
relation structure of x by a graphical model (GM). We will 
use the terms “sensor” and “node” interchangeably below. 

2.1 Graphical models 
GMs, including Bayesian networks and Markov random 

fields, represent statistical dependencies between variables 
by means of a graph [3]. Let Q be an undirected graph 
defined by a set of nodes V and a set of edges E .  Each 
node i E V is associated with an unobserved or hidden vari- 
able xi as well as with a noisy measurement yi. We assume 
that, given the set of hidden variables x := {xili E V}, 
the observations y := {yz(i E V }  are independent of each 
other. A missing edge ( i , j )  between nodes i and j implies 
conditional independence between the variables zi and xj 
given all other hidden variables. That is, if the neighbor- 
hood of node i is defined as N(i) := { j l ( i , j )  E €}, then 

In this paper, we focus on Gaussian HMMs, where the 
hidden variables x form a jointly Gaussian process. In this 
case, note that the matrix P = E-’ is related to the partial 
correlation ri,31v\{i,J} between xi and xj [3] by r%,jlv\{i,j} = 
- P i ~ / d m .  Note that even when P is sparse, C = P-’ 
will generally be full; that is, all nodes are correlated with 
all others. In particular, if x2 and xj are partially correlated 
and so are xj and xk, then xi and xk are correlated through 
x3. xi and x k  are independent only when the value of xj is 
given. 

P(XitXV\i) = P ( Z i l W ( i ) ) .  

2.2 Choice of graphical model 
In this paper, we assume that the matrices C (equivalently 

P )  and R are given. In practice, however, C and R are un- 
known and must be estimated from the data. The matrix 
R represents the variance of the noise and can be estimated 
from repeated measurements at the same location. The ma- 
trix C ,  = C + R can be estimated from the sample covari- 
ance matrix of the observations. For decomposable graphical 
models [ll], Lauritzen [3] gives an algorithm that computes 
the maximum likelihood estimate of V f E-’ + R-’ from 
inverses of sub-matrices of the estimate 2,. 

In sensor network estimation applications, GMs should 
balance the trade-off between accurately capturing the cor- 
relation structure of the quantities being measured and sup- 
porting energy-efficient distributed algorithms. A spatial 
triangulation of the sensor location induces a GM that bal- 

ances this trade-off. A triangulated GM assumes that a 
sensor’s measurement is uncorrelated with the rest of the 
network given the close-by measurements. This is clearly 
reasonable for smoothly varying quantities. 

The Delaunay triangulation (DT) [4] (see Fig. l (b))  in- 
duces a GM with some additional attractive properties. 
First, the DT links together the closest neighbors in the 
graph, in the sense that the circumcircle of each triangle3 
does not contain any points of the triangulation. Second, the 
DT can be established in a distributed fashion [12, 131, and 
for this reason is successfully used as an overlay topology 
in the networking field [la]. For the non-zero partial corre- 
lation between two connected sensors, we use a decreasing 
function of the Euclidean distance between them [14, p. 611. 

3. DISTRIBUTED ESTIMATION 
We can take advantage of a sensor network’s computa- 

tion and communication capabilities to solve the linear sys- 
tem (2) in a distributed way. This saves the significant cost 
of transmitting all data to a central location. 

A number of algorithms that proceed by passing messages 
along the edges of a graphical model have been proposed to 
solve (2). These include belief propagation (BP) [6], loopy 
BP [7], and extended message passing based on Gaussian 
elimination [5]. In order to efficiently handle loopy GMs, we 
consider in this paper an attractive class of iterative methods 
for solving (2) based on a decomposition of V. 

3.1 Matrix splitting algorithms 
Let jj = R-’y denote the normalized observation vector. 

Equation (2) then becomes 

VP = y. (3) 

V = J - K ,  (4) 

If we rewrite V by “splitting” it into 

then solving (3) is equivalent to finding a fixed point of the 
system [15] 

JP=g+KP. 
For sensor networks, we seek a ( J , K )  pair for which the 
solution to this fixed-point problem can be found iteratively 
by simple computations and information exchanges between 
neighboring nodes. 

We assume that at the start of the algorithm each sensor 
i E E knows its initial estimate 2; as well as the partial 
correlations with its neighbors; that is, it knows row i of 
the matrix V .  Let Nl~(i) := { j  E N(i)lKz,3 # 0 )  be the 
neighbors of i that correspond to non-zero entries of the 
matrix K in (4). 

