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Abstract

Krylov-secant methods for solving large scale
systems of coupled nonlinear parabolic equations

by

Héctor Klie

This dissertation centers on two major aspects dictating the computational time
of applications based on the solution of systems of coupled nonlinear parabolic equa-
tions: nonlinear and linear iterations. The former aspect leads to the conception of a
novel way of reusing the Krylov information generated by GMRES for solving linear
systems arising within a Newton method. The approach stems from theory recently
developed on a nonlinear version of the Eirola-Nevanlinna algorithm (originally for
solving non-symmetric linear systems) which is capable of converging twice as fast
as Broyden’s method. A secant update strategy of the Hessenberg matrix resulting
from the Arnoldi process in GMRES amounts to reflecting a secant update of the cur-
rent Jacobian with the rank-one term projected onto the generated Krylov subspace
(Krylov-Broyden update). This allows the design of a new nonlinear Krylov-Eirola-
Nevanlinna (KEN) algorithm and a higher-order version of Newton's method (HOKN)
as well. The underlying development is also auspicious to replace the use of GMRES
by cheaper Richardson iterations for the sake of fulfilling the inexact Newton condi-
tion. Hence, three algorithms derived from Newton’s method, Broyden’s method and

the nonlinear Eirola-Nevanlinna algorithm are proposed as a part of a new family



i

of hybrid Krylov-secant methods. All five algorithms are shown to be computation-
ally more economical than their Newton and quasi-Newton counterparts. The aspect
of linear iterations complements the present research with an analysis on nested or
inner-outer iterations to efficiently precondition Krylov subspace iterative solvers for
linear systems arising from systems of coupled nonlinear equations. These precon-
ditioners are called two-stage preconditioners and are developed on the basis of a
simple but effective decoupling strategy. Their analysis is restricted to the particular
class of problems arising in multi-phase flow phenomena modeled by systems of cou-
pled nonlinear parabolic equations. The resulting approach outperforms fairly robust
and standard preconditioners that “blindly” precondition the entire coupled linear
system. Theoretical discussion and computational experiments show the suitability
that both linear and nonlinear aspects undertaken in this research have for large scale

implementations.
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Chapter 1

Introduction

1.1 Motivation

For the last thirty years, reservoir simulation has played a major role in the petroleum
industry and, as a by product, in the computer industry as well. Numerical simula-
tors have been instrumental in helping reservoir engineers locate oil reserves. design
recovery strategies and optimize oil field management. These packages have con-
stantly expanded the computing frontiers by driving a major part of the research in
algorithm development of the last three decades and by creating a market for the
development of vector and. more recently. parallel computing systems. The recently
growing concern for underground pollution has made it possible to adapt much of the
same software and hardware technology to the numerical simulation of underground
contaminant migration and of contaminant clean-up strategies.

The advent of increasing computing power has been a driving force for solving
larger scientific and engineering problems. indeed. Consequently, new numerical
algorithms have been coming forth with this computer technology sophistication.
Nowadays, the idea of solving partial differential equations (PDE’s) involving mil-
lions of unknowns is becoming plausible and attractive to the numerical analyst and
the application programmer. The need for solving problems with at least one million
grid blocks. and several unknowns per grid block. has become one of the main chal-
lenges in the reservoir community. Therefore the conception of robust and efficient

solvers plays an important role in the oil industry research. Major challenges arise



in connection to solving coupled sets of nonlinear equations as obtained by a fully
implicit discretization of multi-phase models.

This dissertation is an immediate and practical response to the aforementioned
application context. We are primarily interested in enhancing those aspects deter-
mining the overall computing time of a simulation: linear and nonlinear iterations.

To this end. we have divided the present work in two major points

o Efficient and robust implementations of the inexact Newton method based on

Krylov-subspace iterations, and.
e Efficient preconditioners for coupled systems of linear equations.

In the following, we describe the role that both ideas play in this research. This
shall serve as further motivation and defining scope of the present work.

[deas on performing inexact Newton steps have been around for some time. Ortega
and Rheinboldt had already suggested this type of computation at the beginning of
the seventies [105]. However. maturity of these ideas came up as result of the work of
Dembo, Eisenstat and Steihaug [41]. Their work provided mechanisms for deciding
when the relative residuals of the linear solver are sufficiently small to ensure an
acceptable Newton step. Since then. the reliability and acceptance of inexact Newton
methods have been continuously growing according to the sophistication of linear
iterative solvers for large scale problems.

