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Drilling Bottom-Hole Assembly Dynamics

by

Michael Lyle Payne

Abstract

A mathematical model is proposed for studying the dynamic behavior of
drillstrings, focusing on the lower section of the drillstring known as the bottom-hole
assembly or "BHA". In parallel, a comprehensive assessment of existing concepts and
techniques for addressing drillstring dynamics is undertaken. Accounting for stiffness,
damping, and inertial properties of the BHA and by incorporating appropriate
excitations and boundary conditions, the dynamic characteristics of the BHA can be
analyzed. The representation of the BHA stiffness is influenced by the underlying beam
formulation assumptions, the stress-stiffening effect of axial loads, the elastic
properties of the various materials used in the BHA, and the effective stiffnesses of
special BHA components with complex geometries. Damping in the BHA involves both
internal structural damping and damping resulting from its interaction with the
surrounding viscous drilling fluid. Damping for the structure is accounted for using
recent damping data leading to a smooth damping function which involves the vibration
frequency and the drilling fluid density. Inertial properties of the BHA include its mass
and the added mass effects of the fluid, both inside and outside the BHA, which is
displaced through its motion. Frequency response characteristics for the structure are
developed assuming a monochromatic exciting force. Both damped and undamped

responses are simulated using a transfer function representation developed by modal



iii

superposition techniques. Sensitivity studies are performed to determine appropriate
grid spacing for specific BHA problems of interest. Parameter studies reflect the
influence of fluid added mass, weight-on-bit, boundary conditions, and the location of
the excitation force. Excitation mechanisms for actual drilling assemblies are studied
leading to a response superposition procedure which fully accounts for the behavior of

BHA in drilling operations. Topics for further research are recommended.
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Chapter 1- Introduction

“Progress begins with getting a clear view of the obstacles."”

Interest in drilling dynamics began many years ago when explanations for drill
string "bounce" were sought. By the late 1970’s, work had progressed towards full
three-dimensional (3-D) consideration of the bottom-hole assembly (BHA) using
specialized finite-element programs. Current modelling work focuses on increased
accuracy, computational issues, correlation with field observations, and nonlinear
problem aspects. Many advances have also been made in data collection on drillstring
dynamics. Unfortunately, complex phenomena and unknown parameters remain as
barriers to the development of a comprehensive model for drillstring dynamics. For
example, the exact diameter of the wellbore is unknown during drilling and can vary
substantially from expected dimensions. Because of limitations regarding parameters
which affect drillstring dynamics, engineering efforts should be focused on bounding
the problem through sensitivity studies on key parameters, and on quantifying only the
most critical features of the problem which can be reliably described. Towards this
objective, an overview of drilling practices and problems is attempted.

Although many other methods have been tried historically, rotary drilling
techniques as shown in Figure 1.1 dominate the industry. In specific applications,
motor/turbine drilling is also used. The fundamental components of rotary drilling
include the bit which abrasively destroys the formation as it rotates and the drillsiring
which is used to control the bit, circulate the drilling fluid or "mud", and generate the
weight loads required to push the bit into the formation with sufficient force. The

drillstring is made up, primarily, of drillpipe and drillcollars. Drillcollars are very thick,



Figure 1.1
The Rotary Drilling Process
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for example 8" outside diameter (OD) x 2.5" inside diameter (ID), steel pipes which are

used to construct the BHA. The drillcollars are used to provide the necessary

gravitational weight to produce the desired "Weight-on-Bit" (WOB), to sustain the

loads generated while drilling without damage or fatigue, and to provide a stiff

structural constraint to ensure straight drilling. The BHA is positioned directly above

the bit to perform these functions. Drillpipe has more conventional wall thickness, for

example 5" OD x 4.276" ID, and is run from the BHA back to the surface to control

and rotate the entire drillstring.

Modern drilling assemblies, such as shown in Figure 1.2, involve more compli-

cated components including:

1.

Stabilizers, both near the bit and between drill collars, to centralize the assembly
and induce directional drilling tendencies.

Non-magnetic drill collars to accommodate the use of directional survey instru-
ments which rely on measurements of the earth’s magnetic field.

Drilling "jars" to shock load the drill string in the event it sticks downhole.
Measurement While Drilling (MWD) tools which contain sophisticated instru-
ments to measure formation properties and transmit relevant data to the surface
by using pressure pulses in the drilling fluid.

Heavy-weight drillpipe (HWDP) which provides for a gradual crossover between
drillcollars and drillpipe and can allow additional weight-on-bit (WOB).
Shock-absorbing tools which use axial springs (Bellville, foam, or gas cushion) to

dampen axial vibrations and shift resonances away from operating speeds.



