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ABSTRACT

The Late Quaternary Evolution of the Rio Grande System, Offshore South Texas

by

Laura Ann Banfieid

A seismic and sequence stratigraphic investigation of the Rio Grande system
provides information concerning: (1) the distribution of depositional units relative to the
last glacio-eustatic cycle (120,000 ybp to present); (2) the spatial and temporal
distribution of sand-prone units; and (3) whether the control of eustasy and sediment
supply (climate) on deposition can be differentiated. The combination of biostratigraphic
data (foraminiferal abundances and extinctions), oxygen isotope stratigraphy. and
radiocarbon ages in the Rio Grande area provides the chronologic control for the study.
The depositional unit dataset consists of 1850 kilometers of high-resolution seismic
reflection profiles, 14 platform boring descriptions, and sediment samples from one
platform boring.

The study of the Rio Grande system indicates the following: (1) transgressive
system tract units are primarily prograding deltas rather than back stepping fine grained
units, as predicted by basic sequence stratigraphic theory; (2) fluvial- and wave-

dominated delta systems exist simultaneously (geologically-speaking) creating difficulties



in the prediction of reservoir distribution and quality; and (3) eustatic and climatic
control on unit deposition can be differentiated, and the quantity of sediment supply

coincides with the amount of moisture in the drainage area.
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1. Introduction

The information in this document is divided into four chapters and six appendices.
Chapter one provides a layout of the document and an introduction to the goals of the
project. The second chapter explains the development of the chronologic framework used
in the Rio Grande study area. The third chapter discusses the types of data, the
acquisition and interpretation of the data, and conclusions about the evolution of the Rio
Grande system. The fourth chapter summarizes the conclusions of the thesis and
discusses additional data that would aid in the understanding of the Rio Grande system.

The primary goal of this project is (1) to examine how the depositional
environments associated with the Rio Grande fluvial / deltaic / slope fan system
responded to fluctuations in sea level during the last glacio-eustatic cycle (120,000 ybp,
from 5e to Present) and (2) to determine where in time and space sandy facies are located
and how the rise and fall of sea level affected their location within the depositional
environments. In addition, questions concerning the timing and nature of delta formation
and fluvial incision and the importance of transgressive reworking are addressed. With
this information, the next step is to evaluate how accurately sequence stratigraphy
predicts the association, distribution, and timing of the deltaic depositional environments
within the Rio Grande system. The development and discussion of an evolutionary
model of the Rio Grande system and how it relates to sequence stratigraphic theory is
followed by an analysis of the control of eustasy versus sediment supply (climate) on the

system during the last glacio-eustatic cycle.
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2. Rio Grande system - chronology

2.1 Introduction

The discussion of the evolution of the Rio Grande system is divided into two
chapters (Chapters two and three). Chapter two establishes the chronologic framework
for the study area by integrating biostratigraphic information, oxygen isotope data, and
radiocarbon ages. The establishment of this framework is critical to the project for two
reasons. Having good time control allows the comparison of features within this study
area with time equivalent features within other study areas. Only by examining time
equivalent features can a large scale forcing factor such as eustasy be distinguished from a
more localized one such as sediment supply.

Good time control is also critical when trying to examine how long a particular
systems tract is being deposited in one study area versus another. Looking at the modern
Gulf of Mexico, it is apparent that system tract formation is not synchronous. A
sequence stratigrapher would interpret the prograding stratal patterns within the
Mississippi delta as a highstand systems tract deposit and the onlapping stratal patterns
in Galveston Bay as a transgressive systems tract deposit. Sequence stratigraphy is a
widely used tool to understand the distribution of depositional environments within
basins and to correlate between basins. Considering that fact, it is important to determine
how diachronous systems tracts can be and also what the dominant factors are controlling

when a systems tract begins and ends its formation.
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Chapter three focuses on the sequence and seismic stratigraphic examination of the

Rio Grande system. Sequence stratigraphy allows the creation of a framework defined by
bounding surfaces. The bounding surfaces are linked to the chronologic framework
described in chapter two, leading to a chronostratigraphic framework. Between the
bounding surfaces are seismic facies that have characteristic internal patterns and
geometries. The seismic facies are sonic representations of sedimentary deposits.
Interpretation of the seismic facies within the chronostratigraphic framework results in a

spatial and temporal understanding of the sedimentary deposits within the study area.