Starting from the initial guess Po,  we solve the fixed point 
equation by generating a sequence of iterates {Pm}” m=l ac- 
cording to the following two-step recursion: 

Update: Each node i sends its value x,“-’ to its neighbors 
NK(Z) and receives from them their current estimates 
E;;;%). The nodes then update their values using 

cm = y +  KZm-l. (5) 

(6) 

Solve: The new estimate Pm is found from 
pm = J-’gm. 

3The circle passing through the three vertices of the triangle. 

407 



This algorithm converges when the spectral radius of the 
matrix J-'K is strictly smaller than one [15]; that is 

-m m-cc z -+ 2 p(J-'K) < 1  

Several choices of ( J ,  K )  are appropriate for distributed 
estimation. 

3.2 Jacobi algorithm . 
The simplest splitting algorithm is the well-known Jacobi 

0 

0 V N , N  

iteration that sets J equal to the diagonal of V 

J =  ... . " I ,  (7) 

where v k k ,  k = 1 , .  . . , N denote the diagonal elements of v. 
Iteration m proceeds as follows: 

Jacobi Update: Node i sends its current estimate 2y-I to 
all of its neighbors j E N(i)  and receives the current 
estimates 27-l from those same neighbors. The nodes 
then compute- 

y^, 1 - - y i  - - vz,jzy-' vi € 6. 
j G N ( i )  

Jacobi Solve: 3y = Vi 6 0. 
The Jacobi algorithm converges slowly in general, but it has 
the advantage of being eminently local: each node i needs 
to know only its neighbors' values " ~ ( i )  in order to proceed. 

3.3 Embedded trees algorithm 
In the embedded trees algorithm, the matrix J := JT cor- 

responds to a spanning tree & embedded in the loopy graph 
G [8, 91. For example, Fig. l(c) illustrates a minimum- 
spanning tree for the sensor network in Fig. l(b). With em- 
bedded trees, the inversion of JT can be performed exactly 
using a message passing algorithm such as belief propaga- 
tion. Conditions for convergence are provided in [9]. Itera- 
tion over multiple different trees is also possible and in cer- 
tain case significantly improves the rate of convergence [9]. 
The method can further be extended to exactly compute 
the variance of 2. Unlike the Jacobi method, the embedded 
trees algorithm is global; in the Solve step, messages must 
be passed throughout the entire network before node i can 
compute the next value of 2y. 

4. EMBEDDED POLYGONS ALGORITHM 
We now present an algorithm that combines the best of 

the Jacobi and embedded tree methods in the sense that it 
is both local and fast to converge. 

4.1 Embedded polygons 
When a graphical model contains many loops, it becomes 

efficient to place in J the elements of V corresponding to 
small connected subsets of nodes from 8. Hence, we pro- 
pose to place in J a set of subgraphs of G that we term in- 
dependent embedded polygons. As shown in Fig. 2, examples 
of embedded polygons include singletons, dipoles, triangles, 
quadrangles, and so on. Two polygons are independent if 
they have no common vertices. Let r := { T k } p = l  be a set of 
independent polygons of size L k  embedded in a loopy graph 

4 

Figure 2: A graphical model (solid and dashed lines) 
and a decomposition into embedded polygons (solid 
lines); from left to right two singletons, a dipole, 
triangle, quadrangle, chordal quadrangle, and fully 
connected quadrangle. 

8, and let A,, denote the L k  x L k  sub-matrix of v corre- 
sponding to the polygon r k .  For an appropriate ordering of 
the nodes, J becomes the block diagonal matrix 

J =  0 0. : ] (8) 
0 A,, 

We refer to the resulting matrix splitting method as the 
embedded polygons algorithm (EPA). The Jacobi matrix J 
in (7) is a special case of (8) where the sub-matrices A,, 
degenerate to the diagonal elements v k k  of v (that is, all 
polygons are singletons). 

4.2 Parallel block Gauss-Seidel algorithm 
With J defined as in ( 8 ) ,  the recursion (5), (6) corresponds 

to a block-Jacobz zteratzon. To maximize parallelism in the 
EPA, we slightly modify iteration m to proceed as follows: 

EPA Update: Each node i computes the update r as 
in ( 5 )  by communicating with all of its neighbors ex- 
cept the ones belonging to the same embedded poly- 
gon. 

