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Abstract
Synthesis of Conjugated Molecules: From Electronics to MoleculART
By

Stéphanie Hina Chanteau

Chapter 1 discusses the purpose, the design, and the syntheses of new potential
electronic devices. Based on previous and current studies, new oligo(phenylene
ethynylene)s containing pyridyl alligator clips have been synthesized for molecular
electronics using a series a palladium-catalyzed couplings. Although the testing of these
devices is still pending, these devices are expected to show negative differential
resistance and molecular memory properties due to their electron-withdrawing nature.

Chapter 2 describes the thermal analysis testings of several molecular electronics
candidates to gain insight about their suitability for a new hybrid molecular/solid-state
approach using chemical vapor deposition process.

Chapter 3 depicts the synthesis of new amphiphilic molecules containing a free
radical and a carboxylic group as potential devices for quantum computing. These
candidates have been tested on silver surface to assess their chemical integrity when self-
assembled as a monolayer.

Chapter 4 discusses the synthesis of an array of 2 nm-tall anthropomorphic
conjugated molecules, the NanoKids, in the monomeric, dimeric and polymeric forms
and the use of them in an educational outreach project as 3D animated models to teach
science in selected schools. These molecules are called, as a class, NanoPutians.

Finally, chapter 5 discusses the synthesis and the challenges of devising an army

of NanoKids moving on a surface.
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PART I: ELECTRONICS

The important thing is to create. Nothing else matters; creation is all,

Pablo Picasso



CHAPTER 1

SYNTHESIS OF POTENTIAL MOLECULAR DEVICES CONTAINING

PYRIDYL ALLIGATOR CLIPS FOR MOLECULAR ELECTRONICS



1. Introd

Computers play a big part of our everyday life. According to the US census
bureau, in August 2000, 54 million households (51% of the households) had one or more
computers. Semiconductor manufacturers are building with faster speeds, containing
chips with smaller features, each year. Nowadays, about 77 million transistors, with sizes
as small as 90 nanometers, can fit on a chip. However, the limit of transistor
miniaturization, which is thought to be 30 nm, is close to being reached. This 30 nm
limit, is thought to be fixed by fundamental physical laws. Another emerging problem is
that using conventional lithography methods, the smaller one makes a feature, the more
expensive and difficult the process becomes. Many experts predict that by the year 2015,
a top-end fabrication facility will cost over 100 billion dollars. With the traditional
silicon technology limits to be reached in 10 to 15 years, alternate technologies have to be

considered.

2. Background

The use of organié molecules such as conjugated oligomers and aromatic
molecules as single electron conductors has attracted considerable attention due to their
exciting potential in future electronic devices.'” Molecular electronics involves the
complement of transistors with molecules in devices capable of electronic logic and
memory. Molecular-based systems may afford the most attractive route towards allowing
the continuous scaling down of the size of computers. The main advantage of molecular
electronics is that chemical syntheses allow one to tailor a library of molecules in just a

few steps and at very low cost. With molecules only a couple of nanometers in size,



devising chips containing billions of switches and components becomes a possibility. If
devices were to be based upon single molecules, using routine chemical syntheses, one
could prepare 6 x 10% {Avogadro’s number) devices in a single reaction flask, hence,
more devices than are presently in use by all the computational systems combined,
worldwide. Equally attractive is the fact that self-assembled monolayers can permit
ordering of ca. 10" molecules/cm® as opposed to 10 transistors on a 1 cm? chip. In
2001, molecular electronics was named “Breakthrough of The Year” by Science.’

It all began when Aviram and Ratner® presented over three decades ago the
theoretical underpinnings for the design of organic molecules bearing donor and acceptor
groups that were calculated to present the properties of a p-n junction and thus function
as molecular rectifiers. Across the years, several solid-state testbeds have been
engineered to demonstrate this theory.

Our work focused mainly on a class of molecular electronic devices based on a
string of three benzene rings separated by ethynyl groups. These molecules are typically
referred to as oligo(phenylene ethynylene)s (OPEs). OPEs are assembled on metallic
surfaces, usually gold, via functional groups called “alligator clips” -typically a
benzenethiol unit- located at one of the termini. Organo-sulfur compounds, such as alkyl
or aromatic thiols are well-known to form close-packed and well-ordered monolayers,™®
so-called “self-assembled monolayers” (SAMs) on a metal surface. "

In 1996, the conductance of OPEs was measured by Paul Weiss and David Allara
from Pennsylvania State University using STM (Scanning Tunneling Microscopy)

(Figure nH
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Figure 1

Molecular wire
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Addressing molecular wire with the STM tip

In this report, OPEs were inserted into a SAM of dodecanethiols. Using an
atomically sharp tip of metal held over the surface, the topography of the surface was
monitored by the minute current of tunneling electrons between the surface and the tip.
With this method, single OPE molecules could be isolated and showed conductance.

In 1997, Reed er al.’* from Yale University measured for the first time the
conductance of a single molecule by using a mechanically controllable break junction

method (Figure 2).
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Benzene-1,4-dithiol (HS-C;He-SH) was self-assembled onto two adjacent Au
electrodes, which were then moved together in picometer increments by the use of a
piezo element until one molecule of benzenedithiol bridged the gap. By the application
of a difference of potential between the two electrodes, the current through a single
molecule was measured. This study provided a direct, quantitative measurement of the
molecular conductance of a junction containing a single molecule, a fundamental step in
the emerging field of molecular scale electronics.

However being conductive is not a sufficient property for having molecular

devices. To behave as computer switches, molecular devices have to execute 2 major