On the other hand, quasi-Newton methods have been a good alternative to deal
with the high computational cost and difficulties associated to the evaluation of
Jacobian operators. These methods rely upon low-rank updates that serve as correc-
tion terms for secant approximations to the Newton equation. The most widely used
of these low rank updates is Broyden's method [26. 19]. In the context of large scale

problems. the main difficulty resides in maintaining the convergence of the method



without destroying the sparsity pattern of the Jacobian matrix. Hence, most of the
advances aimed at overcoming this can be categorized as limited memory methods.
Comprehensive discussion and pointers to the literature about using these methods
for large scale problems can be found in [28, 49, 101].

This dissertation looks at both approaches in a complementary way: we perform
inexactness through a Krylov iterative method (i.e.. GMRES) and perform (or rather
reflect) secant updates of the Jacobian matrix restricted to the generated Krylov sub-
space basis information. To make this possible, we exploit the information generated
by the Krylov iterative method by solving a sequence of minimal residual approxi-
mation problems or by propagating eigenvalue information of the current Jacobian
matrix to the Jacobian matrix at the next new point. The former procedure leads to
the generation of faster versions of Broyden’s method and a higher order version of
Newton’s method. The latter allows one to replace the use of GMRES iterations by
cheaper Richardson iterations. The reliability of both approaches depends upon how
well the Broyden update restricted to the Krylov subspace resembles the one given
by Broyden’s update in the entire subspace.

Since GMRES is based on the Arnoldi process to generate a basis for the Krylov
subspace, we propose to update the Hessenberg matrix and preserve the basis for fu-
ture Newton steps. Such updates are based on Broyden's method but restricted to the
current Rrylov subspace giving rise to what we call Krylov-Broyden updates. The
underlying mechanism allows one to reformulate solutions of future linear Newton
equation as a sequence of minimal residual approximation problems without reinvok-
ing the GMRES method. Therefore, faster and higher-order nonlinear methods can
be built and their effectiveness relies upon how well the linear directions contained in
the Krylov basis are able to generate a descent direction for the norm of the nonlinear

function.



The Krylov-Broyden update idea is further exploited by adapting the hyvbrid
GMRES (MHGMRES) recently presented by Simoncini and Gallopoulos [120] for
solving systems with several right hand sides. In our framework, their algorithm
allows for substitution of GMRES by a cheaper Richardson iteration in subsequent
Newton steps. When a high cost is involved in evaluating the Jacobian operator, it is
then suggested to incorporate limited memory compact representations to avoid the
explicit knowledge of the Jacobian and its preconditioner throughout the nonlinear
iterations. Hence. their action is retrieved only from their explicit representation at
the first Newton step. If the linear residuals produced by Richardson iterates are
not making reasonable progress to fulfill the inexact Newton condition [41]. GMRES
restarts from the best nonlinear solution obtained so far.

We show that our methodology represents a novel and more economical way to
perform inexact Newton steps compared to most standard implementations. This
work then represents an improvement to Martinez’s original view on the theory of
secant preconditioners [89].

Regarding the second point on preconditioners. we focus our attention to those
two-stage algorithms arising naturally in block type of preconditioning: block Jacobi.
block Gauss-Seidel and Schur complement based. We include in our analysis a com-
binative preconditioner originally proposed in [11] and later restated as an inexact
procedure in [139]. The combinative method relies primarily upon the solution of a
reduced pressure system. In order to strengthen its robustness we also propose an
additive and a multiplicative extension of this combinative preconditioner in terms
of pressure and concentration residuals. We aim these preconditioners at adding effi-
ciency and robustness of two well known Krylov-subspace iterative methods: GMRES

and BiCGSTAB.



These two central points dictating the course of the thesis are related as fol-
lows. The dimension and quality of the Krylov basis reduces the amount of work
associated to the least squares solution of several minimal residual approximation
problems. On the other hand, the Krylov iteration to obtain the first Newton step of
a hybrid Krylov-secant algorithm is necessary to generate (nearly optimal) relaxation
parameters which allow an inexpensive iterative method such as Richardson to con-
verge rapidly. However, a solution to a large system of linear equations by a Krylov
method can be costly unless a good preconditioner is found. In particular, knowledge
on how to construct preconditioners for linear systems with multiple unknowns per
discretization element (or, equivalently, grid block) is sparse at best in the literature
[139]. This work proposes and evaluates several preconditioning schemes for such
systems in the context of Krylov-subspace iterative solvers.