EPA Solve: Within each embedded polygon ' r k ,  the nodes 
i E Tk exchange their updated values r amongst 
themselves. Each polygon then computes 53; = 

communicate in this step.) 
A-1- Tk y,, in parallel. (Note that singleton nodes do not 

The EPA is simple to parallelize because the embedded 
polygons are independent, that is, they have no nodes in 
common. The inversion of each L k  X L k  matrix A,, in the 
EPA Solve step above is performed non-iteratively. In the 
initialization phase, each node belonging to T k  gathers infor- 
mation about A,, from its neighbors i E T k  and computes 
and stores the inverse A;:. 

In order to  increase the rate of convergence, we can 
also slightly reduce the parallelism and introduce a Gauss- 
Seidel [15] aspect to  the algorithm, which now proceeds in 
two stages. In the first stage, all nodes belonging to embed- 
ded polygons of size L k  > 2 perform the EPA Update and 
EPA Solve steps to obtain their new value 3" at iteration 
m. In the second stage, each singleton node i gathers the 
most recent estimates from its neighbors j E N(i ) .  Node 
z then uses these values to compute the update and to 
'solve 2y = r / K , , .  



4.3 Size of embedded polygons 
The choice of the sizes of the embedded polygons r k  is 

application-dependent. If the size Lk > 5, then an iterative 
method is needed to invert the L k  x Lk matrix during the 
EPA Solve step. However, larger blocks A,, also increase the 
algorithm's rate of convergence [15, p. 1941. Hence a trade- 
off of computation/communication versus faster convergence 
will dictate the optimal polygon size Lk. 

Since any planar graph can be decomposed into a set of 
embedded triangles, dipoles, and singletons, in the simula- 
tions of Section 6 we focus on triangulated GMs and study 
the performance of the resulting embedded triangles algo- 
rithm (ETA) [lo]. 

4.4 Scalability and self-organization 
Since the EPA operates in parallel over all independent 

polygons, the amount of time spent on each iteration does 
not change as we increase the number of nodes N in the 
network. In contrast, since the embedded trees [9], Gaus- 
sian elimination [5], and loopy BP [7] algorithms rely on 
sequential message passing either on a tree (for the first two 
methods) or on the entire graph (for loopy BP), their time- 
per-iteration will increase with the diameter of the n e t ~ o r k , ~  
which grows with N [16]. 

Moreover, the EPA and ETA can begin iterating without 
expensive up-front route finding. Indeed, simple protocols 
exist to associate the sensors into independent triangles, for 
example. Suppose that in a triangulated GM each sensor 
knows the locations of its neighbors. At initialization, all 
nodes are singletons and free to form a triangle. A leader 
node l is designated to perform the following operations: 

Query to form a triangle: The leader e sends a message 
to its neighbors to request permission to form a trian- 
gle T .  The neighbors respond yes if they are singletons 
and n o  if they are already part of a triangle. 

Triangle formation: If e receives two positive answers 
that allow it to  form a triangle r ,  then it sends back 
a message to those two nodes that become part of the 
triangle T .  If I? cannot form a new triangle, then the 
algorithm terminates. 

Leadership hand-off: Node e looks for singleton nodes in 
the neighborhood of its triangle. If there are no sin- 
gletons, then the algorithm terminates. Otherwise, it 
hands off leadership to a randomly chosen neighboring 
singleton. 

This algorithm results in an expanding wavefront of crystal- 
izing independent embedded triangles. 

5. FAULT-TOLERANCE 
In this section, we first discuss how the Jacobi algorithm 

and the EPA adapt to temporary inter-node communication 
failures in the network. Then we prove that both the algo- 
rithms are guaranteed to converge under mild assumptions. 

4The diameter of a graph is the length of the longest shortest 
path between two nodes. 

5.1 Sleeping nodes and failing links 
In practical sensor networks, inter-node communication 

can fail due to two main causes. Define a sleeping node as 
one that powers-down temporarily to conserve energy and 
hence cannot interact with its neighbors [17, 181. A tempo- 
rary link failure occurs when the transmitted information is 
dropped due to temporary inter-node channel fluctuations 
(for example, due to multi-path fading). 