2.2 Chronologic Framework

2.2.1 Introduction

2.2.1.1 Biostratigraphy and Radiocarbon dates

The integration of biostratigraphy, radiocarbon dating, and oxygen isotope
stratigraphy provides a chronologic framework for the late Quaternary evolution of the
Rio Grande fluvial / deltaic / slope fan system (Figure 2-1). Biostratigraphic information is
obtained by analyzing fluctuations in the occurrence of two species of planktonic
foraminifera, Globorotalia menardii and Globorotalia inflata. These fluctuations define
Ericson-Wollin zones. Three accelerator mass spectrometer radiocarbon dates, acquired
by analyzing planktonic foraminifers (Globogerinoides ruber), provide further

information for the chronologic framework.
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2.2.1.2 Oxygen isotope stratigraphy

Previous oxygen isotope stratigraphic studies have tended to avoid the continental
shelf, perhaps due to concemns of incomplete sediment section due to erosion, variable
deposition rates, paucity of planktonic foraminifers, diagenetic alteration, and fresh-water
contamination overwhelming the eustatic sea-level signal. My results indicate that the
eustatic sea-level signal can be extracted from a continental shelf core, if information about
the timing of periods of erosion and deposition exists. The combination of
biostratigraphy, radiocarbon dates, and oxygen isotopes provides a chronologic
framework for the application of sequence and seismic stratigraphy to fluvial, deltaic, and

marine units deposited on the continental shelf.

2.2.2 Background

2.2.2.1 Biostratigraphy: Ericson-Wollin Zones

Planktonic foraminiferal examination can be used to predict cold and warm water
intervals and to determine the age of the intervals [Ericson and Wollin, 1968; Thunell,
1984; Kohl, 1986]. Kennett and Huddlestun (1972) studied the distribution of
planktonic foraminiferain 28 piston cores from the Gulf of Mexico. They recognized
three interglacial and two glacial periods based on the abundance fluctuations of
foraminifera. Kennett and Huddlestun (1972) modified the system used by Ericson and

Wollin (1968) and used the quantitative presence or absence of the Globorotalia menardii
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complex and several other foraminifer species to divide the cores into zones V-Z and

subzones (Figure 2-2). They found that the foraminifera most sensitive to warm climates
were the Globorotalia menardii complex and Pulleniatina obliquiloculata and the most
sensitive to cool water were Globorotalia inflata and Globigerina falconensis (Kennett

and Huddlestun, 1972).

Before oxygen isotopes became accepted as a proxy for global ice volume. they
were recognized for their value as geothermometers (Urey, 1947). At that time, several
scientists (McCrea, 1950; Urey et al., 1951; and Epstein er al. 1953a, 1953b) began
working out empirical paleotemperature equations that linked the '30/'®O ratios in
carbonate tests to the temperature and isotopic compositions of the oceanic water in
which the animals lived. Emiliani (1958) developed a method of examiningthe oxygen
isotope ratios of the fossil foraminifera from deep-sea sediment cores. Using his
technique, he was able to demonstrate global trends in the oxygen isotope ratios. The
trends suggested that there were times in the past when the temperature of the oceans
was 5 to 7 degrees colder than present and times when the oceans were the same as today.
Emiliani (1958) used these observations to suggest the concept of isotopic stages.
[sotopic stages with temperatures similar to the modern are called interglacial and assigned
odd numbers. Those times that are characterized by colder temperatures are designated

glacials and assigned even numbers.
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Figure 2-2. The Ericson-Wollin zonation as modified by Kennett and

Huddleston (1972) with the addition of more foraminifera species.
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Some contemporaries of Emiliani believed that oxygen isotopes were revealing

more information about the past global ice volumes than about paleotemperatures (Craig
and Gordon, 1965; Olausson, 1965; etc.). Currently it is thought that 70-90% of the
variation within the oxygen isotope values is produced by fluctuations in the size of
continental ice sheets [Williams, 1984]. The remaining 10-30% is believed to be a
function of water-temperature and local changes in evaporation-precipitation rates within
marginal basins [Williams, 1984].