The combination of Krylov-secant methods and two-stage preconditioners con-
stitutes the framework for a new family of solvers in fully implicit formulations of
equations modeling flow and transport in porous media. However. we stress that our
experiences are applicable to more general settings where systems of coupled equa-
tions arise commonly such as in device circuit simulation [6], CFD [76] and control
problems [147]. Moreover, the Krylov-secant methods themselves present applica-
bility bevond the case made by this dissertation. For instance. results here can be
reinterpreted in terms of Lanczos iterations and hence make Krylov-secant methods
suitable for large scale optimization problems where the interest in performing inexact
iterations has been solidifying in the last few years [66, 69, 77. 97].

Finally. some of the results here have been already published as technical reports

by the author in collaboration with Ramé and Wheeler [83. 84].



1.2 Structure of the thesis.

The present work is organized as follows. The remainder of the chapter is devoted
to an overview of some notational conventions and results of linear algebra. A brief
review of linear iterative solution methods with emphasis on the Richardson iter-
ation and its connections to Krylov subspace methods are in order to prepare the
groundwork for further analysis of Hybrid Krylov-Secant (HKS) methods. We end
the chapter with a review of types of nonlinear convergence and some additional
notation.

In Chapter 2, we establish the framework that distinguishes our inexact Newton
method. [t comprises the use of local and global convergence as well as forcing term
criteria to dynamically adjust linear tolerances for the linear solver. The discussion
is followed with a brief description of GMRES and BiCGSTAB. The former iterative
method is the cornerstone in developing the family of Krylov-secant methods. the
latter serves for comparison purposes in eventual numerical experiments with two-
stage preconditioners.

In Chapter 3. we review the fundamentals of secant methods through two differ-
ent rank-one type of solvers: Broyden's method and the EN algorithm. Both have
interpretations in the linear and nonlinear world. We also review a couple of recent
viewpoints along the notion of complementarity between inexact and quasi-Newton
methods. That is, the need to incorporate the preconditioner into the convergence of
inexact Newton iterations. A very appealing enhancement to this original idea is to
incorporate not only the preconditioner but also the Krylov information produced by
GMRES. This requires looking more closely at the Arnoldi factorization method and
its modifications after secant updates. The main contribution of the thesis focuses in
analyzing these updates under the figure of Krylov-Broyden updates and producing

more efficient algorithms for both inexact and quasi-Newton methods.



In Chapter 4, we complete the second part of Krylov-secant ideas introduced in
the previous chapter. Besides updating the Arnoldi factorization without destroying
the Krylov basis, we need to account for the changes of the nonlinear function after
each Newton step (i.e.. at every new point). This implies extending the approach
to the change of right hand sides arising at different Newton linear equations. We
find that switches to the Richardson iteration are appropriate to take advantage of
the underlying Krylov information. We propose and discuss two different version of
HKS algorithms according to the type of secant updates employed: HKS-B (HKS
with Broyden update) and HKS-EN (HKS with EN type of update). We also dis-
cuss a Newton’s method variant called the HKS-N algorithm. A couple of sections
are devoted to address the problem of preconditioning and implementation of line-
search globalization methods. We end the chapter with some special considerations
for efficient large scale implementations. This leads to revise limited memory com-
pact representations for the implicit computation of accumulated updates through
subsequent nonlinear iterations.

[n Chapter 5 we focus the attention on the issue of preconditioning. The com-
plexity associated to coupled. non-symmetric and indefinite linear systems leads us
to study strategies of decoupling and their role in preconditioning the whole system.
Since we are looking at a specific problem of two-phase flow. we devote some prelim-
inary discussion to the numerical model, its discretization and associated algebraic
system. This aids to understand the convenience of an aggressive decoupling strategy
for the typical coupled systems arising in these problems. A detailed discussion on
decoupled operators is in order, followed by coverage of different two-stage precon-
ditioners (those based in nested or inexact iterations). We end the chapter pointing

out some implementation issues.



