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Abstract— The fading channels seen in many wireless sys-
tems provide a particularly hostile environment for reliable
communication. Current metrics for evaluating the performance
limits of fading channels have shortcomings. Ergodic capacity,
representing the ultimate error-free communications limit, only
applies to systems with infinite coding delay. Practical systems
are delay-limited and must use finite-length codes. For delay-
limited systems ε-capacity and delay-limited capacity are typically
used to quantify the communications performance. However, ε-
capacity is not an estimate of error-free performance while delay-
limited capacity tends to be an overly conservative measure. We
model practical systems as a single server queue and quantify the
communications performance as the average throughput through
the queue. Throughput is maximized by optimally selecting
the transmission rate and power control strategy. Using this
approach we arrive at striking conclusions. First, we show that
a throughput very close to ergodic capacity can be achieved with
a small coding delay. Second, the optimal transmission rate for
some systems can be higher than the ergodic capacity of the
channel. Third, we demonstrate the notion that power adaptation
does not improve communication performance does not hold for
delay-limited systems.

Index Terms— Throughput, capacity, block-fading, rate con-
trol, power control, delay, outage.

I. INTRODUCTION

THE communication channels seen in many wireless sys-
tems scatter the transmitted signal along its transmission

path. The time variation of the channel results in random fluc-
tuations of the received power level, or fading. The explosion
of wireless communication services has yielded a great need to
understand the limits of communication over fading channels.

Transmitters map data to codewords, which add redun-
dancy and protect against the effects of the channel. Since
fading channels are time-varying each codeword is affected
by one or more fading states during transmission, with the
specific number affecting the communications performance.
The coding delay, the time required to encode codewords, is
proportional to the codeword length and is quantified by the
number of fading states affecting each codeword. The ultimate
reliable communications limit over a fading channel is given
by its ergodic capacity [7]; it is an asympotic quantity, only
achievable with infinite coding delay.

Practical communication systems are delay-limited and must
use finite-length codewords that are affected by finitely many
fading states during transmission, making ergodic capacity
unattainable. The need to quantify the communications per-
formance of delay-limited systems gave rise to the concept
of outage and the notions ε-capacity [10] and delay-limited
capacity [9]. An outage event occurs when the attempted
transmission rate is higher than the fading state of the channel
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allows, resulting in a decoding error at the receiver. Then, ε-
capacity is the highest rate that can be supported with outage
probability no greater than ε. Delay-limited capacity is ε-
capacity, when outages cannot be tolerated, with ε = 0. Both
these measures have their short-comings. ε-capacity is not an
estimate of error-free communications. Delay-limited capacity
is an overlay conservative estimate of communications perfor-
mance - it is zero in many common situations [9].

The average throughput, or effective data rate between the
transmitter and receiver, is a more realistic measure of delay-
limited system performance than either ergodic capacity or
ε-capacity. For example, a delay-limited system transmitting
at a rate of 100Kbps and losing 20% of codewords to out-
ages has an 80Kbps throughput. Engineers are interested in
maximizing the throughput, rather than the transmission rate,
of communications systems. Delay-limited system use finite-
length codewords which can be transmitted multiple times
to ensure reliable decoding at the receiver. Using this idea,
in [1] the communication system is modelled with a queue
and the throughput is related to the transmission rate and the
codeword service time, the number of transmission attempts
required per codeword. The maximum throughput represents
the highest average reliable data rate that can be transmitted
for a particular retransmission scheme.

In [1], systems with knowledge of the channel state only
at the receiver are considered. For this system, the average
transmit power remains constant, and the throughput is maxi-
mized by performing rate control. In this paper, we generalize
the queueing interpretation to delay-limited systems that have
knowledge of the channel state at both transmitter and receiver.
The transmit power can be varied based on the condition of
the channel and the throughput is maximized by performing
both rate and power control. Our analysis leads to some
striking conclusions. First, for some systems the throughput
can approach ergodic capacity with very short codes. Second,
the optimal transmission rate that maximizes throughput can
be higher than ergodic capacity. This is counter to normal
practice, where a transmission rate below ergodic capacity
is used. Third, the conventional wisdom, that optimal power
adaptation negligibly improves communications performance
[7], does not hold for delay-limited systems.

This paper is organized as follows. Section II overviews
relevant background information and notation. In Section III,
we describe the maximum throughput under different power
constraints. Examples of the performance of a system using
throughput maximization are shown in Section IV. Finally, we
conclude and provide directions for future work in Section V.