Modern oxygen isotope stratigraphy began with work by Shackleton and Opdyke
(1973) [Williams, 1984]. They placed the oxygen isotope record from core V28-239
within an absolute time framework using magnetic stratigraphy (Figure 2-3). After
establishing a strong chronologic framework, they proceeded to use oxygen isotopes not
just to determine global ice volume but also to estimate the amplitude of sea level
fluctuations associated with global ice volume changes. The Shackleton and Opdyke
(1973) paper established oxygen isotope stratigraphy as useful in correlating Pleistocene
marine sediments globally, determining the synchroneity of micropaleontological events,
and in studying the evolution of the late Cenozoic climate [Williams, 1984].

The next step in the evolution of oxygen isotope stratigraphy was in the linkage of
predictable orbital frequencies to the isotope record by Hays er al. [1976]. The link gave
oXygen isotope stratigraphy greater weight as a chronologic tool. The current chronology
in use is that developed by the SPECMAP group that uses a composite record (a stack of

several continuous records) tuned to orbital frequencies [Figure 2-4; Imbrie at al., 1984].



5180ppg (°oo) g5
00 -1.0 20 3%
Loy
100 ‘éig -
@ )\L
200 2 — < -
S V28-239
300 ar——S -
400 = B
[d ]
500 <§?
600 ‘\\k>
4 =
700 ng“‘"“‘“‘
= =]
~ 800 =
3
e | ]
o 900 a.-_-_1é§
o = P
Q
£ 1000+ ==
3 <
£ 1100 =
Iy <
3
1200 ‘i;
1300+
1400~
1500
16001 -~
>
3
k=]
170035
1800
1900
2000

Figure 2-3. The work by Shackleton and Opdyke (1973) on oxygen isotope
curve V28-239 from the Gulf of Mexico is credited with beginning modern
oxygen isotope stratigraphy (Williams, 1984).
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2.2.2.3 Gulf of Mexico

Research associated with DSDP leg 96, site 619 in Pigmy basin on the Louisiana
continental slope lead to the construction of a chronostratigraphic framework over the
past 105,000 years. The chronostratigraphic framework was constructed by integrating
an oxygen isotope curve, planktonic foraminiferal biostratigraphy, and tephrachronology
[Figure 2-5; Kohl, 1986; Ledbetter, 1984; Williams and Kohl, 1986]. The placement of
Ericson- Wollin zones within that framework agrees with earlier work by Williams (1984;

Figure 2-6) and Thunell (1984).

2.2.3 Dataset and Methods

2.2.3.1 Planktonic foraminifers

Foraminifer counts were made as part of preliminary paleowater depth estimates
(Appendix 5.1). In general, 300 or more specimens were counted per sample, when

enough foraminifers were available. The counts were done on the 250 to 355 um size

fraction. The foraminifera within each sample were subdivided into planktics,
porcelaneous benthics, arenaceous benthics, and perforate benthics. This methodology
was used to gain a preliminary understanding of major changes in paleoenvironments and
therefore, to infer changes in paleowater depth. A rigorous quantitative biostratigraphic

analysis involving further subdivision of the foraminifer species and statistical analysis
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Figure 2-5. Oxygen isotope curve from DSDP site 619 in the Gulf of Mexico.
Oxygen isotope stages, Ericson-Wollin zones, and tephrachronology are
combined to provide a chronologic framework for the oxygen isotopic
interpretation. Note that sections a-a’ and b-b’ are interpreted as being
missing from curve B-2. See Figure 2-1 for the location of site 619.
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tephrachronology are combined to provide a chronologic framework for the
oxygen isotopic interpretation. Note that sections a-a’, b-b’, and c-¢' are
interpreted as being missing from curve B-2. See Figure 2-1 for the
location of TR126-23.
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(e.g. Holdford, 1995) would be required to gain a detailed understanding of the variations

in paleowater depth experienced at the B-2 core location.

The absence or presence of Globorotalia menardii and Globorotalia inflata was
noted within each sample (Appendix 5.1). Also noted was the absence or presence of G.
truncatulinoides and its coiling direction. The information gained from these observations
about the paleowater temperature would be greatly increased with the addition of data

about the abundance of each foraminifer through time.