To increase the Jacobi and EPA's robustness to temporary 
link failures and sleeping nodes, we modify them slightly by 
allowing each sensor node to store its neighbors' most recent, 
successfully communicated values in its local memory. Let 
I" be the set of active nodes at iteration m. A sleeping node 
i 6 I" updates neither its estimate nor its memory during 
iteration m (that is, 2y := 27-l) and, moreover, does not 
communicate with its neighbors. A failing communication 
link between sensors j and i precludes node i from receiving 
any data from node j. In place of this missing value, sensor 
i recalls from its local memory the last successfully received 
value from sensor j .  Let s,,i(m) denote the iteration count 
corresponding to this most recently received value. In Rc- 
bust EPA, active nodes i E I" perform the following steps. 
The Robust Jacobi algorithm is defined similarly, since Ja- 
cobi is a particular case of EPA with singleton polygons. 

Robust EPA Update: For all j E N,y(i), sensor i either 
receives the value 2T-l from sensor j (successful com- 
munication) or recalls from its memory the value most 
recently received from j (failed communication). Then 

is updated as in (5) with 2T-l or 2?-'(") for 
j E N,y(i). In other words, sensors substitute values 
from memory for the values not received and perform 
the usual update ( 5 ) .  

Robust EPA Solve: If sensor i belongs to an independent 
polygon Tk, then it sends to its neighbors in ~ k .  If 
sensor i does not receive the value from one of 
its neighbors j E Tk, then it recalls from its memory 
the last successfully received value F?-i(m).  Sensor i 
solves for 2y by inverting the matrix A,, as in the EPA 
Solve step from Section 4.2. If node i is a singleton, 
then it solves according to the Jacobi Solve step from 
Section 3.2. (Note that the singleton nodes do not 
communicate in this step.) 

Unlike the Jacobi algorithm, EPA, and ETA, it is un- 
clear how to make the embedded trees algorithm resilient 
to communication failures. Embedded trees employ belief- 
propagation (sum-product algorithm) in the Solve step. 
During this step, messages must be transmitted successfully 
through the entire tree to compute the new 2". If a link 
(i,j) belonging to the tree fails, then it is unclear how to 
proceed with the iteration until the tree is healed (perhaps 
by some higher-level networking protocol). 

5.2 Robust convergence 
Mild conditions on the occurrence of link failures and 

sleeping nodes are sufficient to ensure convergence of both 
the Robust Jacobi algorithm and Robust EPA: As the it- 
erations proceed, all nodes must eventually receive updated 
values from their neighbors, and each node must eventually 
be updated. In other words, links can fail and nodes can 
sleep, but only temporarily. 

409 



THEOREM 1. Consider the matrix V in (2) corresponding 
to a Gaussian HMM with all elements of C positive. If dur- 
ing the Robust EPA Update and Robust EPA Solve steps of 
Section 5.1 the delays dj,i(m) := m- s j+i (m)  are bounded 
for all ( i , j )  E B and if each node is updated within a finite 
number of iterations, then both the Robust Jacobi algorithm 
and the Robust EPA converge. 

For the proof, see the Appendix. 

6. SIMULATIONS 
To complete the paper, we now conduct several simula- 

tions to study the rates of convergence of the Jacobi and 
embedded triangles algorithm (ETA) estimates as a function 
of energy consumption for both unidirectional and omnidi- 
rectional communication. 

6.1 Data generation 
We assume that 250 sensor nodes are randomly dis- 

tributed in the square [0,1]  x [0,1] .  We generate observa- 
tions y = x + E with E - N(0,a21),  variance a2 = 4, and 
I the identity matrix. To generate the hidden variables x ,  
we set up the partial correlation coefficients ~ - ~ , ~ l ~ \ { ~ , ~ }  = 
c ( l  - dist(i, j ) ) ,  with dist(i, j )  the Euclidean distance be- 
tween nodes i and j and c the largest constant for which 
the precision matrix P is still positive definite. For the di- 
agonal entries of P we use random variables uniformly dis- 
tributed between 1 and 2. This permits us to compute the 
values P ~ , j ; i  # j as described in Section 2.2 and to gen- 
erate x - N(0,P- l ) .  This specification of P ensures that 
the elements of C = P-l are positive (see the Appendix). 
We assume that V = E-’ + R-’ = E-’ + C 2 1  (see (6)) 
is known. Note that if V were estimated from sample data 
(see Section 2.2), then the solution B of (2) would contain 
some bias due to the error in estimating V .  Our discussions 
below address only the error due to the iterative nature of 
the matrix splitting algorithm (5), (6). 