II. BACKGROUND AND NOTATION

In many important applications the condition of the fading
channel changes on a time scale that is much slower than
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Fig. 1. Queueing representation of communications system. Codewords arrive
at rate α and are served by the server at rate µ.

the communications signalling. This motivates modelling the
communications channel as a discrete-time block-fading addi-
tive white Gaussian noise channel (BF-AWGN) [11]. In this
model each “block” of N symbols corresponds to the amount
of time the channel remains constant, the channel coherence
time. The system in the kth block can be written as

y
k

= xkhk + wk, (1)

with y
k
, xk ∈ R

N representing the system output and input.
We assume a Gaussian noise process, wk ∼ N (0, IN ).
Scattering by the environment results in reflections of the
transmitted signal adding constructively or destructively with
the original signal. The multipath interference due to scattering
is represented by a random multiplicative gain, hk ∈ R, on the
transmitted signal. In this work, we assume that |hk|2 follow a
χ2

2 (chi-squared with 2 degrees of freedom) distribution. This
model is commonly used for wireless communication systems
without line-of-sight (LOS) between transmitter and receiver.

Codewords span K blocks of the BF-AWGN channel re-
sulting in KN symbols per codeword and a K-block coding
delay. A system is considered delay-limited if K < ∞.
Codewords contain KN symbols with information encoded
at the transmission rate, R nats/sec/Hz. The time-variations in
the channel are assumed to be i.i.d. from block-to-block. The
blocks can physically correspond to slots in time, frequency,
or both. The K i.i.d. channel fades affecting each codeword
are

h :=
[|h0|2, |h1|2, . . . , |hK−1|2

]
. (2)

We assume that both transmitter and receiver have perfect
(delayless and error free) channel state information (CSI) and
know the realization of the K i.i.d. channel states (fades)
affecting the current codeword. This model is well-known in
literature [5], [8] and applies to wireless multicarrier mod-
ulated systems with K parallel subchannels. With CSI, the
transmitter can vary the transmit power based on the condition
of the channel. Let γ represent a power control strategy which
defines the power allocated to a codeword for any channel
realization. Then for the channel, h,

γ(h) := [γ0, γ2, . . . , γK−1] (3)

represents the power allocation vector for the K blocks the
codeword. When performing power control, the transmitter
must not violate the specified power constraint. We consider
short-term and long-term average power constraints. The
short-term power constraint

〈γ(h)〉 :=
1
K

K−1∑
k=0

γk ≤ Pav (4)

is a limit on the amount of power allocated within a codeword.
In each block of the codeword the power can exceed Pav,
while the average over each codeword must be less than Pav.
This is equivalent to a total codeword power constraint of
KPav. The long-term constraint

Eh

[〈γ(h)〉] ≤ Pav (5)

is a more relaxed condition. It allows the average power in any
codeword to exceed Pav so long as the average power across
all codewords does not.

The instantaneous capacity (spectral efficiency actually, but
we use the terms interchangeably) is the highest reliable data
rate for the K channel fades, h, affecting a codeword. It
is found by maximizing the mutual information over the K
channel fades and is given by

CK(h, γ(h)) :=
1
K

K−1∑
k=0

log(1 + |hk|2γk). (6)

With finite coding delay, K < ∞, an outage event occurs
when the attempted transmission rate is higher than the instan-
taneous capacity, R > CK(h, γ(h)). The outage probability is

Pout(R, γ,K) := Prob[R > CK(h, γ(h))] (7)

= Eh[IF (R > CK(h, γ(h)))]

where IF (·) is the indicator function, which is 1 if the
condition inside is true, and 0 otherwise. Then, ε-capacity

Cε := sup
R

sup
γ
{R : Pout(R, γ(h),K) ≤ ε, ν(γ) ≤ Pav}, (8)

represents the highest rate that can be supported with outage
probability less than ε. The supremum is taken over all power
allocation policies, γ, and ν(γ) represents either the short-term
(4) or long-term (5) power constraint.

When K = ∞ it is possible to transmit reliably at any
rate less than ergodic capacity, the highest sustained rate over
all channel states with arbitrarily small error probability. With
CSI at the transmitter and receiver it is given by

Cerg−pc := sup
γ

E|h|2
[
log(1 + |h|2γ)

]
, (9)

where the capacity-achieving power allocation is
γ∗(|h|2) =

[
1

λ∗ − 1
|h|2

]
+

and λ∗ is chosen such that∫ ∞
λ∗

(
1

λ∗ − 1
|h|2

)
dF (|h|2) = Pav, with F (|h|2) the

cumulative distribution function (CDF) of the channel
gains. To achieve Cerg−pc, codewords are drawn from an
infinite-length codebook with i.i.d. symbols ∼ N (0, 1). Prior
to transmission, the N symbols in each block are scaled
by