2.2.3.2 Radiocarbondating

Three foraminiferal samples (Globogerinoides ruber; Figure 2-7) from 14.02
meters (46 feet), 10.67 meters (35 feet), and 5.79 meters (19 feet) in core B-2 were dated
using an accelerator mass spectrometer (Beta-analytic samples 2462-B2-46, 2462-B2-33,
and 210-2462-B2-19; Appendix 5.3). The samples consisted of 1200 to 2000 clean
planktonic foraminifers each. They were dated at 45,140 + 1300, 45,120 + 980, 4490 +

70 uncorrected conventional radiocarbon years, respectively (Appendix 5.3).

2.2.3.3 Oxygen isotope stratigraphy

An oxygen isotope curve was generated using 133 planktonic foraminiferal
samples (Globogerinoides ruber) from core B-2 (Figures 2-7 and 2-8; Appendix 3.2).
The sediment core was taken in approximately 94 meters (309 feet) of water depth by
Fugro-McClelland to provide sediment for structural testing prior to platform

construction. The sediment core is not continuous as Fugro-McClelland used some
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intervals for geotechnical tests. In the first 30.48 meters (100 feet) the core is sampled at

0.15 to 0.76 meter (0.5 to 2.5 foot) intervals and between 30.48 and 152.4 meters (100
and 500 feet) at approximately 3.05 meter (10 foot) intervals (Apper.ldix 5.2).

The samples were soaked in a calgon solution in glass beakers and placed in a 50°
Celsius oven for 24 to 48 hours to aid disaggregation. Next the samples were wet sieved

through a 63 um sieve with tap water. Due to the muddy nature of the samples. some

samples had to be washed several times. Between multiple washings of a sample, the
beaker containing the sample and tap water was dipped into an ultrasonic cleaner for
several five-second intervals. Once the samples were free of fines, they were wet-sieved
with deionized water and moved to aluminum trays. The trays were then placed in a 50°
Celsius oven for 24 hours. Once the samples were dry, they were drv-sieved into 63 to

250 mm, 250 to 355 um and >355 pum size fractions.

- —-—

White Globogerinoides rubbers were picked from the 250 to 355 um size fraction

for the oxygen isotope analyses. The majority of the samples consist of 30 or more

foraminifers. It was necessary in a few instances to pick foraminifers from the >355 um

size fraction. The samples were cleaned by placing the foraminifers in deionized water
within a glass vial and then dipping the vial into an ultrasonic cleaner for several less than
one second intervals. Each sample was dried and placed in a single-hole microfossil
sample holder. The samples were then sent out for isotopic analysis.

The foraminiferal samples were analyzed at the stable isotope laboratory at the

Sawyer Environmental Research Center, University Maine at Orono under the
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supervision of Dr. J. Wright. The samples were analyzed in a VG Prism Series II mass

spectrometer with an attached Autocarb peripheral. The samples were reacted in
phosphoric acid at 90° Celsius for 10 minutes. The analytical precision (1-sigma) on the
standards run during the analysis of the samples was 0.06 per mil and 0.05 per mil for the

8 80 and & '°C respectively. Values were reported to PDB using values for NBS-20 of
-4.14 per mil for 5'30 and 1.06 per mil for §"C and using values for NBS-19 of -2.20 per
mil for 3'*0 and 1.95 per mil for §'*C. Typically, 6 standards were run for every 30

samples.

2.2.3.4 Sedimentology

The overall lithology of core B-2 is muddy. Phosphatic bivalve and gastropod
shells and grains are found between 6.10 and 8.84 meters (20 and 29 feet). A fine quartz
sandy clay is located from 83.97 to 90.07 meters (275.5 to 295.5 feet). From 93.57 to
96.93 meters (307 to 318 feet), there is a clay interval with mica and no quartz. At 99.97
meters (328 feet) an interval of clay with quartz sand and shell and wood fragments is

found.

2.2.4 Results and Discussion

Biostratigraphic data is invaluable in constructing a chronologic framework for the
Rio Grande study area. Variations in Globorotalia inflata and Globorotalia menardii
complex occurrences are used to define Ericson-Wollin zones (Figure 2-2) [Ericson and

Wollin, 1968; Kennett and Huddlestun, 1972]. Figure 2-9 demonstrates the variations in
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Figure 2-9. A figure demonstrating the occurrence G. menardii and G.
inflata within core B-2 and showing the Ericson-Wollin zonation.