6.2 Comparison metrics 
To evaluate the different algorithms, we compare the de- 

cay of their residual normalized mean-squared error (termed 
residual error henceforth) as the total energy consumed by 
inter-node communication increases. 

The residual error is computed at each iteration m as 
em ._ .- IJjj - VPII / lljjll [9] with jj = y / a 2  and V = C-’ + 
O - ~ I .  In our experiments, we compute the inter-node com- 
munication energy for the two different scenarios. 

With unidirectional transmitters, a node communicates 
with each of its neighbors one at a time, even to convey a 
common message. Examples are nodes with laser-based line- 
of-sight transmitters. We assume that the energy required 
by sensor i to convey the same floating point number to all 
of its neighbors j E N(i)  is proportional to [2] 

2 (dist(i,j))2 . 
3€N(*)  

With omnidirectional transmitters, a node can broadcast 
a common message to  all of its neighbors simultaneously. 
Examples are nodes with omnidirectional radio transmitters. 
We assume that the energy required by sensor i to broadcast 
the same floating point number to  all of its neighbors j E 

N( i )  is proportional to [2] 

max (dist(i,j))2 
E N ( % )  

6.3 Fault-free case 
We first compare the experimental performance of the Ja- 

cobi algorithm, embedded trees algorithm, and the ETA 
when all nodes and links stay awake throughout the esti- 
mation. We averaged the residual error over 50 different 
realizations of the noise E (see ( 1 ) ) .  

Figure 3(a) illustrates the superior performance of the 
ETA when the sensors are equipped with unidirectional 
transmitters; its residual error decays faster with increasing 
energy consumption. With omnidirectional communication, 
according to Fig. 3(b), ETA’S improvement is less substan- 
tial. 

6.4 Fault-prone case 
We now investigate the robustness of the Jacobi algorithm 

and the Robust ETA to sleeping nodes and communication 
failures. Since it is unclear how the modify the embedded 
trees algorithm to handle such faults, we exclude it from this 
comparison. 

In practical scenarios, sensors might need to sleep in order 
to conserve energy or recharge their batteries [17, 181. We 
model this scenario by assuming that, at every iteration, 
each node independently toggles between the “awake” and 
one of q “sleep” states according to the finite state model of 
Fig. 4. According to the model, if a node is currently awake, 
then at the next iteration it either goes to the state sleep, 
with probability pl  or continues staying awake. If a node 
has slept for k consecutive cycles, k < q, then at the next 
iteration it can either continue to sleep with probability pz  
by going to state sleep,+, or wake up. A node can sleep 
for at most q iterations. In the steady state, a node that 
conforms to such a finite state model will on average stay 
awake with probability -. 

To model temporary inter-node communication link fail- 
ures due to, say, fading, we assume that the each link toggles 
between the “no-failure’’ and “failure” states of an analogous 
finite state model. 

In case of definitive link failures or dead sensors, the GM 
must be updated. Methods to handle such faults, including 
imputation for missing data [l l ,  p. 2001, are beyond the 
scope of this paper. 

Figures 5(a) and (b) present the Jacobi algorithm and 
the ETA residual error decay versus increasing unidirec- 
tional and omnidirectional communication energy when 
p l  = 0, 0.1, 0.3 for both sleeping and failing; we set pa = 0.5 
and q = 10. These parameters for pl  translate to each node 
or link staying awake for loo%, 83%, and 63% of the iter- 
ations on average, respectively. We averaged the residual 
error over 50 realizations, each with different noise and dif- 
ferent sequences of link failures and sleeping nodes. 

From Figures 5(a) and (b), we can infer that both the 
Jacobi algorithm and the ETA are robust since they continue 
to converge. 

Note that a sleeping node i can be modeled with failed 
links between i and all of its neighbors N ( i ) .  Hence in the 
sequel we will focus our discussion on failing links. 