√
γ∗(|h|2) [5]. When only the receiver has CSI, the

transmitter always transmits with γ = Pav and the ergodic
capacity is given by [7]

Cerg−const := E|h|2
[
log(1 + |h|2Pav)

]
. (10)

It is well-known that capacity with power adaptation, Cerg−pc,
“yields a negligible capacity gain” over capacity with constant
power, Cerg−const. This is especially apparent for large Pav

[7].
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III. MAXIMUM ZERO-OUTAGE THROUGHPUT

The conventional measures of communication performance
described in the previous section all attempt to quantify
the amount of information that can be reliably transmitted
if each codeword is transmitted only once. However, since
delay-limited systems use finite-length codewords they can
transmit each codeword multiple times to ensure reliable deliv-
ery. Communication systems should exploit this to maximize
communications performance. Measures of communication
performance should also factor multiple transmission attempts
into the analysis as it more accurately models the performance
of practical delay-limited systems in use today.

If the transmitter has CSI, then it knows prior to trans-
mission if the K current channel states are sufficient to
support reliable communications. If an outage is inevitable,
transmission can be delayed until a more favorable channel
arises. We will use this delayed transmission scheme and
quantify the best case communications performance of such
a system. The communication system can be thought of as a
single server queue (see Figure 1) with the server ensuring
reliable transmission by delaying transmission of codewords
until the channel condition allows it. The codeword service
time, S, represents the number of transmission attempts and
is a random quantity due to the random nature of the fading
channel. Since we know that outage events are independent
of one another, the probability that a codeword requires s
attempts for successful transmission is

Prob(S = s) = [Pout(R, γ,K)]s−1[1−Pout(R, γ,K)], (11)

which implies that the service time distribution is geometric
on the positive integers, with parameter 1 − Pout(R, γ,K).
The mean is then E[S] = 1

1−Pout(R,γ,K) .
The average amount of data passing through the queue with

each transmission attempt is R
E[S] nats/sec/Hz, corresponding

to the amount of data in each codeword divided by the number
of attempts required to send it. We define the maximum zero-
outage throughput (MZT) as

MZT := sup
R

sup
γ
{R[1 − Pout(R, γ,K)] : ν(γ) ≤ Pav} (12)

where the supremum is taken over all power allocations and
transmission rates subject to the power constraint.

Maximizing the throughput amounts to maximizing the
amount of data passing through the queue and requires op-
timizing the rate that codeword are encoded. Intuitively, as
R → 0, throughput approaches 0. Similarly, as R → ∞
frequent outages result in a throughput that also approaches 0.

Multiple transmission attempts per codeword allows for
zero-outage (error-free) measures of communication perfor-
mance for any coding delay. This is not possible if only a
single transmission attempt is allowed per codeword. Delay-
limited capacity, Cε for ε = 0, is 0 in many common situa-
tions [9]. However, the improved communications throughput
achieved with multiple transmission attempts does have a cost
associated with it. The random nature of the service time
for any codeword can cause queues to build and queueing
delays that must be considered. Using concepts from queueing
theory it is possible to quantify this delay. For example,
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Fig. 2. Throughput vs. rate for constant, short-term and long-term power
control policies and power constraint ν(γ) = 10dB. For each policy and for
each value of K, the MZT is the maximum of each curve. Ergodic capacity
with and without power control are included for reference.

if the codewords follow a Poisson arrival process, then the
communication system can be modelled with an M/G/1 queue.
The delay for each codeword, queueing delay plus the service
time, can be determined by the the Pollaczek-Khinchin (P-K)
theorem [4],

D = K

(
βE[S2]

2(1 − βE[S])
+ E[S]

)
, (13)

where β is the average arrival rate, and E[S] and E[S2] are
the first and second moments of the service time. Scaling by
K changes the units to blocks/codeword.

In the following sections, we solve (12) and find MZT under
both the short-term and long-term power constraints.

A. MZT under the Short-Term Power Constraint

Under the short-term power constraint, the power in each
block of any codeword can deviate from Pav but the total
power for the entire code must be less than KPav. With this
power constraint MZT is given by the following theorem.

Theorem 1: The maximum zero-outage throughput for the
short-term power constraint 〈γ(h)〉 ≤ Pav is

MZTst = sup
R

{REh[IF (R < log(
µh−1∏
i=0

|hi|2)

+µh log(KPav +
µh−1∑
i=0

1
|hi|2 ) − µh log µh)]} (14)

where µh ∈ {1, 2 . . . ,K}.
Proof sketch: MZTst is found by minimizing the outage

probability for each transmission rate, and then taking the
supremum over all rates. Outage probability minimization is
equivalent to maximizing the instantaneous capacity [5]. For
any rate we substitute the form of the power allocation strategy
that maximizes the instantaneous capacity into (12) to arrive
at (14). The complete proof can be found in [2].