Figure 1.2
Modern Bottom-Hole Assembly (BHA)
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Rotary drilling involves a "rotary table" mounted in the rig floor to rotate a
hexagonal joint, the "kelly" which then turns the rest of the drillstring. In the past
several years, "top drives" or "power swivels” have become popular where the motor
rotating the drillstring is mounted in the derrick and attached on the top of the drill
string. Another variation involves the use of downhole turbines or motors which rely
on the flow of the drilling fluid to produce torque and rotary motion. With such
motors, intentionally bent components, from 1/2° up to 3° or more, can be added to
the string to force directional drilling towards desired targets.

Bits come in many forms. Tri-cone bits, such as in Figure 1.3, have three
conical heads which destroy rock with their teeth as the bit and its cones rotate. Fixed
cutter bits, such as shown in Figure 1.4, have stationary cutters which indent into the
formation and remove material during rotation. Each bit type exhibits specific
displacement, force, and frequency characteristics as it drills. Rock properties influence
the drillstring dynamic behavior and the formations can change rapidly during drilling.

The drillstring components are typically 4-1/2" to 8" in outer diameter and are
used to drill wellbores with internal diameters of 6" to 24". Depthwise, however, the
assemblies can extend up to 5 miles or more downhole. A drilling research effort in
the Soviet Union is targeted for 50,000+ downhole or nearly 10 miles, and similar
efforts are under discussion in the U.S.A. With small radial clearances and extremely
long depths, accurate modeling of contact between the drillstring and the wellbore is
quite difficult. Directional drilling and its now popular variation, horizontal drilling,
also complicate the problem as wells are drilled with substantial curvatures and

three-dimensional characteristics.



Figure 1.3
Tri-Cone Rotary Rock Bit
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Figure 1.4
Bladed Fixed-Cutter Bit




Drillstring failures are continually ranked as one of the most frequent and costly
drilling problems in the industry. Vibration is destructive to the BHA and its
elimination will allow these failures to be minimized. Early work provided solutions to
axial and torsional vibrations treated as single degree-of-freedom problems. However,
drillstring failures are continually experienced which cannot be explained by these
models. Typically, these events are attributed to poor inspection for cracks in the
components or simply accepted as a part of drilling. In the early 1980’s, certain BHA
failures occurred so rapidly and with well-inspected equipment that it was clear that
dynamic effects had to be accelerating the failures. Current technical thinking considers
lateral bending motions as an important factor for the fatigue of drilling assemblies.

Costs of BHA failures are high. At a minimum, a BHA failure forces suspension
of drilling, a "trip" out of the hole for "fishing" equipment, a "fishing" trip, a new
BHA component and a "trip" back in the hole to resume drilling. On the low side, this
cost would involve 12-24 hours of rig time which would vary from $10,000 for small
onshore operations, to $30,000 for fixed offshore operations, and to $100,000 or
more for floating offshore operations. On the high side, the failed BHA may not be
retrievable, forcing a sidetrack or resulting in the loss of the well. The economic
impact of such an incident would run from several hundred thousands of dollars
onshore to several millions offshore. Clearly, the economic incentives are substantial
for reducing BHA failures, and the technology for analyzing the problem is of great
value to the industry.

The present study has two prime objectives. First, it aims to consolidate and

organize the existing knowledge on drillstring dynamics. Second, it focuses on the



development of a method which enables one to predict efficiently the response of a
given mathematical model of the drillstring under monochromatic or monofrequency
excitation. Interest in this kind of excitation is strong as it can provide a convenient
scheme for detecting dynamic amplification effects involving the frequency content of

more arbitrary excitations of the drillstring.
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Chapter 2 - Critical Assessment of Current Drillstriry Mechanics Technology

"To know the road ahead ask those coming back" - Chinese

Several classes of dynamic drillstring models exist. The ensuing technology
review is organized according to topics. Specifically, torque/drag models, static
directional models, dynamic directional models, experimental studies, bit mechanics and
excitations, ROP models, stick/slip models, and response models are considered. In
some instances, works overlap one or more areas and judgement has been used in

placing the work in context with related concepts.

2.1 Torque and Drag Models

Models for torsional and axial drag prediction are included in this review of BHA
dynamics because they address the loads on moving drilling assemblies. These models
involve static approximations to estimate torsional and axial friction loads while
rotating or reciprocating the strings. The merit of the models is in planning and
executing directional drilling operations. There are large economic stakes in being able
to drill extreme directional wells to provide full drainage of reservoirs from limited
surface locations. This capability minimizes expensive surface facilities such as offshore
platforms, gravel islands along Arctic coastlands, onshore Arctic drilling pads, and
subsea completion templates and floating production systems for deepwater develop-
ments. Torque/drag models can identify directional limitations in terms of either the
drillstring or rig capacities.