In the unidirectional case, the ETA enjoys faster error 
decay than the Jacobi algorithm for all pl’s. To attain a 
residual error of l o p 5 ,  the ETA takes twice as much energy 

41 0 



3 
' - ' -  Jacobi : - - Tree - Triangle 1 

omnidirectional communication energy (constant x Joules) 

3 

(b) Residual error versus 
Omnidirectional communication energy 

Figure 3: Simulation results for distributed estimation with the sensor network from Fig. l(b) using the Ja- 
cobi, embedded trees, and embedded triangles algorithms. In this case, no nodes sleep and no communication 
links fail. 

l - P l  - - -  

Figure 4: Finite state model for sleeping nodes. 

when p l  = 0.3 as compared to when p l  = 0. As p l  increases, 
the performance differences between the two algorithms be- 
comes negligible. 

The remon is that the Robust ETA requires inter-node 
communications for both the Robust Update step and the 
Robust Solve step. In contrast, Jacobi communicates only 

energy communicating two different messages per sensor be- 
longing to an embedded triangle at each iteration m: the 
value 27-l in the Update step and the value in the Solve 
step. Consequently, Jacobi soon outperforms the ETA as p l  
increases from zero. 

during the Update step. To illustrate the implications, con- 
sider the situation for sensor i and its neighbors j and k 
at iteration m when the link from j to k is wonky. Sup- 
pose that j and IC belong to the same embedded triangle 6, 
but i does not. In both the Jacobi and ETA Update steps, 
the value 2y-I is used to compute c. In the Jacobi Solve 
step, $' is used to compute 27, and no communication is 
required. In contrast, in the Robust ETA Solve step, 
must be transmitted to node IC. If the transmission from j 
to IC fails, then node k will compute its new value E? using 
the last successfully received value from j, denoted g J j - k ( m ) .  

Obviously, $:'" (m) does not contain the most recent infor- 
mation transmitted by E?-', even though this value was 
successfully transmitted in the ETA Update step from i to 
j .  Thus the ETA'S performance will degrade relative to the 
Jacobi algorithm as more nodes sleep or links fail. 

In the omnidirectional case, the Jacobi algorithm is well- 
suited to exploit the transmitters since during each Jacobi 
iteration, a common message must be broadcast from each 
node to all of its neighbors. In contrast, the ETA expends 

7. CONCLUSIONS 
The embedded polygons algorithm (EPA) (and the 

special-case embedded triangles algorithm (ETA)) are new 
distributed estimation schemes for loopy Gaussian hidden 
Markov graphical models. Our iterative approach decom- 
poses a GM into independent embedded polygons, performs 
LMMSE estimation on each polygon, and then updates this 
estimate by collaborating with neighboring nodes and poly- 
gons. The EPA can be interpreted as an extension of the 
block Gauss-Seidel approach to matrix inversion. The EPA 
is robust to temporary local faults such as sleeping nodes 
and failing communication links. 

Our experimental results provide some interesting insights 
into the tradeoff between a sensor network's energy con- 
sumption and iterative algorithm convergence. It is conven- 
tional wisdom that sensor nodes should be powered down 
periodically to conserve energy [17, 181. However, our re- 
sults indicate that if the sensors are switched off during the 
iterative estimation process, then the network could end up 
consuming significant additional energy to  achieve a speci- 
fied estimate error tolerance. In the limit as nodes and links 

41 1 



unidirectional communication energy (constant x Joules) 

(a) Residual error versus unidirectional communication energy 

10-l 

lo-* 

i$ 10-3 

0 
CU 
- 

9 

10-50 100 200 300 400 500 600 700 
omnidirectional communication energy (constant x Joules) 

1 0-1 

a, - 
2 10-3 

lo4 

p! 

’‘-6 100 200 300 400 500 600 700 
omnidirectional communication energy (constant x Joules) 

(b) Residual error versus omnidirectional communication energy 

Figure 5: Simulation results for distributed estimation with the sensor network from Fig. l(b) using the 
Jacobi and embedded triangles algorithms. In this case, nodes sleep and communication links fail according 
to the finite state machine model of Fig. 4. The values p l  = 0.1 (left plots) and p l  = 0.3 (right plots) correspond 
to nodes sleeping or links failing 17% and 37% of the iterations, respectively, in steady state. 

sleep and fail for longer amounts of time, we conjecture that 
the Jacobi algorithm will be hard to beat. 