While (14) is generally difficult to solve analytically, a
semi-explicit solution can be found when K = 1. If the
channel gains follow a χ2

2 distribution, then MZTst =

supR[Re−( eR−1
γ )]. Since K = 1, the optimal power control
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policy is γ = Pav. In this case, the solution to the problem
is the same as in [1]. The optimal transmission rate, Rst =
W(Pav), where W is Lambert’s W function. Then,

MZTst = Rste−( eRst−1
Pav

). (15)

B. MZT under the Long-Term Power Constraint

Under the long-term power constraint, the average power
for any particular codeword can exceed Pav, but the long-
term average over all codewords cannot. It is less restrictive
than the short-term power constraint, and the MZT is given
by the following theorem.

Theorem 2: The maximum zero-outage throughput for the
long-term power constraint Eh[〈γ(h)〉] ≤ Pav is

MZTlt = sup
R

{REh [IF (Γ(K,R, h) < s∗R)

+w0IF (Γ(K,R, h) = s∗R)]} (16)

where Γ(K,R, h) =
∑µh−1

i=0 {[ eKR∏µh−1

j=0 |hj |2
]

1
µh − 1

|hi|2 }, µh ∈
{1, 2, . . . ,K}, 0 ≤ w0 ≤ 1 , and s∗R ∈ R.

Proof sketch: MZTlt is found by minimizing the outage
probability [5] for any transmission rate and then taking the
supremum over all rates. The outage minimizing power control
policy, γ̃, minimizes the power required to maintain a target
rate [5]. Transmission is delayed if the power allocated for
a particular channel, 〈γ̃(h)〉, is exceeds a threshold, s∗R. The
threshold is chosen such that the long-term power constraint is
satisfied. Substituting this solution into (12) results in (16). We
denote the optimal transmission rate Rlt and the corresponding
power cutoff point, s∗Rlt . The entire proof can be found in [2].

MZTlt is difficult to express analytically, but when K = 1
the optimal solution satisfies several sufficient conditions.

Theorem 3: If the channel gains follow a χ2
2 distribution,

then for K = 1, MZTlt = Rlte−( eRlt−1
s∗ ), where Rlt and s∗

satisfy

eRlt

Ei(1,
eRlt − 1

s∗R
) = Pav, (17)

(s∗)2 − PavR
lteRlt

e( eRlt−1
s∗ ) = 0 (18)

where Ei(1, x) =
∫ ∞
1

e−xt

t dt.
Proof sketch: Condition (17), is a sufficient condition for

the optimal s∗, and is obtained by finding the optimal short-
term cutoff for a given transmission rate. Condition (18), is
a sufficient condition for Rlt, and is obtained by finding the
optimal rate for the outage minimizing power control policy.
The details of the proof can be found in [2].

IV. EXAMPLES AND DISCUSSION

Our simulations show that in order to maximize the commu-
nications throughput, the transmission rate needs to be selected
very carefully. Figure 2 plots the throughput, for various cod-
ing delays, achieved as a function of the transmission rate for
constant [1], short-term and long-term power allocation. MZT,
the maximum throughput, for each power control strategy cor-
responds to the peak of each curve. Transmitting at a rate other
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Fig. 3. Throughput vs. K for constant, short-term, and long-term power
control policies and power constraint ν(γ) = 10dB. In each case as K
increases, the throughput approaches ergodic capacity, with the long-term
policy converging most quickly.

than the one that corresponds to MZT can result in a large drop
in throughput. For example if K = 10 and the transmission
rate is optimally selected, then under the constant and short-
term power allocation strategies, MZTst = 1.55 nats/sec/Hz
and MZTconst = 1.48 nats/sec/Hz, respectively. However, if
we arbitrarily set the transmission rate to R = 2 nats/sec/Hz,
then the throughput drops to T st = 1.18 nats/sec/Hz and
T const = 1.04 nats/sec/Hz, respectively. Arbitrarily selecting
the transmission rate can lead to large drops in throughput. The
larger the K the more significant the loss in throughput is. This
can be seen in Figure 2 by comparing the MZT for a particular
power constraint and noticing that for larger K the curve
is narrower. Therefore, the optimal rate should be carefully
chosen by solving (14) and (16) for either of the short-term
and long-term power constraints and by the procedure in [1]
for constant power allocation.