(V)

Chapter 6 covers extensive numerical experimentation. In agreement with the
two main points of the thesis, this chapter is divided into experiments for sequential
implementations of the Krylov-secant methods and for the two-stage preconditioners.
At the end of the chapter, both ideas are integrated and tested upon a parallel two-
phase reservoir simulator.

Chapter 7 summarizes the main results and conclusions of this dissertation. Further
recommendations and directions of work are ranked in the order that the author con-

siders worthwhile within the setting of large scale implementations.

1.3 Notation

For notational simplicity, all scalars. vectors and matrices are treated as being in the
real vector space. We closely follow Householder notational conventions for represent-
ing most of the entities. Matrices, spaces and functions are denoted by capital Roman
or Greek letters and vectors by lower case Roman letters. All scalars are denoted by
lower case Greek letters. Only exception to this rule, in order to respect customary
engineering and physics notation, applies to differential equation terms.

The norm ||-|| refers to the Euclidean norm and induced matrix norms. The inner
product of two vectors u.v € R is indistinctly denoted by (...) or u'v. (Here. ¢
represents the transpose operation of a vector or a matrix in the real vector space.)
We indicate by x (A) = |[A]|||A7!|| the condition number of an invertible operator

A € R™™". The spectrum or set of all eigenvalues of a matrix A is denoted by A(A)

and it is a subset of the complex space C. Given = = a + & € C. the real part is
denoted by Re(z) = a and the imaginary part by /m (z) = b. With |z| = Va2 + b2,

we represent the modulus of .
We denote by Ix, the n x n identity matrix; if the dimension n is apparent from

the context. we simply write [. The symbol 0 is used for the scalar zero and for
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the zero matrix; in the latter case. the dimension is assumed to be evident from the
context. We represent with e; the vector of zeroes with value 1 at the ith position.
Its length should be apparent from the context.
We also use the following notation
m
P = {q)(/\) =) AN | €ROLiL m}.
i=0
for the set of polynomials of degree at most m.

For any vector v € R" and any matrix A € R**", we use
Km (A, v) = span {U. Av. A%. ... Am—lv} . (1.1)

to indicate the mth Krylov subspace of R". generated by A and ¢.

Linear iterates are denoted by subscripts (usually ¢ and j) and nonlinear iterates
by the superscript k enclosed between brackets. For the remainder of the chapter and
in some forthcoming sections of the thesis. we refer to the solution of a linear system

of the form

Ar = b, (L.2)

where A = (a;;) € R"™*". and z,b € R". We assume the matrix 4 is nonsingular and
non-symmetric in general. In order to indicate instances of linear iterations, we use
To as the initial guess for (1.2), z;, as the ith iterate and r; = b — Ax,. as the ith

linear residual.

1.4 Some preliminary results

In this section a subset of linear and nonlinear iteration results are established as

reference in the forthcoming discussion.



10

1.4.1 Matrix analysis results

The following definitions are found in the standard literature of matrix theory or
iterative methods (e.g., [3, 12]). We state them as self-reference when we discuss

properties of coupled linear systems.
Definition 1.4.1 The class Z"*"of Z-matrices is given by
ZMt = {AeR™:4q;;<0;i# j}.

Definition 1.4.2 The class of M™*" of M-matrices is given by

MM = {Adezmm: (A7) >0}

1]

M-matrices play an important role in matrix analysis. They are the basis for de-
termining when a given iterative method is convergent. Definition 1.4.1 says that the
inverse of a M-matrix is nonnegative and therefore monotone. We remark. however.
that a matrix could be monotone even though it is not a M-matrix. Other important
class of matrices are those that have all eigenvalues in the right half of the complex

plane.

Definition 1.4.3 The class of P™*" of positive stable (or positive real)

matrices is given by

P = {A € R : all eigenvalues of A have positive real part}.

The class of positive stable matrices appears frequently in dynamical systems
governed by systems of coupled ordinary differential equations. Their occurrence
implies the stability of the numerical model solution. The following result established

in [3] characterizes the relation between M-matrices and positive stable matrices.
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Theorem 1.4.1 Let A € Z™*" then A € M™*" if and only if A € P**".