There are many opportunities for future research and per- 
formance enhancements. First, we are studying how to best 
cycle through a range of different embedded polygon decom- 
positions in order to speed up convergence (by analogy to 
[9]). Second, we are investigating the optimal size of the 
embedded polygons. As their size increases, the amount of 
residual error decay per iteration increases, but so does their 
sensitivity to sleeping and communication faults. Third, we 
are developing estimation algorithms for parameters of the 
Gaussian HMM from sample data (which nodes are con- 
nected, and their partial correlations). An expectation- 
maximization (EM) type approach could prove useful to  
address this issue. Other future avenues include efficiently 
estimating the variance of our estimate, extending the al- 
gorithm to track changes over time (Kalman filtering), and 
optimizing the interaction between distributed estimation 
schemes and ad hoc wireless network routing pro to col^.^ 

APPENDIX 
A. PROOF OF THEOREM 1 

In this section, we prove a slightly more general result 
than Theorem 1. The proof proceeds in two parts. .First, 
we show that iterations of the robust algorithm described 
in Section 5.1 are asynchronous iterations. Asynchronous 
iterations are known to converge if the iteration operator’s 
spectral radius is < 1 [19]. Second, we prove that the spec- 
tral radius of our algorithm’s iteration operator is indeed 
< 1. 

As in Section 5.1, let I m  be the set of active (non-sleeping) 
nodes at iteration m, and let sj+(m) denote the iteration 
count corresponding to  the most recent value that sensor i 
successfully received from j. 

At iteration m, an active sensor i E I m  will either receive 
from the sensors j E N(i)  their values 2Y-l (working link) 
or it will recall from its memory the last value received at 
the iteration count sj-i(m), sj+i(m) < m- 1 (failing link). 
This scenario. is well-studied in parallel computing and is 
referred to as asynchronous iterations [19]. 

~ ~ 

‘Many thanks to  Dan Sorensen for several fruitful discus- 
sions and valuable pointers. 

41 2 



DEFINITION: ASYNCHRONOUS ITERATION. For m E N, 
let I“ C (1,. . . ,n}  and the iterations counts s3-.(m) E 
No, ( i , j )  E B = ( E ,  V )  be such that 

( A )  ~ ~ - . ~ ( r n )  5 m - 1 for i , j  E {I , .  . . ,N}, 
( B )  limm4w ~ ~ + ~ ( m )  = 00 for i , j  E { I , .  . . ,N}, 
(C)  

with #(.) denoting the number of elements in a set. Given 
an initial guess 5? and the above three conditions, the fol- 
lowing iteration is termed asynchronous 

# ({m E N(i  E I”}) = 00 for i E {I, .  . . , N } ,  

where Hi is the i-th component of an iteration operator H .  

The first condition (A) on s j + i ( m )  requires that only val- 
ues computed earlier are used in the current approximation 
27 of the solution. The second condition (B) requires that 
as the algorithm proceeds, new information is continually 
transmitted to each sensor. The third condition (C) stipu- 
lates that a sensor cannot sleep forever. 

Under the assumptions of Theorem 1, the Robust EPA 
Update and Solve steps in Section 5.1 constitute an asyn- 
chronous iteration. Indeed, the Robust Update and Solve 
steps obviously satisfy condition (A). The assumption re- 
quiring bounded delays dj+i(m) = m - sj.+i(rn) implies 
condition (B). The condition on each node being updated 
within a finite number of iterations effectively means that a 
node cannot be always asleep, and this is given by (C). 

When solving the linear system Vx = T from (2) using 
a matrix splitting V = J - K ,  the iteration operator H is 
given by 

H : R ”  +Rn, z + J - l ( K x + Q ) .  (10) 
Theorem 4.1 from [19] then states that if the spectral radius 
p(lH1) < 1, then the asynchronous iteration (9) will con- 
verge to 2, the solution of Vz = ji. Theorem 1 is then an 
immediate corollary of the following general result. Below, 
we use the notation U > 0 (or U 2 0) when a matrix U has 
all positive (or non-negative) elements. 

THEOREM 2. Consider a matrix V as in (2) with negative 
off-diagonal elements. Let V = J - K ,  where J is obtained 
by setting some of the ofS-diagonal elements of V equal to 
zero. Then the iteration operator H in (10) is such that 
p(lH1) < 1. Hence the asynchronous iteration (9) converges. 