The maximum throughput using codewords affected by only
a few fading states can approach ergodic capacity. This is seen
in Figure 3, which plots MZT vs. coding delay K for an
average transmit power of Pav = 10 dB. The figure shows
MZT under the constant, short-term and long-term power
allocation strategies. Under the long-term power constraint,
MZTlt = 2.00 nats/sec/Hz when K = 10. This is very
close to ergodic capacity, Cerg−pc = 2.07 nats/sec/Hz that is
achievable only when K = ∞. This is particularly interesting
as it suggests that power control is more important than coding
delay (ergodicity) for maximizing throughput. It is also worth
noting that the more relaxed the power constraint, the higher
the MZT, i.e. MZTconst ≤ MZTst ≤ MZTlt. This relation
holds for any K, since the constant power allocation is a
special case of the short-term power constraint, which in turn
is a special case of the long-term power constraint.

The importance of optimally selecting the transmission
rate is re-emphasized in Figure 4 which plots the optimal
transmission rate, corresponding to MZT, as a function of
coding delay, K, for an average transmit power of Pav = 10
dB. The optimal transmission rate, especially for small K, can
fluctuate a great deal. In fact a very non-intuitive phenomenon
is observed - in some cases, the optimal transmission rate can
actually be higher than ergodic capacity. For example when
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Fig. 4. Optimal transmission rate vs. K for constant, short-term and long-
term power control policies and power constraint ν(γ) = 10dB. In each case
as K increases, the optimal transmission rate approaches ergodic capacity,
with the long-term policy converging most quickly. It is interesting to note
that the optimal transmission rate, for some K, is above ergodic capacity.

K = 1, the optimal transmission rate, under the long-term
power constraint, should be Rlt = 2.51 nats/sec/Hz, while
Cerg−pc = 2.07 nats/sec/Hz. Here the optimal transmission
rate is more than 21% higher than the capacity of the channel.
This is counter to common practice, where a transmission rate
lower than capacity is normally used. We emphasize that this
is not a violation of the ergodic capacity theorem [7], as the
resulting throughput is always less than ergodic capacity.

Conventional wisdom tells us that when K = ∞, optimal
power allocation yields “a negligible [ergodic] capacity gain”
over a constant power strategy [7]. It is very interesting to
note that this well-known property does not hold for delay-
limited systems, when K < ∞. This can be seen in Figure 5
by comparing the maximum throughput with constant power,
MZTconst, and under the long-term power constraint, MZTlt.
When K = 10 an average throughput of 1 nat/sec/Hz is
achievable with SNRs of 6.4dB and 3.2dB, respectively. Here
power control provides a 3.2dB gain over constant power
transmission. If the throughput is increased to 1.5 nats/sec/Hz
the power control gain remains constant at 3.2dB. This is very
different than when K = ∞; the power control gain, seen by
comparing Cerg−pc and Cerg−const, shrinks from 0.85dB at 1
nat/sec/Hz to 0.47dB at 1.5 nats/sec/Hz.

To re-emphasize the importance of the power control we see
in Figure 5 that for K = 10 the maximum achievable through-
put with a long term power constraint, MZTlt, is only about
0.5dB away from ergodic capacity of the channel, Cerg−pc,
which is achieved with K = ∞. More surprisingly, for low
SNR, MZTlt is even greater than the ergodic capacity without
power control, Cerg−const. We achieve a better throughput with
K = 10 and power control, MZTlt, than with K = ∞ and
constant power, Cerg−const. This shows that power control is
more important than large coding delays (ergodicity).

V. CONCLUSIONS

We presented a framework for analyzing the communi-
cations performance of practical delay-limited systems over
fading channels. Communications engineers are interested
in the throughput between the transmitter and receiver. We
formulate the problem as a single server queue and equate
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Fig. 5. Throughput vs. SNR for constant, short-term and long-term power
control policies for K = 10. Ergodic capacity with and without power control
are also shown.

the throughput of the system with the amount of information
passing throughput the queue. We assume the transmitter has
knowledge of the channel state and can adjust the transmit
power level based on this knowledge. Using this model we
maximize the throughput of the system optimally choosing
the transmission rate and power allocation strategy.

Our analysis led to some striking realizations. First, we
show that the throughput can approach ergodic capacity with
very short coding delays using optimal rate and power allo-
cation. Second, the optimal transmission rate, that maximizes
throughput, for some systems can be higher than ergodic ca-
pacity. This is rather non-intuitive and counter to what is done
in practice today, where a transmission rate below ergodic
capacity is chosen. We note that the resulting throughput is
always less than ergodic capacity. Third, we show that the
conventional wisdom, for delay unconstrained systems, that
optimal power adaptation negligibly improves communication
performance does not hold for delay-limited systems.
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