Some additional results are in order to estimate the location of eigenvalues. First.
we point out that a matrix is irreducible if there is no permutation matrix P € R™**".

such that PAP* is a block upper triangular matrix.
Definition 1.4.4 The matrix A is diagonally dominant if

laijl > ) lal.j =1.2....n.
prt
and irreducibly diagonally dominant if the strict inequality holds for at
least one row and
l(l,’jl Z Zla,'jl,j =1.2....n.
J#i
Theorem 1.4.2 (Gershgorin) A (A) is enclosed in the union of the discs
Ci = {: €C :|z~ay| < Z|a,-j|}.l <i:<n.
J#

and in the union of the discs

C::{:EC’:!:—G,','| SZlaﬁl}'l SzSn
J#
For implementation of single or multiple secant updates. the Sherman-Morrison-

Woodbury formula is useful to relate inverses of rank-one updates to inverses of the

original matrix. That is
(A+UBV)™" = A7~ A7 (Lpym + BVA™U) ™ BV A7, (1.3)

where B € R™™ and U, V' € R*™™. Here. we have implicitly assumed that the

expressions between brackets are invertible.



1.4.2 Fundamentals of iterative solution methods

Iterative methods are generally classified as stationary or non-stationary depending
on whether or not there are changes of their parameters during the iterations. In a
general format, this can be realized by the following damped splitting A = M, - N, =
7'M — (r7'M ~ A). for a given nonzero parameter 7 € C. Hence. the following

non-stationary iterative scheme results
Liyg =1,','+T;Z\/[—l (b—A.”L‘,) :l‘,'-i-T;l\/[—lr,', i=0,l,..., (L.4)

for a given initial guess zq. The operator M is assumed to be invertible and can
be interpreted here as the preconditioner of the iteration. The stationary character
is induced by fixing the parameters 7; to a given constant value for all values of .
We remark. however. that most known non-stationary methods (such as conjugate
gradient methods: see e.g., [§]) can not be exclusively described by (1.4).

The scheme can be thought of as the Richardson iteration applied to the precon-
ditioned system M~'Ar = M~'b. In fact, the Richardson iteration is the simplest
stationary and non-stationary iterative scheme known. It is simply stated by choosing
M = I. The damping parameter. 7. is called the relazation parameter of the iteration
and regularly its effectiveness in convergence is determined by some « priori spectral
information of A. For instance, when A is a symmetric positive definite matrix. then

the optimal relaxation parameter,7,p. is given by Topt = T——2 for a stationary

iteration (see e.g., [3, 74, 113]). Here. Apax and Ay, are the largest and minimum
eigenvalue of A, respectively.

[n the positive definite case, the computation of optimal Richardson relaxation
parameters reduces to finding the best approximation polynomial on a continuous

interval. which is given by a Chebyshev polynomial [3]. In more general cases. it

Is customary to assume that the symmetric part of the matrix is positive definite
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(i.e., the matrix is positive stable) or that the eigenvalues are clustered in two ellipses
across each side of the complex plane (the indefinite case). When these conditions
are absent in the original matrix, then adequate preconditioning should try to meet
these requirements. In the broad literature, the Richardson iteration is considered a
special case of the large class of Chebyshev methods (see e.g.. [72, T4. 145] for further
discussion).

Note that well known stationary iterative methods derive their name from how
M: is defined: e.g., the damped Jacobi iterative method arises when taking M, =
7 'diag (A) and the SOR iterative method when M. is defined as 7=! times the lower
triangular part of A. When 7, = 1.Vi = 0.1.... we get the non-damped versions of
Jacobi and Gauss Seidel iterations.

From (1.4) it follows that successive non-stationary Richardson iterations yields
the ith residual

ri = o; (A)ro, (1.5)

where ¢; (\) = _l;':o (1 — 7;A) € P;. This polynomial is known as the residual poly-
nomial and it is monic (i.e.. ¢(0) = 1). Therefore. it can be rewritten as o; (\) =

Il = A (A)=1— /\Zj;}] +; M. with © € P;_,. Furthermore.

L =Zo+ o1 (A)ro
i-1 (1.6)
= Ig -+ Z TiT;.

Jj=0
This implies that the solution at the ith iteration is determined by the affine

subspace

ri € 70 + K (A.ro) . (L.7)

The relation between the Richardson iteration and Krylov subspace methods now

becomes evident. The Richardson iteration delivers elements in Krylov subspaces of