In 1982, Johancsik, Friesen and Dawson of Exxon [1] provided the first
torque/drag model. As shown in Figure 2.1.1, the model is based on satisfying

equilibrium between weight, axial, and friction forces. The drillstring is assumed to be



Figure 2.1.1
Idealized Basis for Torque/Drag Estimation
(from Johancsik, et.al. 1983 [1])
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in continuous contact with the wellbore and shear forces and bending moments are
neglected. The drillstring is divided into discrete elements. Despite the simplicity of
the model, the associated approach is adequate if an appropriate friction factor is
selected. Thus, the friction factor is a calibration parameter for the model and should
really be viewed as a drag factor. This distinction is made since friction factor implies
a precise relation between the normal load and the friction force that does not really
apply in these models, since normal loads are only approximated.

In 1984, Corbett and Dawsoh of Exxon [2] refined the application of
torque/drag models to drillstring design with several new concepts. Specifically, they
presented a method for generating an artificial planned wellbore with a roughened
trajectory including doglegs (abrupt changes in the wellbore path), a design criterion
for drillstring stresses in high-angle drilling, and an optimization method for designing
tapered drillstrings. In 1985, Soeiinah of Mobil [3] patented a special measuring device
to acquire torque/drag data while drilling and introduced the concept of monitoring
these loads to detect hole problems.

In 1986, Tolle and Dellinger of Mobil [4] published results from a field evalua-
tion of friction coefficients in the Gulf of Mexico and proposed eccentric tool joints
and aluminum drillpipe to minimize torque/drag loads. Further, they reviewed Mobil’s
Stafjord field and concluded that it could have been developed with two (2) platforms
instead of the three (3) which were used, if torque/drag technology had been available
in 1974 when the field was developed.

Later in 1986, Sheppard, Wick and Burgess of Schlumberger [5] studied the

impact of the well shape on torque and drag and demonstrated that torque and drag
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reduction could be achieved with catenary trajectories. In 1987, Whitten of Teleco [6]
presented an enhanced torque/drag model that more accurately placed buoyancy loads at
cross-section changes. Whitten also focused on quantifying normal force severity with
the "Borehole Severity Log" to estimate the risk of the drillpipe becoming stuck.

In 1987, Lesage, Falconer and Wick of Anadrill/Schlumberger [7] introduced the
concept of integrating measurement-while-drilling (MWD) and surface data to refine
torque/drag measurements and promoted foot-by-foot analysis of the friction factor
to detect hole problems early. Their work included several field cases where the
methods were used successfully to circumvent problems and reduce costs. Maidla and
Wojtanowicz of LSU [8] presented a comprehensive study of torque/drag data and
calculations that refined the theory to include hydrodynamic viscous drag, a calculation
of contact surface based on pipe and wellbore geometry, an assessment of 2-D versus
3-D modeling results, and a correlation for friction factor as a function of inclination
and walk rate. Figure 2.1.2 shows guidelines for friction factor versus depth. Brett,
Beckett, Holt, and Smith of Amoco [9] presented application examples for Amoco’s
"Tension-Torque" model which focused on pre-weil planning, real-time monitoring
during drilling and post-mortem analysis. The analyzed wells included two wells located
offshore in Trinidad, one well offshore in the Beaufort Sea, and an onshore well in
England.

In 1988, Child and Ward of British Petroleum [10] presented BP’s "Drillstring
Simulator" which linked torque/drag models to stress analysis calculations and graphics
as shown in Figure 2.1.3. BP’s model was based on continuous beam theory and

approximated the bending stiffness of the assembly. The model also allows for
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Figure 2.1.2
Guidelines for Torque/Drag Friction Coefficient
(from Maidla and Wojtanowicz 1987 [8])
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multi-fluid analysis such as when mud, cement, and spacer are in the hole simulta-
neously. Through model validation on six (6) wells, BP staff concluded that friction
factors were functions of mud system and the open-hole, cased-hole configuration. BP
also determined that ideal trajectories required roughening with 0.3° doglegs in cased
hole and 0.6° doglegs in open hole to match field observations. Applications of the
model for rig selection, trajectory optimization, BHA design, and liner rotation were
presented.

Also in 1988, Ho of NL Petroleum Services [11] demonstrated several short-
comings of the original Johancsik model and proposed a new approach. Ho’s model
linked a rigorous structural model of the BHA with the "soft model", which neglects
bending, for the drillstring. This approach provides more accurate modeling of BHA
bending, clearance, and contact, while allowing for the more efficient torque/drag
calculations in the drillpipe section.

In 1989, McKown of Smith [12] demonstrated that torque/drag analysis should
be integrated with drillpipe, rig, and hydraulic limitations to optimize drillstring designs
for directional drilling. Also in 1989, Lesso, Mullens, and Daudley [13] presented
results from a joint Anadrill/Schlumberger-Gulf Canada project to optimize platform
sizing and site selection by using torque/drag models to study the development
scenarios. Their work optimized the development of the Amauligak Field in the
Beaufort Sea as shown in areal and perspective views in Figure 2.1.4. A key element of
the 50-well analysis was the randomized dogleg severities along well paths since friction
estimates had to be conservative. Friction loads in some of the roughened wells were

70% higher than those predicted by using smooth planned trajectories.
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