PROOF. First, note that V is an M-matrix, that is, it 
has negative off-diagonal elements, is nonsingular, and its 
inverse V-’ has all positive elements [15, p. 851. Indeed, in 
our Gaussian HMM, V is symmetric and positive definite 
(since it is the sum of two symmetric positive definite ma- 
trices). Corollary 3 in [15, p. 851 yields that V-’ > 0, that 
is, that V is an M-matrix. 

Second, by Theorem 3.12 in [15], J is also an M-matrix. 
Hence J-’ > 0 and J-lK 2 0 since by assumption K 2 0. 
The splitting V = J - K is then termed regular. For regular 
splitting, Theorem 3.13 in [15] tells us that if V-’ 2 0, then 
the spectral radius p(J-’K) < 1. 

REFERENCES 

0 

[l] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, 
“Next century challenges: Scalable coordination in 

sensor networks,” in Proc. ACM/IEEE MobiCom’99, 
pp. 263-270, Aug. 1999. 

[2] A. Wang and A. Chandrakasan, “Energy-efficient 
DSPs for wireless sensor networks,” IEEE Signal 
Processing Mag., pp. 68-78, July 2002. 

[3] S. L. Lauritzen, Graphical Models. Oxford, 1996. 
[4] C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa, 

“The Quickhull algorithm for convex hulls,” ACM 
Trans. Math. Software, vol. 22, no. 4, pp. 469-483, 
1996. 

passing algorithm for inference in loopy Gaussian 
graphical models,” Ad Hoc Networks, 2002. 

[6] J. Pearl, Probabilistic Reasoning in Intelligent 
Systems: Networks of Plausible Inference. Morgan 
Kaufmann, 1988. 

[7] Y. Weiss and W. T. Freeman, “Correctness of belief 
propagation in Gaussian graphical models of arbitrary 
topology,” Neural Computation, vol. 13, 

[5] K. Plarre and P. R. Kumar, “Extended message 

pp. 2173-2200, 2001. 
[8] M. J. Wainwright, Stochastic Processes on Graphs 

with Cycles: Geometric and Variational Approaches. 
PhD thesis, ECE Dept., MIT, Jan. 2002. 

[9] E. Sudderth, M. J. Wainwright, and A. S. Willsky, 
“Embedded trees: Estimation of Gaussian processes 
on graphs with cycles,” tech. rep., MIT, 2003. 

[lo] V. Delouille, R. Neelamani, V. Chandrasekaran, and 
R. G. Baraniuk, “The embedded triangles algorithm 
for distributed estimation in sensor networks,” in 
IEEE Statistical Signal Processing Workshop, 
(St. Louis), pp. 357-360, 2003. 

[ll] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. 
Spiegelhalter, Probabilistic Networks and Expert 
Systems. Springer, 1999. 

multicast with Delaunay triangulations,’’ tech. rep., 
CS Dept., University of Virginia, 2001. 

[13] X.-Y. Li, P.-J. Wan, and 0. Frieder, “Coverage in 
wireless ad-hoc sensor networks,” IEEE Trans. 
Computers, vol. 52, pp. 727-741, June 2003. 

[I41 N. A. C. Cressie, Statistics for Spatial Data. Wiley, 
1993. 

[15] R. S. Varga, Matrix Iterative Analysis. Prentice-Hall, 
1962. 

[16] A. Abdalla, N. Deo, and P. Gupta, “Random-tree 
diameter and diameter-constrained MST,” Congressus 
Numerantium, vol. 144, pp. 161-182, 2000. 

sleeping in wireless sensing systems,” in IEEE 
Statistical Signal Processing Workshop, (St. Louis), 

[IS] Y. Xu, S. Bien, Y .  Mori, J. Heidemann, and D. Estrin, 
“Topology control protocols to conserve energy in 
wireless ad hoc networks,” Tech. Rep. 6, UCLA, 
Center for Embedded Networked Computing, Jan. 
2003. 

[19] A. Frommer and B. Szyld, “On asynchronous 
iterations,” J. Comput. Appl. Math., vol. 123, 

[12] J. Liebeherr, M. Nahas, and W. Si, “Application-layer 

[17] J.-F. Chamberland and V. V. Veeravalli, “The art of 

pp. 9-12, 2003. 

pp. 201-216, 2000. 

41 3 


